Microelectronics Journal 46 (2015) 237-247

journal homepage: www.elsevier.com/locate/mejo

Contents lists available at ScienceDirect

MICROELECTRONICS
JOURNAL

Microelectronics Journal

A proposed synthesis method for Application-Specific Instruction

Set Processors

@ CrossMark

Péter Horvath *, Gabor Hossz, Ferenc Kovacs

Department of Electron Devices, Budapest University of Technology and Economics, Magyar tuddsok kortitja 2, H-1117 Budapest, Hungary

ARTICLE INFO

ABSTRACT

Article history:

Received 13 May 2014
Received in revised form
13 December 2014
Accepted 2 January 2015

Keywords:

Application-Specific Instruction Set
Processor

ASIP

Architecture description language
ADL

System on Chip

SoC

Due to the rapid technology advancement in integrated circuit era, the need for the high computation
performance together with increasing complexity and manufacturing costs has raised the demand for
high-performance configurable designs; therefore, the Application-Specific Instruction Set Processors
(ASIPs) are widely used in SoC design. The automated generation of software tools for ASIPs is a
commonly used technique, but the automated hardware model generation is less frequently applied in
terms of final RTL implementations. Contrary to this, the final register-transfer level models are usually
created, at least partly, manually. This paper presents a novel approach for automated hardware model
generation for ASIPs. The new solution is based on a novel abstract ASIP model and a modeling language
(Algorithmic Microarchitecture Description Language, AMDL) optimized for this architecture model. The
proposed AMDL-based pre-synthesis method is based on a set of pre-defined VHDL implementation
schemes, which ensure the qualities of the automatically generated register-transfer level models in
terms of resource requirement and operation frequency. The design framework implementing the
algorithms required by the synthesis method is also presented.

RTL processor design

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Today's increasingly developing manufacturing technology makes it
possible to build complete data processing systems on a single chip
including digital and analog building blocks with on-chip memories
and communication. These complex systems called System on Chips
(SoCs) comprise various computational submodules called Application-
Specific Integrated Circuits (ASICs) with a well-defined functionality,
which cannot be modified after manufacturing. ASICs provide favorable
energy-efficiency and high computation performance since they are
optimized for a specific function. However, besides the high computa-
tion capacity, the reusability and flexibility as design constraints have
gained significant importance because of the extremely high manu-
facturing costs.

There are two major ways to ensure flexibility in SoCs. The first
approach is based on embedded reconfigurable logic devices, such as
Field Programmable Gate Arrays (FPGAs) and Complex Programma-
ble Logic Devices (CPLDs), which make it possible to implement
arbitrary digital functionality and can be reconfigured “on the field”
after manufacturing. The other solution is the usage of general
purpose devices operating according to a stored program. These

* Corresponding author. Tel.: +36 1 463 3072; fax: +36 1463 2973.
E-mail address: horvathp@eet.bme.hu (P. Horvath).

http://dx.doi.org/10.1016/j.mejo.2015.01.001
0026-2692/© 2015 Elsevier Ltd. All rights reserved.

devices are the well-known microprocessors whose functionality can
be changed with a simple software update.

Both solutions provide flexibility on the cost of limited compu-
tation capacity. In case of general purpose microprocessors, the
additional memory accesses and other administrative operations
necessitated by the programmable nature cause a significant
penalty in computation performance. In case of programmable
logic devices the reconfigurability is achieved by generic logic cells
and a high amount of programmable interconnection and wiring
resources, which cause high path delays that result in a relatively
low operation frequency and high power consumption.

The concept of Application-Specific Instruction Set Processors
(ASIPs) is a promising result of the trade-off exploration between
flexibility and computation performance [1]. ASIPs are microproces-
sors with a unique instruction set optimized for a specific application
domain. Since they execute a program, they can quickly adapt to the
varying functional requirements. At the same time they have
instructions and hardware resources optimized for the target appli-
cation; therefore, they provide a higher computational performance
than the general purpose microprocessors [2,3].

Due to the rigorous time-to-market requirements, reducing the
time-consumption of ASIP design is essential. The primary design
tools of ASIPs are the Architecture Description Languages (ADLs),
which are specific modeling tools for instruction sets and micro-
architecture. The design frameworks based on these formal language

www.sciencedirect.com/science/journal/00262692
www.elsevier.com/locate/mejo
http://dx.doi.org/10.1016/j.mejo.2015.01.001
http://dx.doi.org/10.1016/j.mejo.2015.01.001
http://dx.doi.org/10.1016/j.mejo.2015.01.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2015.01.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2015.01.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2015.01.001&domain=pdf
mailto:horvathp@eet.bme.hu
http://dx.doi.org/10.1016/j.mejo.2015.01.001

238 P. Horvdth et al. / Microelectronics Journal 46 (2015) 237-247

models mainly concentrate on the software parts of the micropro-
cessor systems, namely the instruction set simulator, assembler,
compiler, and debugger generation. The automated hardware synth-
esis plays a secondary role since the complex datapaths including
internal data storage subsystems and interdependent pipeline stages
characteristic to the instruction set processors require a high level of
optimization, which cannot be achieved by contemporary Computer-
Aided Design (CAD) tools. Therefore, the ADL-based design frame-
works, even if they are able to generate a hardware model, often
compromise or neglect the quality of the final register-transfer level
(RTL) implementation [4].

This paper presents a novel approach for ASIP modeling with
great emphasis on automated hardware generation. The main idea
of our solution is similar to High-Level Synthesis (HLS) [5-7],
where the design is described as an algorithm, then a High-Level
Synthesis procedure generates an RTL model. With lowering the
abstraction of the formal specification while keeping the readable
algorithmic design style, our approach makes it possible to achieve
a high level of optimization and a reduced development time.

The basis of the presented approach is a new abstract model of
ASIP architectures and a mixed algorithm and RTL description
language called Algorithmic Microarchitecture Description Lan-
guage (AMDL) optimized for the proposed abstract architecture
model. The algorithmic language environment of AMDL combined
with the detailed description style characteristic to RTL ensures
the rapid architecture implementation and the comprehensive
control over the microarchitectural details as well. The initial
formal language model comprises a lot of structural information,
which makes it possible to generate an optimized, technology-
independent RTL output, which can be transformed into a gate
level model using the existing logic synthesis tools.

This paper is organized as follows: Section 2 provides a brief
overview of SoC implementation solutions, ASIP modeling meth-
odologies, and their drawbacks in terms of hardware generation.
Section 3 presents a proposed novel architecture model of ASIPs
and Section 4 describes a proposed synthesis approach and
modeling language for this architecture model. Section 5 gives
an overview of the design framework implementing the proposed
synthesis method. Section 6 presents experimental results and
Section 7 draws conclusions.

2. Background
2.1. System on Chip implementations

Numerous heterogeneous architectures can be created with the
combination of application-specific functional units, general pur-
pose microprocessors, and FPGA resources [8-11]. The different
solutions enable a trade-off between flexibility and computation
performance.

A general purpose microprocessor combined with an application-
specific functional unit as an accelerator is used when certain
computational tasks need a significant speed up. The accelerator
may be loosely or tightly coupled to the microprocessor depending
on the application. Both solutions define an interface between the
two major components of the system, which may result in a
bottleneck in terms of computation performance. Furthermore, if
the accelerator is implemented in ASIC, both its functionality and its
interface to the microprocessor are fixed.

A more flexible solution can be achieved with the application of
FPGA fabric for implementing the accelerator functionality. In this
case both main components provide post-fabrication flexibility but
the fixed interface between the microprocessor and the program-
mable logic may prohibit comprehensive optimizations.

FPGA vendors usually provide another solution for combining
instruction set processors with reconfigurable hardware. The soft-
core processors implemented by FPGA resources provide a limited
configurability in terms of instruction set, internal memories and
pipeline implementation. In this case, additional accelerators can
also be placed beside the microprocessor using the reconfigurable
FPGA fabric. The special purpose high performance resources of
the FPGAs, such as block memories, DSP slices, and high speed
communication interfaces can be used either by the microproces-
sor or the accelerator. This solution is favorable in terms of
flexibility but the interface issue mentioned above still exists and
the reconfigurable nature of the hardware results in a limited
operation frequency and poor energy efficiency.

2.2. Application-Specific Instruction Set Processors

ASIPs represent special types of stored-program microproces-
sors, whose instruction set is optimized for a certain application or
application domain. This approach is similar to the processor—
accelerator system but the two main parts are not separated. There
is no well-defined interface between the application-specific
functionality and the instruction set processor; therefore the
drawback caused by their interface is completely eliminated.

There are two main approaches in ASIP design methodologies.
Both of them are based on a low-level profiling of the target
application. In the first case called instruction set customization,
the profiling data are used to determine a subset of a general
instruction-set, which the application does not use. By neglecting
the unused instructions in the synthesis step the resource require-
ment and hence the cost and the area can be decreased. In the
other approach called microarchitecture customization also
known as Instruction Set Extension (ISE) the profiling data is used
to determine complex functionalities the application frequently
uses. Then this functionality is synthesized as a special instruction
(or as a set of special instructions) implemented in highly
optimized functional units called Application-Specific Custom Unit
(ASCU) integrated into the processor's datapath. This solution
significantly improves the computation performance.

The ASIPs incorporate the flexibility of programmable solutions
and the high computational performance of ASICs. Due to the
significant demand for flexibility, the rapidly developing wireless
communication is one of the most important application fields of
ASIPs. [12] and [13] present specific digital signal processing (DSP)
architectures for decoding and demapper implementations, which
can easily adapt to varying network and communication stan-
dards. [14-18] utilize the favorable computation performance of
ASIPs, which can be used for efficient implementation of signal
processing algorithms in multimedia applications, such as Fast
Fourier Transform (FFT), Discrete Cosine Transform (DCT), Retinex-
filtering, QR Decomposition (QRD), Singular Value Decomposition
(SVD) and Motion Estimation (ME). [19] presents another applica-
tion field of ASIPs, namely encryption standards, which also
demand a high computation performance. [20] presents a high-
throughput ASIP with specialized Single Instruction Multiple Data
(SIMD) instructions frequently used in biological sequence align-
ment algorithms. All the above mentioned works describe typical
ASIP architectures in a sense that they include application-specific
pipelines, which operate according to a stored program.

2.3. Algorithmic modeling of ASIPs

In SoC design industry, a widely used method for speeding up a
design process is the high abstraction level design entry combined
with automated design steps. In electronic system design the so-
called High-Level Synthesis (HLS) [21-23] is a typical implementa-
tion of this concept. An HLS algorithm is used to transform an

P. Horvdth et al. / Microelectronics Journal 46 (2015) 237-247 239

algorithm level specification into a synthesizable RTL model.
Although the HLS method reduces the time required to develop
high quality hardware, it cannot be used in case of every type of
data processing systems. There are two major problems regarding
HLS [5-7]: (i) the syntactic variance, which means that the
synthesis result significantly depends on the coding style, and
(ii) the lack of interactivity; the high-level programming language
model used as design entry of the HLS, does not include detailed
information about the register-transfer level functional elements
and their interconnections, because the exact microarchitecture
takes shape only during the automated synthesis steps and it is
difficult for designers to control this process. Presently, the HLS is
widely used for designing streaming DSP applications. However, in
the design flow of ASIPs, the HLS is not frequently applied because
in that case the foresaid problems occur more significantly. Its
reason is that the computation model of ASIPs does not fit well with
those in streaming DSP algorithms, which HLS is optimized for.
Namely, a streaming DSP system usually consists of interconnected
submodules (pipeline stages) communicating via first-in first-out
(FIFO) channels. The behavior of the ASIPs is different. They provide
a wide scale of functionality, they often contain complicated
internal data-storage subsystems, and their pipeline stages are
more interdependent than those in the digital signal processing
systems. This functional diversity increases the effect of syntactic
variance; therefore the optimization algorithms of the highly
automated CAD tools may not be efficient enough; the time-
consuming and error-prone manual optimization is unavoidable.

Due to the foresaid problems the ASIPs have their own design
methodology based on a specific subtype of modeling languages
called Architecture Description Languages (ADLs), which provide
language constructs to describe the behavior and also the micro-
architectural details of instruction set processors. The design
frameworks based on ADLs place great emphasis on instruction
set simulation and other software components (compiler, assem-
bler, and debugger generation) [24-26] rather than the automated
hardware generation [27,28]. In case of ADL-based design frame-
works whose aim is to generate a hardware model from the ADL
specification, the designer often has to deal with significant
restrictions in terms of microarchitecture [29-31] (e.g. single-
issue pipeline, VLIW, implicit instruction pointer, and interrupt
handling mechanism), and they often compromise or neglect the
quality of the final ASIP implementation. The final RTL models are
usually created completely manually or with a significant amount
of manual modifications applied on the automatically generated
RTL models. This latter solution necessitates additional knowledge
in RTL microprocessor development. Furthermore, ADLs are not
able to model application-specific data processors with dedicated
functionality [4,30].

2.4. Earlier work related to AMDL-based modeling

An earlier stage of our work has been reported in [32], where
an overview of the concepts of behavioral RTL and structural RTL
coding styles have been discussed much more shortly than in this
paper in Section 4.2. The language AMDL has already been
introduced; however, this language has been improved signifi-
cantly ever since; the earlier version of the language only sup-
ported a single target architecture model which was a less
detailed, initial version of the target architecture model called
“dedicated multicycle machine” described in Section 3. The up-to-
date version of the AMDL is discussed in Section 4.1 including the
statement block syntax and semantic elements supporting the
other three target architecture models. The proposed manual
design method presented in [32] has also been improved. A
complete design framework including the software tools for

synthesis and the assembler-generation has been prepared, which
is presented in Section 5 in this paper.

3. A proposed architecture model of ASIPs

In this section we present a novel abstract model of ASIP
architectures, whose main objective is to provide a higher struc-
tural flexibility than the target architecture models applied in
contemporary ASIP design environments and to underlie a pro-
posed synthesis method presented in the following sections. The
machine model describes the structure of the data processing
systems as a hierarchy of elementary architecture-elements dis-
tinguished by their programmability and control mechanism. The
Unified Modeling Language (UML) class diagram in Fig. 1 shows
the architecture-elements and their relations and Table 1 shows
their main properties. The capability of instantiation is denoted in
the UML diagram as an aggregation association.

As described in Section 2.2, ASIPs usually comprise of application-
specific pipelined datapaths whose control unit operates according to
a stored program. In order to keep our data processor architecture
model as broad as possible, besides the programmable pipelines, the
concept of dedicated pipelines and multicycle machines has also
been introduced. Dedicated means that the machine does not require
a program for controlling the operation (it does not include e.g. an
instruction pointer and an instruction register typical of instruction
set processors and its main functionality cannot be changed after the
synthesis). The multicycle machine can be applied when the applica-
tion does not need high computation performance. In case of
multicycle machines the latency (the number of clock cycles the
input data or an instruction spends in the datapath) is equal to their
throughput (the number of clock cycles the machine needs to
produce new output data or the result of an instruction), the
operations are not overlapped. The benefit of multicycle machines
is that they usually require less resource than pipelines to perform
the same operation, because there is no need to deal with pipeline
hazards and no pipeline registers are required.

4. ASIP synthesis based on a unified RTL representation
The ADL-based synthesis methods usually use Hardware
Description Languages (HDLs) to describe an intermediate repre-

sentation of the designed system. Hardware description languages,
such as VHDL and Verilog have been developed to specify the

|:
arch. element

T

multicycle L
machine pipeline
dedicated programmable

dedicated
pipeline

programmable

multicycle a
pipeline

machine

multicycle
machine

\Tl

programmable
machine

ISA 1

Fig. 1. The architecture-element types constituting the proposed ASIP architecture
model. ISA stands for Instruction Set Architecture.

240 P. Horvdth et al. / Microelectronics Journal 46 (2015) 237-247

Table 1
Architecture-element properties.

Architecture-element Properties

Programmable multicycle
machine

Dedicated multicycle
machine

Programmable pipeline

Dedicated pipeline

perform the dedicated function.

It implements a unique instruction set. Multiple clock cycles are required to execute a single instruction.
It does not have an instruction set; it is able to perform a dedicated data-processing algorithm. Multiple clock cycles are required to

It implements a unique instruction set. The control mechanism makes possible to overlap the execution of the consecutive instructions.
It does not have an instruction set; it is able to perform a dedicated data-processing algorithm. The control mechanism makes possible to

overlap the execution of the consecutive data processing steps.

structure and also the behavior of complex digital circuits. They
provide algorithmic language constructs, such as instruction
sequences, conditional statements and loops, which make it
possible to describe an algorithm. Moreover, HDLs are able to
describe the structure via component instantiations and port
mapping. Due to this diversity of language constructs, the syntac-
tic variance is in case of HDLs also a significant issue. If we
examine the different synthesis-related RTL hardware models in
detail, it can be observed that they are very different in terms of
language constructs and coding style. Based on the language
constructs applied in the HDL descriptions, we can observe two
sub-categories of RTL; there are behavior-like and structural-like
models. The first one represents a slightly higher level of abstrac-
tion and uses behavior-like language constructs of HDLs; the other
one represents a lower level of abstraction and it contains more
information about the structure of the described system. The
language constructs characteristic to these sub-categories can be
mixed in a complex design. We have introduced two implementa-
tion schemes, called behavioral RTL and structural RTL, represent-
ing the endpoints in terms of model granularity. The behavioral
RTL implementation scheme is a coarse-grained representation; it
may describe very complex functionalities in a single design unit,
while the structural RTL implementation scheme is fine-grained
with a lot of design units and interconnections. After the logic
synthesis these two RTL models eventuate in different gate-level
representations in terms of resource requirement and timing. The
differences are discussed in detail in Section 6.

We propose a synthesis method, which is based on an inter-
mediate abstraction (algorithmic RTL, ARTL) between the high level
algorithmic models and the aforementioned HDL-based RTL models
(see Fig. 2). This abstraction level is implemented by a novel
modeling language called Algorithmic Microarchitecture Description
Language (AMDL) presented in the following subsection.

AMDL can be considered a common design entry for the
behavioral RTL and the structural RTL hardware models. It is
optimized for the abstract data processor architecture model
presented in the previous section; therefore, it is able to model a
wide scale of functionality, including data processors with dedi-
cated functionalities and instruction set processors as well. The
problems of algorithmic processor design detailed in Section 2
have been eliminated by reducing the algorithmic language con-
structs to instruction sequences, infinite loops, and conditional
statements. In fact, the language only provides an algorithmic
environment, which the RTL design can be performed in. The high
level synthesis tasks, such as allocation, scheduling, and binding
have to be performed manually in this algorithmic language
environment; therefore a high optimization level can be achieved.
That means that the concept of ARTL represents an intermediate
stage between the traditional RTL and the algorithmic level in
terms of design effort and elaboration. The output of the ARTL
synthesis method is a pre-synthesized behavioral RTL and struc-
tural RTL model of the desired data processing system, which can
be efficiently transformed into a high-quality gate level model
with the existing logic synthesis tools.

level of abstraction

®

>

2

E } algorithm |............ ISA model | .q........ -

= = <

3| ¢+, LISA, nML, =2

® | SystemC EPRESSION, ‘é’ kS

. ArchC s o

E S =

[>

L © 8

E

£|- ARTL model S 9 0

= 3 3

) g S

p- c <

© AMDL iS5
°© 73] cf o
2 |= 22:0 09
9 |=) S 3

1% < .2 [Tl
3 - E % 43
%| S behavioral >0 %,4'
sler RTL model $EiFTQ
] [Se2)
< % VHDL, Verilog, e
YA SystemC RTL X S
= < <
Ol

'—

14

= structural y

Ely RTL model B A

= %)

3| |vHDL, Verilog, O

@| [Systemc RTL B

- S E S

= S5

— T ;

3 gate level I

%u model | |...)

‘g VHDL, Verilog

Fig. 2. Scope and objective of AMDL-based hardware design.

4.1. Algorithmic Microarchitecture Description Language (AMDL)

In order to achieve an efficient ASIP design methodology the
algorithmic coding style of high level synthesis and the microarch-
itecture-related details of ADLs can be combined with each other. In
this section we present a novel proposed modeling language called
Algorithmic Microarchitecture Description Language (AMDL) which
is able to implement this combined description style [32].

There are two different ways to embed RT level structure
information in the machine description. The traditional approach is
to describe the behavior and the structure in two different sub-
models and the other way is to embed the structural information
directly into the algorithmic behavioral part. Our description lan-
guage follows this approach. Fig. 3 shows an AMDL model example
of an iterative, run-time configurable FIR filter. Configurability means
that the coefficient memory is external and the order of the filter can
be altered up to 255 without resynthesizing the design.

Based on the design example shown in Fig. 3 the differences
between a traditional HLS design entry and the AMDL can also be
recognized. The most important characteristics of AMDL are that

P. Horvdth et al. / Microelectronics Journal 46 (2015) 237-247

machine fir is

-- resource declarations --

signal ena: ctrlin [1];

dataport px: input [32];

dataport py: output [32];

dataport addr_2_coeff_mem: output [8];

dataport order: input [8];

dataport data_from_coeff_mem: input [32];

storage cmar: reg [8];

storage acc: reg [32];

storage y: reg [32];

storage tmp_mem: regfile [1][1][8][32];

operator mul: async (multiplicand[32],
multiplier[32])
(product[32]);

operator add32: async (in1[32],in2[32])(result[32]);

operator adds: async (in1[8],in2[8])(result[8]);

begin -- functional statements --

structure output_port_assignments:
addr_2_coeff_mem <= cmar;
py <=Y;

end structure;

controlpoint idle: cmar <= 8U"@";

loop
if (ena = "1") then break; end if;
end loop;
loop
if (ena = "0") then redirect to idle;
else

acc <= mul.product(data_from_coeff_mem,px);
if (cmar = 8U"@") then
y <= add32.result(tmp_mem.A[cmar],acc);
elsif (cmar = order) then
tmp_mem.W[add8.result(cmar,8S"-1")] <= acc;
cmar <= 8S"-1";
else
tmp_mem.W[add8.result(cmar,85"-1")] <=
add32.result(tmp_mem.A[cmar],acc);

241

end if;
end if;
cmar <= add8.result(cmar,8U"1");
end loop;
end machine; -- fir --

Fig. 3. The AMDL model of an iterative FIR filter.

the assignments constituting the algorithm consist of left-value
and right-value expressions which refer to a specific RT level data
storage element or functional unit declared in the resource
declaration part of the description. The resource declaration does
not mean component declaration but instance declaration. There-
fore, the designer performs the resource allocation and the
binding manually in an algorithmic language environment while
HLS algorithms handle this automatically without providing a
detailed interface for the designer to control the process. Since
there are no exact FSM states in AMDL, the scheduling is
performed by the statement blocks and their semantics. For
example if no statement blocks are used, every assignment
represents an independent state in the FSM realizing the behavior.
If the concurrent statement block is used, the assignments
included in the statement block relate to the same FSM state,
which means that the resources asserted in the assignments inside
the concurrent block are scheduled into the same clock cycle.

At the same time AMDL provides language constructs of the
structured programming: instruction sequences, loops, and con-
ditional statements. These language constructs and the other

AMDL control statements described later in this paper give a
comprehensive means of scheduling, which makes it possible to
influence the control states of the prospective circuit in a more
detailed way than in case of HLS.

4.1.1. Resource and signal types

Regarding its syntax, AMDL is a domain-specific formal lan-
guage optimized for data processors. It operates with resources
and signals which appear in every type of data processing systems.
There are three resource types and seven subtypes available in
AMDL (see Table 2). The input and output ports make it possible to
connect the system to the external world, the registers and
register files are able to implement internal variables and the
operators realize the data manipulations.

The signal types of AMDL represent the control inputs, control
outputs, internal control signals, and status signals of data proces-
sing systems (see Table 3). There is no need to declare the control
signals and the status signals; their use is an implicit declaration,
but control inputs and outputs have to be declared explicitly.

242 P. Horvdth et al. / Microelectronics Journal 46 (2015) 237-247

Table 2
Resource types and subtypes in AMDL.

Resource Resource subtype Description
type
Dataport Data input (input) It is a connection point to the external world. It does not store any data.
Data output (output)
Storage Register (reg) It is a bitvector with an arbitrary length. It can be used as internal variable.
Register file (regfile) It is an array of registers. The number of read and write interfaces, the capacity and the word length are arbitrary.
Operator Asynchronous operator Asynchronous functional unit.
(async)
Synchronous operator Synchronous functional unit. It provides the result in several clock periods.
(sync)
Multicycle operator Synchronous functional unit. It provides the result in several clock periods. This operator type makes possible to implement
(multicycle) hierarchical designs.
Table 3

Signal types in AMDL.

Signal type Description

Control input

It is an external control input that influences the behavior of the control unit. It can occur in the AMDL description in the condition field of the

(ctrlin) conditional statements (e.g. interrupt lines).
Control output It is a control signal sent by the control unit to the external world (e.g. memory strobe signals).
(ctrlout)

Control signal
Status signal
condition field of the conditional statements (e.g. flags).

It is a control signal sent by the control unit to the datapath (e.g. clock enable signals of the registers).
It is a signal provided by a functional unit of the datapath. It influences the behavior of the control unit. It can occur in the AMDL description in the

4.1.2. Statement blocks and their semantics

In most formal languages it is possible to form blocks of
instructions. Sometimes the only benefit is to make the code more
readable but usually the instruction block indicates some semantic
coherence as well; namely, the parsing algorithms must handle
the statements included in the same block together (e.g.: state-
ments in the same loop, statements in the same VHDL process or
Verilog always block). In AMDL, there are five different statement
blocks with specific functionality. Table 4 summarizes the seman-
tics of these statement blocks.

4.1.3. Design units, design structure

A design unit is an elementary part of an AMDL model, which
can be constructed independently. There are three design unit
types in AMDL, machine definition, ISA definition and pipeline
definition. Table 5 summarizes the role of the different design unit
types. The UML class diagram in Fig. 4 shows the general structure
of an AMDL model.

A machine can be instantiated in another machine or pipeline
as a multicycle operator. The association between the machine
definition and the pipeline definition means that a particular
machine can contain multiple pipelines. The coupling between a
machine and a pipeline embedded into it is tighter than that
between a machine and a multicycle operator. The machine and
the associated pipeline are able to read the internal storage
resources of each other, while a multicycle operator has a well-
defined interface. Therefore the language implements the binding
between machine definition and pipeline definition in different
ways. There is no need to explicitly declare the associated pipeline
in the declaration part of the machine design unit but the heading
of the pipeline definition includes the name of the machine it is
associated with.

4.2. Implementation schemes for behavioral RTL and structural RTL
abstractions

In order to perform an automated algorithmic RTL-based pre-
synthesis, exact VHDL implementation schemes have been developed

for the behavioral RTL and the structural RTL abstraction levels,
including HDL model structure, applied language constructs, clocking
schemes, Finite State Machine (FSM) implementations and a set of
pre-defined HDL models of storage resources. The exact definition of
the combination of language constructs used in an RTL model is
important in AMDL-based system design; these two model types
result in very different synthesis results, mainly in terms of resource
requirement and clock frequency, ensuring the comprehensive design
space exploration (see Section 6).

Structural RTL. There are two different implementation schemes
for structural RTL. The distributed structural RTL representation
consists of two main HDL design entities; a datapath, which
contains the data-storing and manipulating resources (registers,
register files and operators) declared in the AMDL description as
independent submodules, and a control unit implemented by
specific FSMs. The fused structural RTL scheme describes the
system in a single design unit, but the different AMDL resources
are represented by separated VHDL blocks. In case of ASIP model-
ing, the controller FSM often includes an instruction pointer (also
known as program counter) and an instruction register. In con-
trast, the structural RT level VHDL implementations of the con-
troller FSMs do not include any internal registers except the state
register and a 1-bit register on the outputs respectively (it is
required in order to reduce clock-to-output delay and prevent
glitches on the control lines). The VHDL code contains only
assignments with a control signal or control output on the left
side and a constant on the right side. Fig. 5 shows the VHDL model
structure of the distributed structural RTL implementation of the
FIR filter described in Fig. 3.

Behavioral RTL. The structure-oriented RTL implementations
described above are very detailed in terms of the interconnection of
the storage and data manipulating resources. The behavior of the
system is hidden in the FSMs and in the implementation of the
operators. The behavioral RTL approach represents a higher abstrac-
tion level. In this case, the VHDL models of the different design units
contain the functionality of the control unit and the data manipulation
resources in a single VHDL process, only the synchronous operators
are described in separate processes. Although the behavioral RTL

P. Horvdth et al. / Microelectronics Journal 46 (2015) 237-247 243

Table 4
Statement blocks in AMDL.

Statement Semantics

block

Structure The structure block indicates that the resources and interconnections realizing the assignments inside the block have to be implemented but the control
unit does not assign any control states to the assignments.

Concurrent The statements embedded into a concurrent block are performed parallel.

Stage The pipeline design unit consists of stage blocks in order to keep the code readable. Similar to the concurrent block, the stage block is a parallel
structure.

Bypass Sequential block inside the pipeline. A unique condition can be assigned to each bypass block. If the condition comes true during the pipelined
execution, the pipeline stops and the bypass block is executed.

Observer The observer block is responsible for assigning a condition to the bypass blocks.

Table 5

Design units in AMDL.

Design Semantics

unit

Machine The machine definition is the base unit of an AMDL model. It represents the multicycle machine class shown in Fig. 1. Since a particular machine can be able
to implement an instruction set, an ISA definition can be assigned to the machine design unit.

Pipeline The pipeline definition represents the pipeline machine class as shown in Fig. 1. It describes a pipeline, which can be embedded in an instruction set
processor (even several times, if needed) or a data processor with dedicated function. Since a particular pipeline can be able to implement an instruction set,
an ISA definition can be assigned to the pipeline design unit.

ISA The Instruction Set Architecture (ISA) definition contains the instruction definitions of a particular machine or pipeline, which it is assigned to. It describes
the program memory capacity, word width, operation codes, mnemonics and the bit positions of the certain instruction parameters.

AMDL model different pipelines, and the multicycle operator resources (dedi-
cated functional units or internal ASIPs).
The Parser is responsible for checking the syntax and generat-
31 n ing an internal representation of the described system. The
)) synthesizer generates an RT level HDL model (behavioral, distrib-
multicycle BRI Ll uted structural or fused structural). This model does not include
operator the exact behavior of the asynchronous/synchronous operator
. % resources instantiated in the AMDL description. In practice the
| | | async/sync resources realize simple arithmetic, logic, and conca-
machine definition ISA definition pipeline definition tenation etc. operations which can be implemented in a generic
form. In this case, the designer has to select the appropriate pre-

0.1 o.1 |

multicycle
operator

]

implementation of an AMDL model describes the whole function-
ality via complex arithmetic and logic expressions in the signal
assignments and subroutine calls, it does not describe the inter-
connections and sharing of data manipulating resources exactly.
Table 6 shows how AMDL resources and language constructs appear
in the different VHDL implementation schemes.

Fig. 4. General structure of an AMDL model.

5. AMDL design framework

In this section, we present a design flow based on a software
framework being under development. Fig. 6 shows the AMDL
design flow with the provided software tools, the required textual
models and the intermediate system representations.

Since AMDL is synthesis-oriented, the software part of the design
flow is less sophisticated, only a practical configurable assembler is
provided to speed up the creation of the initial test programs of ASIPs.
Based on the ISA definitions described with AMDL the generic
assembler tool can be used to create simple assembly test programs.

The entries of the design flow's hardware part are an ISA
specification (or specifications in case of asymmetric multi-core
systems) and the AMDL model of the top-level system, the

defined component from a HDL component library to his own
async/sync resources. If the required functionality is more complex
and application-specific, the operator has to be implemented and
verified manually as an independent entity/architecture pair. It
should be taken into consideration that AMDL has been intended
to use in specific applications. For example if an FFT is needed by
the application, it could be described with AMDL but, since there
are numerous optimized soft-IPs implementing FFT, it would be
sub-optimal to re-implement the FFT in AMDL. Instead, the
designer could use the pre-defined HDL model of the generic
FFT soft-core as a multicycle operator in the embedding system
described with AMDL. The multicycle operators and dedicated
pipelines should only be described with AMDL itself, if there are
no applicable, pre-defined and optimized versions of the function-
ality required. The HDL linker transforms these entity/architecture
pairs to the form required by the desired implementation
scheme (into procedures and processes in case of behavioral RTL,
VHDL blocks in case of fused structural RTL, or component
instantiations in case of separated structural RTL).

A behavioral simulator is also under development. In the
behavioral simulation a model of the datapath components which
are not included in any pre-defined libraries should be created in a
form that can be integrated into the behavioral simulation envir-
onment. This specific form only means a C+ + function call with a
pre-defined style of input and output parameter-passing methods
and variable types. The simulator itself is based on SystemC, which
is completely hidden from the designer.

244 P. Horvdth et al. / Microelectronics Journal 46 (2015) 237-247
addr_2_coeff mem? data_from_coeff_mem5 pxEA
1 - 8 32 32
— / 32 32 \
mux2.vhd
sel_add8 in2 sel_tmp_mem_din
- - we_tmp_mem
32 T 32 | mul.vhd
adder.vhd din
; wa o
8
sel_cmar
,mux3.vhd 32 acc
T Ik_270]
ce_cmar . [clk_270] ER270
. [clk_2x] reg.vhd
cmar = o
[clk_270] doa
reg.vhd regfile.vhd 32
8 g 32 32
ss_cmar
32
o o o
controller.vhd | 5g>g5e adder.vhd
5°8E5 L
o' Ql_‘g-u
o EBER
e 32 reg.vhd
s Eo
| ce_y
3 S
Ss-order y
ss_order [clk_270]
ena
I 8
32
order py
Fig. 5. Distributed structural RTL model structure of the FIR filter.
Table 6
VHDL language constructs implementing AMDL semantics.
AMDL resource/language construct RTL (VHDL) implementation scheme
Structural Behavioral
Separated Fused
Dataport Input/output port
Reg Pre-defined entity/architecture pair describing a Pre-defined block describing a register/ Signal
Regfile register/register file register file Signal with a pre-defined array
type
Asynchronous operator Entity/architecture pair with a pre-defined A process with a pre-defined sensitivity ~Procedure with a pre-defined
interface list inside a block interface

Synchronous/multicycle operator

Sequential instruction execution, loops,
statement blocks

Concurrent instructions

Conditional statements

Specific FSMs

If-then-else statement

Separated process inside an
architecture body

Multiple signal assignments in a single control state

6. Experimental results

In this section, we present the test systems developed with the
proposed design method. The first test system (pA;) is a general-
purpose single-core processor implementing a simple 3-address
instruction set with a 3-stage 8-bit wide pipelined datapath. To
minimize the control hazard occurrence the core performs 1-bit
dynamic branch prediction with a 32-bit branch history table. To
prevent data hazards the microarchitecture implements data
forwarding. To decrease function call penalty, the register window
technique is applied. The register file physically contains 16
registers which can be accessed as four overlapped register

windows with 8 registers respectively. The datapath includes a
shift&add multiplier unit (Table 8: mult) and an internal stack
memory with 16 entries.

The second test system (pA;) is a general-purpose multicore
microprocessor. It comprises of a central core implementing an
administrative instruction set with low performance microarchi-
tecture and its datapath includes two instances of uA;. The central
core is responsible for data memory access and interrupt-
management and the internal pipelined cores assure the compu-
tation performance of the system.

The third test system (pAs) is an ASIP template optimized for
DSP applications. It consists of programmable DSP pipelines and

P. Horvdth et al. / Microelectronics Journal 46 (2015) 237-247 245

Specification

Hardware environment

of the system
(VHDL/Verilog/SystemC)
ISA
(Instruction Set Architecture) SA
specifications refinement
AMDL model of the
TopLevel system AMDL
and subsystems model
refinement
Assembly Operator
language HDL models operator
testprograms (HDL components HDL model
libraries) refinement
i
Retargetable : Parser
assembler ;
Synthesizer
Program memory RT-level HPL model
HDL models (operator architecture bodys
excluded)
Software i > HDL linker
I:I AMDL Design Framework I
Complete RT-level HDL model
o ! software tool (operator architegture bodys
T 1 with existing solutions and testbench included)
EI hand-written code Hardware
_______________ functional
! . mismatch
! HDL simulator ?—

1

Fig. 6. AMDL design flow.

run-time configurable FIR filters (Table 8: FIR). The number of the
pipelines and the filters are synthesis parameters and the FIR filter
coefficient vector and the order of the FIR filters (up to 255) are
run-time configurable parameters. The programmable DSP pipe-
lines implement a 3-address instruction set with a 3-stage 32-bit
wide pipelined datapath including a 32-word register file, a DSP
ALU performing the special instructions shown in Table 7 and a
64-bit wide accumulator storing the results of the DSP instruc-
tions. The core provides high-speed external input and output FIFO
interfaces.

To minimize the control hazard occurrence the core performs a
2-bit dynamic branch prediction with a 256-entry branch history
table. To prevent data hazards the microarchitecture implements
data forwarding.

Table 8 shows the architecture-elements applied and the synthesis
results of the above described test systems. The pAs template core has
been implemented with a single DSP pipeline with distributed
structural RTL coding style and a single FIR filter with behavioral
RTL coding style (there is no difference between the fused structural
and the distributed structural RTL implementations in terms of
resource requirement and operation frequency). The number of DSP
pipelines and FIR filters can be adapted to the application (e.g. multiple
input streams) with a negligible modification in the AMDL model.

Based on the results presented in Table 8 the following conclusions
can be drawn. The logic synthesis based on the structure-oriented HDL
coding style is more efficient in terms of resource requirement while

Table 7
DSP instructions of pAs,

Instruction Function

ff2rf Read word from FIFO

rf2ff Write word into FIFO

wba Write back acc to the register file
mul Acc=xxy

mula Acc=acc+x xy

mulneg Acc=—(xxYy)

mulnega Acc=acc—x xy

subsqr Acc=(x—y)?

the behavioral approach leads to a faster implementation. It has to be
considered that this feature can only be utilized in case of relatively
simple functionalities. In case of microprocessors complex enough to
use in practice, only the structural RTL model can be implemented
with reasonable resource requirement.

They key concepts behind these significant differences are
resource sharing and model granularity. The most salient differ-
ence between the behavioral RTL and structural RTL implementa-
tion schemes is how the operators are embedded into their
language environment. On one hand in behavioral RTL models
the operator calls are directly embedded into the controlling FSM,
which limits the designer in controlling resource sharing (bind-
ing). The other disadvantage is that the clocking and reset scheme
of the FSM itself directly influences the implementation of
operators during the synthesis process which may affect the
synthesis tool when selecting hard heterogeneous blocks to use.
On the other hand, the fine-grained structure of structural RTL
models makes it possible to exploit the hard heterogeneous blocks
of FPGAs more efficiently. The synthesis tools infer dedicated
functionalities such as multiplication or shift-registers easier
because of the well-defined interface and the isolated HDL
description. This issue is not FPGA-related; the proposed IP macros
of standard cell ASIC synthesis tools are similar to those in FPGA
environments. Moreover, in structural RTL models the synthesizer
does not need to perform resource sharing, because the FSM does
not include any resources to share. Only the datapath includes
such resources but they cannot be shared because the synthesis
tools do not perform inter-entity optimizations. They cannot be
unnecessarily duplicated either, because they are represented by
single entity instantiations in the HDL model. In case of fused
structural RTL models the synthesizer may perform resource
sharing in the datapath but the resource duplication is impossible
there, too.

In case of large systems the power-consumption issues addressed
by the heterogeneous resources of FPGAs also have to be taken into
consideration. The dynamic power-consumption of these systems is
proportional to the resource usage but the hard heterogeneous blocks
of FPGAs need significantly more power than general-purpose
resources. The advantage of structural RTL modeling is that the
designer can decide on the usage of the hard heterogeneous blocks,
which improves the design space exploration capabilities.

The last four columns in Table 8 indicate the effectiveness of the
AMDL-based design flow. The development time values are not
predicted based on the code size but they represent actual development
times. The values in the column labeled AMDL mean the development
times of the AMDL models and the manually created operators' VHDL
models embedded in it. Since the output RTL HDL models of the ARTL
pre-synthesis process are identical to those applied in the hand-written
projects represented in the column labeled VHDL (hand-written), their
development times can be directly compared. The exact equality of the
AMDL-based synthesis and the hand-optimized designs is caused by
the fact that these hand-optimized designs represent a subset of those
investigated during the development of the implementation schemes

246 P. Horvdth et al. / Microelectronics Journal 46 (2015) 237-247

Table 8
Synthesis results.

Test system RTL style Resource requirement Jfmax (MHz) Appr. dev. time (person-hour) Lines of VHDL code Lines of AMDL code
FF LUT BRAM (kiB) DSP48 slice AMDL VHDL (hand-written)

mult str 67 94 0 0 230.31 1 5 350 40
bhv 67 142 0 0 353.36 70

FIR str 54 144 18 7 38.52 1 5 380 50
bhv 43 486 0 8 83.57 90

pAq str 268 386 90 0 50.92 20-30 90-100 2200 300
bhv 572 1070 0 0 132.8 780

nAz str 615 933 198 0 54.03 30-40 120-130 2650 550
bhv 1227 2335 0 0 138.24 1100

pAs mixed 474 1487 54 26 50.14 50-60 280-300 2900 500

presented in Section 4.2. It means, that the quality of results character-
istic to hand-optimized designs can be achieved by AMDL pre-synthesis
in a more efficient, less time-consuming way.

7. Summary and conclusion

The paper summarized the different solutions for the emerging
demand for flexibility and reusability in System on Chip (SoC)
design, including a novel solution to increase the efficiency of the
hardware model generation for ASIPs. The programmable nature
and the high computation performance make the concept of
Application-Specific Instruction Set Processors (ASIPs) a promising
approach. The primary modeling tools of full-custom ASIPs are the
Architecture Description Languages (ADLs). Although there are
solutions for transforming these formal models into synthesizable
hardware, the final RTL implementations usually need a high
amount of hand-optimizations before the logic synthesis in order
to achieve appropriate quality of results.

This paper has proposed an efficient method for the optimized
RTL model generation. The two key features of the presented
approach are the possibility of a high optimization level achieved
by a broad, abstract target architecture model, and the algorithmic
language environment making a fast, detailed RTL design possible.

Based on the experimental results, the paper has proved that
the proposed pre-synthesis method generates RTL hardware
models in a more efficient way than traditional manual RTL coding
which is widely used in today's ASIP synthesis flows. The quality of
the RTL models generated by the new pre-synthesis method is
identical to the hand-optimized designs but the required design
time is much less than in case of manual RTL coding. Therefore, the
conclusion can be drawn that the presented approach provides an
efficient improvement in the trade-off exploration between devel-
opment time and optimization level.

Acknowledgment

The work reported in the paper has been developed in the
framework of the project “Talent care and cultivation in the
scientific workshops of BME”. This project is supported by the
Grant TAMOP—4.2.2.B-10/1-2010-0009.

References

[1] K. Keutzer, S. Malik and A. Newton, From ASIC to ASIP: the next design
discontinuity, in: Proceedings of the International Conference on Computer
Design (ICCD), Freiburg, Germany, 2002.

[2] H. Meyr, System-on-chip for communication: the dawn of ASIPs and the dusk
of ASICs, in: Proceedings of the IEEE Workshop on Signal Processing Systems
(SIPS), Soul, Korea, 2003.

[3] S. Vakili, J. Langlois, G. Bois, Customised soft processor design: a compromise
between architecture description languages and parameterisable processors,
Comput. Digit. Tech. IET 7 (3) (2013) 122-131.

[4] C. Tradowsky, T. Harbaum, S. Deyerle and]. Becker, LImbiC: an adaptable
architecture description language model for developing an application-
specific image processor, in: Proceedings of the [EEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2013.

[5] P. Coussy, D. Gajski, M. Meredith, A. Takach, An introduction to high-level
synthesis, IEEE Des. Test Comput. 26 (4) (2009) 8-17.

[6] G. Martin és, G. Smith, High-level synthesis: past, present, and future, IEEE
Des. Test Comput. 26 (2009) 18-25.

[7] D. Gajski, L. Ramachandran, Introduction to high-level synthesis, IEEE Des. Test
Comput. 11 (4) (1994) 44-54.

[8] H.Blume, H. Feldkdmper, T. Noll, Model-based exploration of the design space
for heterogeneous system-on-chip, J. VLSI Signal Process. 40 (1) (2005) 19-34.

[9] H. Blume, H. Hiibert, H. FeldKdmper and T. Noll, Model-based exploration of
the design space for heterogeneous system on chip, in: Proceedings of the
International Conference on Application-Specific Systems, Architectures, and
Processors (ASAP), San Jose, USA, 2002.

[10] M. Huber, P. Figuli, R. Girardey, D. Soudris, K. Siozios and]. Becker,
A heterogeneous multicore system on chip with run-time reconfigurable
virtual FPGA architecture, in: Proceedings of the IEEE International Sympo-
sium on Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), Shanghai, 2011.

[11] D. Bortolotti, C. Pinto, A. Marongiu, M. Ruggiero and L. Benini, VirtualSoC: a
full-system simulation environment for massively parallel heterogeneous
system-on-chip, in: Proceedings of the IEEE 27th International Parallel and
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), Cam-
bridge, MA, 2013.

[12] A. Jafri, A. Baghdadi, M. Jézéquel, ASIP-based universal demapper for multi-
wireless standards, IEEE Embed. Syst. Lett. 1 (1) (2009) 9-13.

[13] T. Vogt, N. Wehn, A reconfigurable ASIP for convolutional and turbo decoding
in an SDR environment, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 16 (10)
(2008) 1309-1320.

[14] O. Muller, A. Baghdadi, M. Jézéquel, From parallelism levels to a multi-ASIP
architecture for turbo decoding, IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 17 (1) (2009) 92-102.

[15] X. Guan, Y. Fei, H. Lin, Hierarchical design of an application-specific instruction
set processor for high-throughput and scalable FFT processing, IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 20 (3) (2012) 551-563.

[16] S. Saponara, L. Fanucci, S. Marsi, G. Ramponi, D. Kammler, E. Witte,
Application-specific instruction-set processor for retinex-like image and video
processing, IEEE Trans. Circuits Syst. 54 (7) (2007) 596-600.

[17] Z. Liu, K. Dickson, J. McCanny, Application-specific instruction set processor for
SoC implementation of modern signal processing algorithms, IEEE Trans.
Circuits Syst. 52 (4) (2005) 755-765.

[18] H. Peters, R. Sethuraman, A. Beri¢, P. Meuwissen, S. Balakrishnan, C. Alba Pinto,
W. Kruijtzer, F. Ernst, G. Alkadi, J. van Meerbergen, G. de Haan, Application
specific instruction-set processor template for motion estimation in video
applications, IEEE Trans. Circuits Syst. Video Technol. 15 (4) (2005) 508-527.

[19] T. Good, M. Benaissa, Very small FPGA application-specific instruction pro-
cessor for AES, IEEE Trans. Circuits Syst. 53 (7) (2006) 1477-1486.

[20] N. Neves, N. Sebastiao, A. Patricio, D. Matos, P. Tomas, P. Flores and N. Roma,
BioBlaze: multi-core SIMD ASIP for DNA sequence alignment, in: Proceedings
of the IEEE 24th International Conference on Application-Specific Systems,
Architectures and Processors (ASAP), 2013.

[21] D. Shin, A. Gerstlauer, R. Démer, D. Gajski, An interactive design environment
for C-based high-level synthesis of RTL processors, IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 16 (4) (2008) 466-475.

[22] E. Casseau, B. Le Gal, Design of multi-mode application-specifi ccores based on
high-level synthesis, Integr. VLSI]. 45 (2012) 9-21.

[23] R. Sinha, H. Patel, synASM: a high-level synthesis framework with support for
parallel and timed constructs, IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 31 (10) (2012) 1508-1521.

[24] A.Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt and A. Nicolau, EXPRESSION:
a language for architecture exploration through compiler/simulator

http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref1
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref1
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref1
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref2
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref2
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref3
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref3
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref4
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref4
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref5
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref5
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref6
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref6
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref7
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref7
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref7
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref8
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref8
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref8
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref9
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref9
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref9
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref10
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref10
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref10
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref11
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref11
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref11
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref12
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref12
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref12
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref12
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref13
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref13
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref14
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref14
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref14
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref15
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref15
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref16
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref16
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref16

P. Horvdth et al. / Microelectronics Journal 46 (2015) 237-247 247

retargetability, in: Proceedings of the European Conference on Design, Auto-
mation and Test (DATE), Munich, Germany, 1999.

[25] S. Rigo, G. Araujo, M. Bartholomeu and R. Azevedo, ArchC: a systemC-based
architecture description language, in: Proceedings of the 16th Symposium on
Computer Architecture and High Performance Computing, 2004.

[26] A. Fauth, J. Van Praet and M. Freericks, Describing Instruction Set Processors
using nML, in: Proceedings of the European Design and Test Conference, Paris,
1995.

[27] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O. Wahlen,
A. Wieferink, H. Meyr, A novel methodology for the design of application-
specific instruction-set processors (ASIPs) using a machine description lan-
guage, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 20 (11) (2001)
1338-1354.

[28] M. Hartoog, J. Rowson, P. Reddy, S. Desai, D. Dunlop, E. Harcourt and
N. Khullar, Generation of software tools from processor descriptions for

hardware/software codesign, in: Proceedings of the Design Automation
Conference, Anaheim, CA, USA, 1997.

[29] P. Mishra, A. Kejariwal and N. Dutt, Synthesis-driven exploration of pipelined
embedded processors, in: Proceedings of the 17th International Conference on
VLSI Design, 2004.

[30] O. Schliebusch, A. Chattopadhyay, E. Witte, D. Kammler, G. Ascheid, R. Leupers
and H. Meyr, Optimization techniques for ADL-driven RTL processor synthesis,
in: Proceedings of the 16th International Workshop on Rapid System Proto-
typing (RSP 2005), 2005.

[31] S. Basu and R. Moona, High level synthesis from Sim-nML processor models,
in: Proceedings of the 16th International Conference on VLSI Design, 2003.

[32] P. Horvath, G. Hosszd, F. Kovacs, A proposed novel description language in the
digital system modeling, in: Mehdi Khosrow-Pour (Ed.), Encyclopedia of
Information Science and Technology, third edition, IGI Global, Hershey, New
York, 2014, pp. 22-37.

http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref17
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref17
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref17
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref17
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref17
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref32
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref32
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref32
http://refhub.elsevier.com/S0026-2692(15)00017-8/sbref32

	A proposed synthesis method for Application-Specific Instruction Set Processors
	Introduction
	Background
	System on Chip implementations
	Application-Specific Instruction Set Processors
	Algorithmic modeling of ASIPs
	Earlier work related to AMDL-based modeling

	A proposed architecture model of ASIPs
	ASIP synthesis based on a unified RTL representation
	Algorithmic Microarchitecture Description Language (AMDL)
	Resource and signal types
	Statement blocks and their semantics
	Design units, design structure

	Implementation schemes for behavioral RTL and structural RTL abstractions

	AMDL design framework
	Experimental results
	Summary and conclusion
	Acknowledgment
	References

