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Abstract

The linear electrodynamic properties of graphene – the frequency-dependent con-

ductivity, the transmission spectra and collective excitations – are briefly outlined.

The non-linear frequency multiplication effects in graphene are studied, taking into

account the influence of the self-consistent-field effects and of the magnetic field.

The predicted phenomena can be used for creation of new devices for microwave

and terahertz optics and electronics.
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1 Introduction

Graphene is a new material experimentally discovered about three years ago

[1,2]. This is a monolayer of carbon atoms packed in a dense two-dimensional
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(2D) honeycomb lattice, Figure 1, left panel. The spectrum of electrons in

graphene

Ekl = (−1)l∆
∣

∣

∣eikb1 + eikb2 + eikb3

∣

∣

∣ /3, l = 1, 2, (1)

can be calculated in the tight-binding approximation taking into account the

symmetry of the lattice (here k = (kx, ky) is the electron wavevector; the

vectors bi are defined in the caption of Figure 1). It consists of two bands

(l = 1 and 2) which touch each other at the six corners of the hexagon shaped

Brillouin zone, Figure 1, right panel. In uniform and undoped graphene at zero

temperature, the lower band Ek1 is fully occupied while the upper band Ek2

is empty, and the Fermi level goes through these six, so called Dirac points

Qi, i = 1, . . . , 6. Near the Dirac points the electron dispersion is linear,

Ekl = (−1)lV |k̃|, k̃ = k−Qi, |k̃|a ≪ 1, V ≃ 106 m/s, (2)

and the behavior of electrons can be described by the Dirac equation with the

Hamiltonian ĤD = V σαp̂α, where σα are Pauli matrices (α = x, y). Only two

of the six Dirac cones are physically inequivalent which is accounted for by

the valley degeneracy factor gv = 2.

The linear (massless) dispersion of graphene electrons near the Fermi level

leads to a number of interesting linear and non-linear electrodynamic phe-

nomena, which are briefly discussed in this paper. Some of these effects are

very promising for microwave and terahertz applications of graphene.
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2 Linear electromagnetic response

2.1 Frequency-dependent conductivity

Using the standard self-consistent linear-response theory and starting from

the Dirac Hamiltonian ĤD one can calculate the frequency dependent con-

ductivity of graphene σ(ω) = σintra(ω) + σinter(ω) [3,4,5,6,7,8]. It consists of

two contributions. The intra-band conductivity

σintra(ω) =
ie2gsgvT

2π~2(ω + iγ)
ln

(

eµ/2T + e−µ/2T
)

(3)

has the Drude form and is similar to the conductivity of conventional 2D

electron systems. The inter-band conductivity has the form

σinter(ω)=−ie2gsgv
8π~

∞
∫

0

sinh x

coshµ/T + cosh x
× ~(ω + iγ)/2T

x2 − [~(ω + iγ)/2T ]2
dx, (4)

where T , µ and γ are the temperature, the chemical potential and the mo-

mentum scattering rate respectively, and gs = 2 is the spin degeneracy. Figure

2a shows the total graphene conductivity σ(ω) as a function of ω/µ at several

typical values of T/µ and γ/µ. At high frequencies, ω ≫ max{T, µ}, σ(ω)

tends to a universal value σω→∞ → e2/4~ dependent only on the fundamen-

tal physical constants. The behaviour of σ(ω) shown in Figure 2a has been

experimentally confirmed in Ref. [9].

2.2 Transmission, reflection and absorption of light

The experimentally measurable transmission T = |t|2, reflection R = |r|2 and

absorption A = 1 − T − R spectra are determined by the conductivity σ(ω),
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since the transmission amplitude t is t = 1 + r = [1 + 2πσ(ω)/c]−1. At high

frequencies the transmission and absorption coefficients are universal,

T = 1− A = (1 + πα/2)−2 ≈ 1− πα, ω ≫ max{T, µ}, (5)

where α = e2/~c. Figure 2b illustrates the T (ω) dependence [5]. The universal

transmission (5) has been observed in [10].

2.3 Plasmons and other electromagnetic excitations

The plasma waves in graphene have been studied in Refs. [11,12,13]. In the

long-wavelength limit q ≪ kF the 2D plasmons in graphene have a square-root

dispersion (kF is the Fermi wave-vector)

ω2

p = gsgve
2µq/2~2 ∝ √

nsq. (6)

The density (ns) dependence of the 2D plasmon frequency in graphene ωp ∝

n1/4
s differs from that of the conventional 2D plasmons (ω ∝ n1/2

s ). At larger

wavevectors (q ≃ kF , but still qa ≪ 1) the 2D plasmons acquire an additional

damping due to the inter-band absorption [12].

At even larger wavevectors q ≃ Qi (q ≃ 1/a) the 2D plasmon spectrum

should be calculated taking into account the full energy spectrum of graphene

electrons (1) and the local field effects [14]. Such calculations [15] reveal a new

type of low-frequency plasmons – the inter-valley plasmons – with the linear

dispersion ω = S|q−Qi|, where i = 1, . . . , 6 and S & V .

The 2D plasmons (6) are the transverse magnetic (TM) modes. The transverse

electric (TE) electromagnetic modes do not exist in conventional 2D electron
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systems. It was shown however [8] that in graphene the TE modes should exist

at ω . 2µ, where the imaginary part of the dynamical conductivity σ′′(ω) is

negative, Figure 2b.

3 Non-linear electromagnetic response

3.1 Frequency multiplication

If a particle with the linear dispersion (2) is placed in the external electric

field E(t) = E0 cosωt, its momentum p(t) will be proportional to sinωt and

the velocity v(t) – to v = ∇pE(p) = V p/|p| ∼ sgn(sinωt). As the function

sgn(sinωt) =
4

π

(

sinωt+
1

3
sin 3ωt+

1

5
sin 5ωt+ . . .

)

(7)

contains all odd Fourier harmonics, irradiation of graphene by a wave with the

frequency ω should lead (in contrast to the conventional electron systems) to

the emission at higher harmonics at frequencies mω with m = 1, 3, 5, . . . [16].

A more accurate theory [17] takes into account the distribution of electrons

over quantum states in the energy bands and the self-consistent field effects.

If T ≪ µ, the higher harmonics generation depends on two parameters E =

eE0V/ωµ and Γ/ω, where Γ = 2αµ/~ is the (linear-response) radiative decay

rate [17] (here α = e2/~c). Our calculations show (Figure 3) that the system

efficiently generates higher harmonics if E & max{1,Γ/Ω}, i.e. at

E0 &
µΓ

eV
=

2πnseV

c
≈ 300

V

cm
× ns(10

11/cm2). (8)
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The estimate (8) does not depend on the frequency of radiation (it is assumed

however that the dimensions of the sample exceed the wavelength of radiation

and that ~ω . 2µ).

3.2 Response to a pulse excitation

Electromagnetic response of graphene to a strong pulse excitation E(t) =

E0τ0δ(t) also differs from that of conventional 2D electron systems (here E0

and τ0 are the amplitude and the duration of the pulse). The momentum re-

laxation in graphene after the strong pulse excitation is linear in time [17], in

contrast to the exponential relaxation in conventional systems. The charac-

teristic response time in the non-linear regime is ≃ eE0τ0V/µΓ.

3.3 Non-linear response in a magnetic field

To describe the influence of a magnetic field B = (0, 0, B) on the non-linear

electromagnetic response of graphene we solve the system of quasi-classical

non-linear equations of motion for N ≫ 1 Dirac quasi-particles

dPj

dτ
= iB Pj

|Pj |
− E cos τ − Γ

ω
J , J =

1

N

N
∑

k=1

Pk

|Pk|
. (9)

Here Pj = (px + ipy)j/pF is the complex momentum of the j-th particle,

normalized to the Fermi momentum pF , J = (jx + ijy)/ensV is the current,

τ = ωt and B = eBV 2/ωµc. The term ΓJ /ω in (9) results from the self-

consistent-field effects and describes the radiative decay.

Figure 4a shows the time dependence of the ac electric current in the regime

of the strong ac electric E ≫ 1 and weak magnetic fields B ≪ E . Apart from
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the current jx(t) with the time dependence close to (7) the system generates

the Hall current jy(t) with the higher frequency harmonics. In the regime of

weak electric fields E ≪ B the frequency transformation effects become even

more complicated, Figure 4b. The regular particle dynamics becomes chaotic

and the system generates both lower and a lot of higher harmonics. This is a

consequence of the singular motion of graphene electrons in the vicinity of the

Dirac point where the cyclotron frequency ωc = eBV/pc of individual particles

diverges at p → 0. The transition to the chaotic dynamics should be observed

at E0 . V B/c.

4 Summary

Due to the linear energy dispersion (2), graphene is a strongly non-linear

material from the viewpoint of its electrodynamic properties. The frequency

multiplication effect falls down very slowly with the harmonics index m and

should be seen in moderate electric fields. In weak magnetic fields it should

be possible to observe the transition from the regular to chaotic particle dy-

namics dependent on the amplitudes of the B and E fields. The predicted

non-linear electrodynamic phenomena open up new interesting opportunities

for studying the fundamental physics of Dirac quasi-particles as well as for

building innovative devices for microwave and terahertz optoelectronics.

I thank Igor Goychuk and Timur Tudorovskiy for useful discussions. The work

was supported by the Swedish Research Council and INTAS.
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Fig. 1. Left: The honeycomb lattice of graphene. The basis lattice vectors are

a1 = (
√
3/2,−1/2)a and a2 = (0, 1)a; the b vectors are bj = (a/2)(cos φj, sinφj),

φj = π/3 + j2π/3, j = 0, 1, 2, where a = 2.46Å is the lattice constant. Right:

The band structure of graphene electrons (1). The energy is normalized to the

full width of the energy band ∆ = 2
√
3~V/a. The six Dirac points lie at

Qj = (4π/3a)(cos φj, sin φj), φj = π/6 + jπ/3, j = 0, . . . , 5.
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Fig. 2. (a) The real and imaginary parts of the conductivity σ(ω), in units e2/4~,

and (b) the transmission coefficient of graphene as a function of ~ω/µ.
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Fig. 3. The Fourier components of the current j/ensV as a function of (a) the field

parameter E = eE0V/ωµ at Γ/ω = 0 and (b) of Γ/ω at E = 10.
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Fig. 4. Electric current j(t)/ensV vs time at (a) E = 5 and (b) E = 0.1 and at

B = 1, Γ/ω = 1. The E-field is polarized in the x-direction.
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