
Minimalistic SDHC-SPI hardware reader module for boot loader
applications

Paulino Ruiz-de-Clavijo, Enrique Ostúa, Manuel-J. Bellido, Jorge Juan, Julián Viejo, David
Guerrero

Departamento de Tecnología Electrónica, E.T.S. Ingeniería Informática, Universidad de Sevilla, Spain

Keywords:

Field-Programmable Gate Array
Secure Digital
Boot loader
Serial Peripheral Interface
System on Chip
Embedded systems

 A B S T R A C T

This paper introduces a low-footprint full hardware boot loading solution for FPGA-based Programmable
Systems on Chip. The proposed module allows loading the system code and data from a standard SD card
without having to re-program the whole embedded system. The hardware boot loader is processor independent
and removes the need of a software boot loader and the related memory resources. The hardware overhead
introduced is manageable, even in low-range FPGA chips, and negligible in mid- and high-range devices. The
implementation of the SD card reader module is explained in detail and an example of a multi-boot loader is
offered as well. The multi-boot loader is implemented and tested with the Xilinx's Picoblaze microcontroller.

1. Introduction and related work

FPGAs offer a fast and cost-effective path for embedded system
design in general and are playing an important role in the field of
embedded systems due to its flexibility. Despite the flexibility of the
FPGA platform, any embedded system has to provide a solution to the
problem of system initialization. FPGAs reconfiguration implies two
main parts: logic reconfiguration and embedded system initialization,
since most of them require an initialization process. Different solutions
can be applied depending on the complexity of the system. In the most
simple systems, including those lacking a processor and those using
simple soft-core microcontrollers, the whole design and the software
code can be included into the programming bitstream. The main
drawback of this approach is that the full system have to be re-con-
figured even for minor software updates and the full size of the bit-
stream must be handled. More complex systems typically include a
proper microprocessor (hard or soft-core) together with a dedicated off-
chip RAM and ROM memory. These systems frequently use some kind
of boot loader, that is to say, a set of software routines that are executed
upon system power-up.

The logic reconfiguration process for volatiles FPGAs can be carried
out in several ways. Taken Xilinx FPGAs as an example, it must be
commented that they are SRAM-based devices with multiple re-
configuration methods, each one suitable according to an end appli-
cation [1]. Digilent Inc. manufacturer builds Xilinx FPGAs-based boards
including several reconfiguration methods and external peripherals.
Nexys4 board from Digilent Inc. [2] is an example of an off-chip DDR
RAM and an SD card reader, among others off-chip resources. The

board also includes several boot loading schemes that allow the re-
configuration from internal ROM, from SD card and from USB mass
storage, among others. For Nexys4, the bitstream uploading from SD
card is carried out by an extra microcontroller added to the PCB
(PIC24FJ128GB106 [3]). In custom designs, adding a microcontroller
increases the complexity and causes inconvenience in final PCB.
Moreover, the microcontroller used in Nexys4 has large firmware
(128 KBytes of flash memory and 16 KBytes of RAM) due to the fact
that it manages a FAT32 file system to look up the bitstream file.

The next step after the reconfiguration process is initialization. The
system initialization code in embedded processors is typically stored in
a ROM-like memory, which is read by the embedded processor at boot
time. Initialization code involves, at least, some peripheral checking
routines and a first-stage boot loader. The main processor in small
systems implemented in reconfigurable hardware is sometimes a very
simple soft-core microcontroller with very little resources and the only
storage available is provided by block RAM devices. Thus, both the boot
loader and the initialization code utilize valuable storage and processor
resources that can usually be changed only by a full system re-pro-
gramming. In this situation, an excessive boot loader footprint either
impacts on the space available for the application firmware or it simply
does not fit in the FPGAs internal RAM.

Systems with off-chip dedicated RAM and ROM may afford im-
plementing a boot loader with multiple boot loader stages to overcome
these limitations. A single-stage boot loader may be stored in a non-
volatile memory or in the FPGAs bitstream and it may trigger the in-
itialization process. However, every change requires a full re-pro-
gramming process. In most of cases, these systems implement the boot

MARK

http://www.sciencedirect.com/science/journal/00262692
http://www.elsevier.com/locate/mejo
http://dx.doi.org/10.1016/j.mejo.2017.07.007
http://dx.doi.org/10.1016/j.mejo.2017.07.007
mailto:paulino@dte.us.es
http://dx.doi.org/10.1016/j.mejo.2017.07.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2017.07.007&domain=pdf

2. SDHC-SPI reader module

SD cards are initialized following a serial protocol based on a se-
quence of command-response operations. The SPI mode can only be set
just after the SD card is powered on and following a concrete sequence
of commands, with some time restrictions. Once the SPI communication
mode is enabled, SD cards only support a subset of the full SD protocol.

The initialization commands must be sent in correct order, the re-
sponses must be checked after each command and a waiting time limit
must be considered for responses. The initialization process is fully
described in [8] for all SD cards types: SD, SDHC and SDXC. Since only
SDHC is supported in this particular implementation, the initialization
process is greatly simplified.

The overall operation algorithm of the module is depicted in Fig. 1
considering time restrictions from [9,14]. In this figure, the FSM con-
troller for SD card starts at INIT state. It puts the SD card into SPI mode
after powering up and during the first reset command (CMD0). SPI
mode cannot be changed while the SD card is powered on. Basically,
this first state sets the SD card into SPI mode sending 80 clock cycles at
80 kHz with chip select (CS) signal asserted. The initial clock frequency
should be less than 400 kHz therefore, it should give the card enough
time to initialize its internal logic before sending the first command
[14].

The FSM controller initialization process will succeed, if the IDLE
state in Fig. 1 is reached. The commands sent are summarized as fol-
lows:

• CMD0: It is a command to reset the card and send it to idle state.

• CMD8: It is a command used to verify the conditions of the card
operation.

• CMD55-ACMD41: It is a command pair used to start the internal
card initialization and check when the card is ready to accept other
commands.

The command pair CMD55-ACMD41 is sent in a loop until it over-
comes successfully. Once this state is reached, the SD card holds in an
idle state waiting for read or write commands. The FSM also keeps in an
IDLE state (see Fig. 1) waiting for requests to read data. To attend the
data read requests the proposed design only uses the CMD17 command,
which reads data in the SD card in a single block mode.

It must also be noted that the SD protocol in SPI mode is protected
by a CRC. Previous commands are 6 bytes long, being the last byte a 7-
bit CRC with a final stop bit. The response of read command (CMD17)
generates a 16-bit CRC code appended at the end of data retrieved. A
possible implementation for CRC7 and CRC16 units uses 7 plus 16 flip
flops connected with some logic, as it is presented in [14].

2.1. SDHC-SPI reader module overview

According to the FSM described in the previous section, the SDHC-
SPI developed aims to minimize the hardware footprint. The design's
key points are:

• The core only uses the subset of the SDHC commands depicted in
Fig. 1. Thus, only SDHC cards are supported, which are the most
common SD cards in use at present.

• CRC7 and CRC16 units are not included. The CRC16 field received

Fig. 1. Top-module finite-state machine diagram.

loader with at least two stages [4]. The first stage may either comprise
loading the complete system code from some storage device or just
loading a second-stage boot loader with extended capabilities. This first
stage (also called pre-loader) is a small piece of code that is not often
updated, as the most firmware updates are usually carried out in the
second stage. Multiple approaches and implementations propose dif-
ferent methods and/or methodologies [5–7] for the boot loader process
depending on the application. The common principle is a boot loader
with two important features: low-footprint area and the ability to up-
load firmware updates [6].

Furthermore, the advances in flash memory technology have made
the integration of mass storage devices in electronic embedded systems
possible. Flash memory is widely used due to the maturity of the
technology, low cost and high capacities. An accepted standard for flash
memory is Secure Digital (SD) card, being the most used removable
medium for data storage applications in embedded systems. SD cards
contain the main flash memory controller. Thus, they are integrated
into a system by implementing the SD card protocol described in the SD
Card Specification [8]. The SD card protocol is complex but there exists
serial peripheral interface (SPI) as an alternative communication mode.
The SPI mode is suggested in the SD Card Specification as an alternative
for those systems, in cases where the full SD card protocol is too heavy.

System on Chip (SoC) technology is based on general purpose pro-
cessors embedded on a chip, and a software-based SD card access
technique is used in most applications whenever the mass storage is
required. The SD card software for these systems is implemented in two
different ways depending on the SD card required performance: either
by developing the full SD card protocol or by using the SPI SD card
mode. The full SD protocol uses a 4 bits parallel transference for data
that increases the speed versus the single serial data bit used in SPI
mode.

The related work in [9] uses the SPI for interfacing an SD card with
a MSP430 microcontroller and presents a driver written in C language
for SD cards. Since the SPI mode of the SD card protocol is a subset of
the full SD protocol, the size of the driver is reduced, but the solution
sacrifices the performance. Other approaches implement an SD card
controller in hardware [10–12]. These alternatives do not use a general
purpose microcontroller. Designs like [10] implement an SD card
controller in Verilog hardware description language (HDL). None-
theless, since the purpose of the implementation is to achieve fast read-
write operations, the result is a complex set of Finite-State Machines
(FSM). The related work [11] also introduces a full SD controller that
aims low power consumption applications. Open designs available in
OpenCores [12] provide solutions for SD cards interfacing that in-
corporate the full SD protocol. Generally, those designs are suitable to
be used in complex microprocessor-based architectures and are sup-
ported by an additional software driver.

This paper proposes a hardware SD card reader for High-Capacity
(HC) SD cards in SPI mode (SDHC-SPI). The SDHC-SPI reader module is
developed for FPGA-based designs with a low hardware footprint. The
module can be used to implement flexible boot loader functions in
hardware that may completely replace software boot loader stored in a
system ROM. After this introduction, Section 2 will describe the internal
features of the SDHC-SPI reader module and Section 3 will analyze the
implementation of a sample multi-boot loader system for Xilinx's Pi-
coblaze microcontroller [13]. Section 4 will include the functional va-
lidation of the system and implementation results and finally, Section 5
will summarize the main conclusions.

after block read operations is ignored.

• Internally, the SD card commands (6-byte codes) are stored in a
small ROM.

• No input buffer is used. The 512-byte block of the read operations
are fetched under demand and directly from the SD card byte by
byte.

• Only the single-block read mode of SD card protocol is used
(CMD17).

• At top level, a simple handshake protocol is utilized to simplify in-
tegration into higher-level designs.

The top view of the module has the inputs and outputs shown in
Fig. 2. From a high-level view the module performs two tasks: SD card
detection and initialization, and data block reading. The SD card in-
itialization process starts with signal reset and SD data block read is
triggered by the signal r_block. The busy signal keeps asserted (set to
logical one) in both operations while the operation is performed. The
operation ends when the busy signal is de-asserted (set to zero). Once
the busy signal is de-asserted, the operation result can be tested during
the next clock cycle by checking the err signal. The err signal is only
asserted when the operation fails.

Fig. 3 represents a time diagram of the SD card initialization pro-
cess, which is automatically triggered when the reset signal is de-as-
serted and ends when the busy signal is de-asserted by the module. The
signal err acts as a result indicator: if the initialization process fails or
the SD card is not detected, the signal err is asserted, otherwise the card
is detected and initialized successfully.

The second available operation is a single-block read from the SD
card. Single block read operations in SDHC cards utilize CMD17 and
return a fixed size of 512 bytes plus 2-byte CRC. The SDHC read com-
mand assumes that the card is divided into 512-byte blocks and each
block is addressed by a 32-bit integer number. The address is sent as an
argument into the read command CMD17. The SDHC-SPI interface for
reading is driven by r_block and r_byte signals and must be asserted in
the correct order. Fig. 4 shows the time diagram of the reading process.
The process starts when r block is asserted and the block address is
captured from the addr input signals. Then, the module sends CMD17 to
SD card and polls it waiting for the response. Once the SD card has the
block ready to sent, the busy signal is de-asserted and data can be re-
trieved asserting r_byte signal multiple times. The overall behavior is
like 512-byte stream received sequentially from dout bus. In detail, for

each pulse on r_byte, the module sends one byte of the 512-byte block,
as it is depicted in Fig. 4 with d [0], d [1] and d [2], for instance. Fig. 4
also shows the possibility of partial block read, from byte 0 to byte 2
(d [0], d [1] and d [2]), de-asserting the r_block signal when the full block
is not required.

Read operations with unsuccessful result can happen when the
module reaches a timeout waiting for the SD card response. In this si-
tuation, the signal err is asserted and no other read operations can be
executed until the SD card is re-initialized.

2.2. SDHC-SPI reader module implementation

The algorithms to control the SD card are completely developed in
hardware using the FSM technique and coded in VHDL. Fig. 5 shows the
internal block diagram of the reader module where the main blocks are
the Main FSM Unit and the SDCMD Unit. Main FSM Unit implements
the algorithm of the Fig. 1 controlling the SDCMD Unit. Main FSM Unit
requests to send SD commands to SDCMD through signals w_cmd,
w_addr and w_byte and waits for the command execution ends. The
signals addr and din are the argument for the SD commands and the SD
command result is given back through signal dout for its analysis.

The SDCMD Unit sends 6-byte command sequences to the SD card
through the SPI. The SPI is a custom design unit since in the commu-
nication with SD cards some important details must be considered to
successfully complete the initialization process for most SD cards. Time
restrictions for the SD cards initialization process are studied in detail in
[14] as well as in the driver presented in [9] for SD-SPI protocol
highlights, showing some important time rules to communicate with
most SD cards. However, both are software-oriented solutions and in
hardware implementation there are some issues to be considered in SPI
custom implementation. In software implementation of SPI like [9], the
SS (slave select) line is asserted and de-asserted in spaced instructions.
Thus, the pulse in SS is wide, specially when the microcontroller
(shown in that work) runs at 8 MHz. In a hardware controlled SPI, the
SS signal can be asserted and de-asserted in two successive clocks cy-
cles, and some SD cards do not detect such a small pulse. In con-
sequence, our SPI hardware implementation includes some specific
functionality as a glitch filter on the SS signal.

The SPI unit is also able to change the clock frequency of the SPI
protocol because SD cards initialization process requires several fre-
quencies (80 kHz, 400 kHz). In the reader module, the read operations

Fig. 2. Top view module.

Fig. 3. SD card initialization / detection time diagram.

Fig. 4. Read block time diagram.

Fig. 5. SDHC-SPI Internal structure.

3. Picoblaze boot loader

The present contribution proposes the use of SDHC-SPI to develop a
hardware boot loader that can retrieve the program code from an SD
card, without requiring boot loading software run by the main pro-
cessor or microcontroller. It is useful both to replace fixed storage like
ROM and also to allow quick and easy changes in the embedded code,
that can be replaced with the appropriate tools by means of any desktop
computer. The solution is specially beneficial for soft-core micro-
controllers with little ROM and RAM storage available. The program
code is typically small in these systems, therefore the low speed of the
SPI interface is not likely to be a problem. A specific boot loader adapter
is required for each microprocessor, but the adapter's complexity and
footprint is low either compared to the SDHC-SPI or to the whole
system. This section presents a sample hardware boot loader for Xilinx's
Picoblaze [13] microcontroller.

Picoblaze is an 8-bit microcontroller optimized for Xilinx's FPGA
devices and distributed as an IP core. Picoblaze has a read-only memory
of 1024-instruction words for program code of 18-bit wide per in-
struction. The instructions are compiled within the FPGA design and
automatically loaded during the FPGA configuration process. A soft-
ware boot loader for Picoblaze is not feasible because the code memory
is not writable from its instruction set.

Filling the RAM is fast with this memory capacity, despite SPI
protocol performance. The program ROM is synthesized as a fixed block
RAM in Xilinx devices. The boot loader only needs to use the write
signal of the block RAM to fill it with the program code. We propose the
example of system architecture depicted in Fig. 6(a) to upload the code
in a different way from the stock solution. The Boot Loader Adapter Unit
mainly consists of an FSM that controls the Picoblaze p_reset signal
while the program is being transferred from the SD card to the block
RAM. The SDHC-SPI retrieves a byte stream from the SD card, but the

memory bus size of Picoblaze is 18-bit wide as previously mentioned. A
memory bus adapter is required to make the 8-bit stream compatible
with 18-bit memory words. The memory adapter packs each 18-bit
instruction into 3 bytes and the two most significant bits (MSB) of each
byte are not used. The packed instructions are directly stored and re-
trieved from the SD card. Table 1 displays an example of a test program
assembled to binary code and converted to be stored into a byte stream
using the aforementioned method.

A simple software tool written in python is used to convert the HEX
codes returned by the Picoblaze assembler into the packed format and
write them to the SD card. The boot loader adapter is depicted in
Fig. 6(b) where the registers sx0_r, sx1_r and sx2_r are used to convert
between the data formats. An FSM controls the data transfer from
SDHC-SPI to the registers and from the registers to the Block RAM.

The sample boot loader also includes a multi-boot operation.
Several programs can be stored in different blocks of the SD card and
the final loaded program can be selected from a set of manually-oper-
ated switches connected to signal prog. The software tool supports the
multi-boot operation and can processes several assembler programs
generating a single file that can be written into an SD card directly. The
boot loader adapter load the blk_cnt counter (Fig. 6(b)) with the SD card
address corresponding to the selected program in the signal prog.

4. Results

A complete system including these modules and the Picoblaze mi-
crocontroller is designed and implemented in order to test the proposed
SD card reader and boot loader modules. The system is primarily tested
on the Basys2 development board from Digilent [15], which includes
Xilinx Spartan-3E XC3S100E [16] FPGA chip. This is a low-grade chip
intended to prove the feasibility of the proposed design even in a lim-
ited resources scenario. The system is also tested on a Xilinx Virtex-5
XC5VLX50T [17] high-grade FPGA chip and in a modern low-grade
Xilinx Artix-7 XC7A35T chip [18] in order to show the small footprint
of the hardware implementation in state-of-the-art devices.

The subsequent section will summarize the functional and im-
plementation results of the reader and boot loader modules together
with the complete sample system.

Fig. 6. Picoblaze boot loader system.

Table 1
Binary code packed from 18 bits to 3 bytes.

Instruction HEX code 18-bit binary code SD card data

load s0,AA 0×000AA 000000 000010 101010 0×00 0×02 0×2A
output s0,04 0×2C004 101100 000000 000100 0×2C 0×00 0×04
jump 0 0×34000 110100 000000 000000 0×34 0×00 0×00

have fixed the SPI clock frequency to a constant value set by the de-
signer in the source code. The choices available for SPI clock are
clk50m/2, clk50m/4, clk50m/64 and clk50m/512, where the clk50m input
signal (Fig. 2) is a 50 MHz input clock.

Another significant unit is CMDROM, as it stores the 6-byte se-
quences of the SD CMDs. Since the SDHC-SPI only uses four SD card
commands, the ROM size is only 24 bytes long. The CMD's last byte is
the CRC7 also stored in ROM, but it is only required for both CMD0 and
CMD8. It is not necessary for the rest of commands when the SD card is
in SPI mode. An FSM-controlled counter is used to address the com-
mand in the ROM. After each command is sent, the FSM waits for the
response and the module keeps on working while the response matches
the expected one.

• Test 1: The SD card is initialized and the first byte is read from the
SD card and displayed in hexadecimal. Additional bytes can be read
and displayed by pressing a control button.

• Test 2: A whole SD block (512-byte length) is read from the SD card
calculating the xor checksum byte by byte. The final result is shown
in hexadecimal on the display.

• Test 3: A sequential number of SD blocks is read and an xor
checksum of all bytes is calculated and displayed. The final value
can be verified to make sure it is the right one.

However, some details must be considered to run the tests. The SD
card is filled in all tests in raw mode with pre-established size random
data. The SD card block to read is manually selected in test 1 by the
eight input switches available in the prototype board. The results dis-
played are verified in test 2 by matching them with the output of a
software tool. A button on the board is used to run the test on the next
block, while the current block number is also being displayed. Then, the
number of sequential blocks must be set in test 3 in VHDL code before
the test is synthesized. As in test 2, a software is used to calculate the
xor checksum of the complete sequence of blocks as well.

4.2. Picoblaze boot loader verification

The multi-boot loader for Picoblaze system has been deployed into
the Basys2 prototype board. The boot loader verification basically
consisted of booting the Picoblaze microcontroller with three different
test programs stored on an SD card and selected by the switches
available on the board. First, the SD card is filled with the binary data
generated by the software tool mentioned in Section 3, containing the
binary code of each program concatenated and properly aligned. The
programs for the multi-boot system are prepared in two steps. In the
first one, the programs are assembled with the Picoblaze assembler
software, available with the Picoblaze tool kit. That software outputs a
file with the memory contents in hexadecimal format, which are
translated into the 3-byte format shown in Table 1. In the second step,
each program is aligned to 4096-byte blocks in order to optimize the SD
card operation. Both steps are carried out automatically by a python
script that generates an SD card image that, in turn, can be directly
dumped on the device. The whole system has been tested by selecting
and running the three test programs stored on the SD card. The process
has worked correctly in all the tests with several repetitions and using
various SD card devices.

As noted in Section 3 the full packed code memory of Picoblaze
occupies 1024×3 bytes, therefore the boot loader needs to read 6
blocks of the SD card (512 bytes per block). The time required by the
Picoblaze boot loader system to load the program into memory (load
time) has been measured using a logic analyzer for the different SPI
clock frequencies available in the system (see Section 2.2) and they are
shown in Table 2. In an FPGA implementation, this load time adds to
the configuration time used by the platform to load the bitstream from

ROM in order have a fully functioning system (power-on time). In our
case, the Basys2 board takes 610 ms to be configured from ROM thus,
the overhead in the power-on time introduced by the boot loader
system, ranges from 1% to 50% of the total power-on time depending
on the SDHC-SPI frequency configuration (Table 2). Since any modern
SDHC device should be able to work at the maximum considered fre-
quency of 25 MHz, it can be said that the power-on time overhead in-
troduced by the boot loader system is negligible in most cases and of the
same order of magnitude as the configuration time in the worst case.

4.3. Implementation results

Resource utilization is discussed in this section. Two designs are
taken as reference, the SPI-Master SD/MMC Controller [19] and the lo-
giSDHC Secure Digital Host Controller [20]. The former is an open
hardware design and the latter is a licensed IP core. Both are SD host
controllers that include more complete functionality like writing sup-
port and data buffers for better performance, but these capabilities do
not suppose any benefit for boot loader applications. Tables 3 and 4
summarize the resources utilization of the full boot loader system and
its main parts for a XC3S100E and a XC5VLX50T chip. These are ex-
amples of low-grade and high-grade chips respectively. The glue logic
at top level is not included in tables, hence the difference between the
sum of the parts and the full system. The SPI-Master has also been
synthesized for these FPGAs and its results are also included in the
tables as reference. The synthesis process has been executed with the
following options: Optimization Global - Area, Optimization Effort - High
and Place & Route Effort Level - High.

Considering the resources utilization for the low-grade chip in
Table 3, the complete boot loader system (SDHC-SPI plus boot loader
adapter) takes 24% of the resources. The SDHC-SPI takes most of the
resources, since the boot loader adapter is more simple in comparison,
but it is only one third of the SPI-Master occupation. Finally the sample
Picoblaze system takes 15% of the resources leaving a 60% of the chip
resources available for further extensions. In comparison, the SPI-
Master alone takes about the 60% of the total chip resources leaving
very little room to build a boot loader solution and specific application
on top of it.

Regarding the high-grade chip in Table 4, the resource utilization in
LUTs and slices is reduced by one third compared to the low-grade chip,
which is coherent with the fact that the XC5VLX50T chip contains 6-
input look-up tables [17] while the XC3S100E chip contains 4-input
look-up tables [16]. Combined with the additional logic available, the
full system takes less than 4% of the resources in the high-grade chip,
whereas the boot loader solution (SDHC-SPI plus boot loader adapter)

Table 2
Program load elapsed time.

SPI clock frec. Load time Power-on time overhead (%)

25 MHz 6.84 ms 1.1%
12 MHz 10.52 ms 1.7%
780 kHz 81.70 ms 11.8%
97 kHz 614 ms 50.1%

Table 3
Resources utilization in Xilinx Spartan3E-100 - XC3S100E.

Core Slices Slices Reg. LUTs Slices (%)
SPI-Master [19] 590 583 822 61.4%

SDHC-SPI 179 111 270 18.6%
Boot loader adapter 55 82 78 5.7%
Picoblaze + Peripherals 144 127 231 15.0%

Full system 383 320 588 39.8%

4.1. SDHC-SPI reader module verification

Both simulation and execution on the prototype implementations
are used to verify the SDHC-SPI. For this purpose, a set of test benches
are designed. The simulation test benches read the contents of the
memory from a simulated SD card module coded in VHDL language. A
software tool is specifically developed to automatically generate this
VHDL code from a given memory content in raw format.

The implementation platform is the already mentioned Digilent's
Basys2 board. Various peripherals on the board are used to control and
check the correct operation of the SD card reader: push buttons,
switches, LEDs and a 7-segment display. Controllers for the peripherals
are also developed, as needed. In all the tests, the SD card is preloaded
with some raw content. Such tests are executed and then checked using
the board's peripherals. Below, we list the three tests carried out:

only takes about 2% of the resources. Again, the SDHC-SPI controller
takes about one third of the SPI-Master resources.

The logiSDHC source code is not available, but its data sheet inform
about resources utilization in a modern Artix-7 low-grade FPGA chip,
the XC7A35T [18]. Both the SDHC-SPI and the SPI-Master have been
synthesized for this chip using the Xilinx's Vivado framework with the
option AreaOptimized high. Results are shown in Table 5. It must be
noted that the SPI-Master and the logiSDHC include two block RAMs
whereas SDHC-SPI only uses one ROM (CMDROM unit) which is al-
ready included in the LUTs count. In general, small ROMS like
CMDROM (24 bytes long) are synthesized by Xilinx tools on LUTs in
order to maximize performance and save block RAM resources.

Again SDHC-SPI resource requirements (and the whole boot loader
solution therefore) are about one third of the SPI-Master and only a
10% of the logiSDHC module. Even though a modern FPGA chip can
easily cope with a moderately complex SD card host, it can be seen that
the proposed boot loader solution will have a negligible impact in re-
source utilization in any modern application.

5. Conclusions

A hardware SD card reader module for configurable FPGA devices
has been presented. It has stood for implementing a complete multi-
boot loader solution for the Picoblaze microcontroller in hardware
using VHDL code, completely discarding the need for software boot
code. The proposed solution is specially useful in low-memory em-
bedded systems and in higher-capacity systems that can benefit from

the flexibility of storing the boot code or firmware in removable, low
cost, massive storage like SD devices.

Both the SD card reader and boot loader adapter have been im-
plemented and then integrated into a sample Picoblaze-based system
that has suitably run in all the tests. The boot loader solution presents a
low-hardware footprint that makes it adequate even for low-grade
FPGA chips (≈ 24%) and a nearly negligible impact (≈ −1 2%) in high-
grade and modern low-grade devices.

References

[1] M. Li, M. Xie, G. Liu, X. Liu, A SPI FLASH-based FPGA dynamic reconfiguration
method, in: 2013 IEEE International Conference on Microwave Technology
Computational Electromagnetics, 2013, pp. 379–382.

[2] Digilent, Inc., Nexys4 DDR FPGA Board Reference Manual (2016).
[3] Microchip Technology Inc., DS39897C PIC24FJ256GB110 Family Data Sheet

(2009).
[4] C. Gu, Building Embedded Systems: Programmable Hardware, Apress, Berkeley CA,

2016, Ch. Power On and Bootloader, pp. 5–25.
[5] D. Hartono, M.S. Ng, Z.N. Lim, S.W. Lee, V.V. Yap, C.M. Tang, A scalable bootloader

and debugger design for an NoC-based multi-processor SoC, in: 2015 Proceedings of
the 3rd International Conference on New Media (CONMEDIA), 2015, pp. 1–5.
http://dx.doi.org/10.1109/CONMEDIA.2015.7449150.

[6] I. Pratt, S. Zhong, Bootloader design considerations for resource-constrained mi-
crocontrollers in RFID reader designs, in: 2014 IEEE RFID Technology and
Applications Conference (RFID-TA), 2014, pp. 50–55. http://dx.doi.org/10.1109/
RFID-TA.2014.6934199.

[7] A. Marchiori, Q. Han, A two-stage bootloader to support multi-application de-
ployment and switching in wireless sensor networks, in: 2009 International
Conference on Computational Science and Engineering, Vol. 2, 2009, pp. 71–78.
http://dx.doi.org/10.1109/CSE.2009.50.

[8] SD Specifications Part 1 Physical Layer Simplified Specification Version 5.0, Tech.
rep., Technical Committee SD Card Association (2016).

[9] F. Foust, Secure Digital Card Interface for the MSP430, Michigan State University,
2004.

[10] O. Elkeelany, V. Todakar, Data archival to SD card via hardware description lan-
guage, IEEE Embed. Syst. Lett. 3 (4) (2011) 105–108, http://dx.doi.org/10.1109/
LES.2011.2168804.

[11] P. Zhou, T. Wang, X. Wang, Y. Wang, Hardware Implementation of a Low Power SD
Card Controller, in: Proceedings of the IEEE International Conference on Signal
Processing, Communications and Computing (ICSPCC 2014).

[12] OpenCores. URL 〈http://www.opencores.org〉.
[13] Xilinx Inc., PicoBlaze 8-bit Embedded Microcontroller User Guide for Extended

Spartan-3 and Virtex-5 FPGAs. Introducing PicoBlaze for Spartan-6,Virtex-6, and 7
Series FPGAs (2011).

[14] J.A. Aseem Vasudev, Interfacing SD Cards with Blackfin Processors, Tech. rep.,
Analog Devices (2010).

[15] Digilent, Inc., Basys2 FPGA Board Reference Manual (2016).
[16] Xilinx Inc., Spartan-3 FPGA Family Data Sheet, DS099 Product Specification (2013).
[17] Xilinx Inc., Virtex-5 Family Overview, DS100 v5.1 Product Specification (2015).
[18] Xilinx Inc., 7 Series FPGAs Data Sheet: Overview, DS180 v2.4 Product Specification

(2017).
[19] S. Fielding, spiMaster IP Core Specif. (2008) (URL 〈http://opencores.org/project,

spimaster 〉).
[20] Xylon d.o.o., logiSDHC Secure Digital Host Controller, Data Sheet (2014).

Core Slices Slices Reg. LUTs Slices (%)
SPI-Master [19] 364 571 685 5.05%

SDHC-SPI 116 111 211 1.61%
Boot loader adapter 37 82 75 0.51%
Picoblaze + Peripherals 84 127 182 1.17%

Full system 245 320 478 3.40%

Table 5
Resources utilization in Xilinx Artix-7 - XC7A35T.

Core Slices Slices Reg. LUTs Slices (%)

SPI-Master [19] 178 474 525 2,18%
logiSDHC [20] 636 1143 1578 7.80%
SDHC-SPI 63 88 211 0.77%

Table 4
Resources utilization in Xilinx Virtex 5 - XC5VLX50T.

http://dx.doi.org/10.1109/CONMEDIA.2015.7449150
http://dx.doi.org/10.1109/RFID-TA.2014.6934199
http://dx.doi.org/10.1109/RFID-TA.2014.6934199
http://dx.doi.org/10.1109/CSE.2009.50
http://refhub.elsevier.com/S0026-2692(16)30518-3/sbref1
http://refhub.elsevier.com/S0026-2692(16)30518-3/sbref1
http://dx.doi.org/10.1109/LES.2011.2168804
http://dx.doi.org/10.1109/LES.2011.2168804
http://www.opencores.org
http://opencores.org/project,spimaster
http://opencores.org/project,spimaster

	Minimalistic SDHC-SPI hardware reader module for boot loader applications
	Introduction and related work
	SDHC-SPI reader module
	SDHC-SPI reader module overview
	SDHC-SPI reader module implementation

	Picoblaze boot loader
	Results
	SDHC-SPI reader module verification
	Picoblaze boot loader verification
	Implementation results

	Conclusions
	References

