
Microelectronics Journal 98 (2020) 104753

Contents lists available at ScienceDirect

Microelectronics Journal

journal homepage: www.elsevier.com/locate/mejo

Siwa: A custom RISC-V based system on chip (SOC) for low power medical
applications

Ronny Garcia-Ramirez a,∗, Alfonso Chacon-Rodriguez a, Roberto Molina-Robles a,
Reinaldo Castro-Gonzalez a, Egdar Solera-Bolanos a, Gabriel Madrigal-Boza a,
Marco Oviedo-Hernandez a, Diego Salazar-Sibaja a, Dayhana Sanchez-Jimenez a,
Melissa Fonseca-Rodriguez a, Johan Arrieta-Solorzano a, Renato Rimolo-Donadio a,
Alfredo Arnaud b, Matias Miguez b, Joel Gak b

a Escuela de Ingeniería Electrónica, Instituto Tecnológico de Costa Rica, Costa Rica
b Departamento de Ingeniería Eléctrica, Universidad Católica del, Uruguay

A R T I C L E I N F O

Keywords:
Implantable medical devices
CMOS HV
RISC-V
System on chip

A B S T R A C T

This work introduces the development of Siwa, a RISC-V RV32I 32-bit based core, intended as a flexible control
platform for highly integrated implantable biomedical applications, and implemented on a commercial 0.18 𝜇m
high voltage (HV) CMOS technology. Simulations show that Siwa can outperform commercial micro-controllers
commonly used in the medical industry as control units for implantable devices, with energy requirements below
the 50 pJ per clock cycle.

1. Introduction

There is a wide range of requirements for electronic devices in the
realm of medical applications: for instance, in the analysis of med-
ical images or computerized axial tomography scanners, the use of
high performance, high power microprocessors is standard, whereas in
implantable devices there is a need for small, low power, low perfor-
mance but reliable processing units. Being reliability a primary concern,
the use of discrete commercial, mature, market-tested micro-controllers
is common in the latter, as in the case of pacemakers. However, the
assembly on a printed circuit board (PCB) of independent processors,
communication interfaces (IO), sensors, and actuators requires extra
validation for the final product, as well as higher power consumption to
drive the wires between the discrete components and the PCB. Integrat-
ing both the processing units, the sensors and the IO interfaces would
cut heavily on such costs. As such, a good alternative is the use of field
programmable arrays (FPGAs) [1], but these devices are often not able
to meet the requirements of small form factor and capacity at the same
time, and in general, achieve worse power consumption and speed per-
formance compared to an application specific integrated circuit (ASIC)
fabricated on the same CMOS node [2,3].

∗ Corresponding author.
E-mail address: rgarcia@tec.ac.cr (R. Garcia-Ramirez).

Now, even though there is plenty of micro-controller intellectual
property (IP) available for the development of ASICs, the use of these
blocks is tied to restrictive and expensive licenses; these IP blocks are
also typically not open for customization, making them unsuitable for
small development teams with restricted design targets and budgets.
This is why RISC-V [4], an initiative from Berkeley University, aiming
at the development of a scalable open instruction set architecture (ISA)
CPU for research and the industry has spurred a growing interest (see
for instance Refs. [5–8]) with several companies already offering design
tools and IPs based on RISC-V [9,10], and even commercial processors
[11].

In this paper, the design of a custom low power system on chip
(SoC) using a 32-bit reduced instructions set computer (RISC) micro-
controller [12,13], targeted for implantable/wearable applications, is
discussed in detail. The processor core is based on the RISC-V RV32I
ISA and is implemented using a centrally controlled non-segmented
micro-architecture. It includes the control for an integrated sensing
and stimulation interfaces as well as standard communication interfaces
like a Universal Asynchronous Receiver/Transmitter (UART), eight gen-
eral purpose input/output ports (GPIO) and a serial peripheral interface
(SPI).

https://doi.org/10.1016/j.mejo.2020.104753
Received 1 May 2019; Received in revised form 24 January 2020; Accepted 2 March 2020
Available online 5 March 2020
0026-2692/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.mejo.2020.104753
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/mejo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2020.104753&domain=pdf
mailto:rgarcia@tec.ac.cr
https://doi.org/10.1016/j.mejo.2020.104753


R. Garcia-Ramirez et al. Microelectronics Journal 98 (2020) 104753

Fig. 1. Block level description of the proposed low power System on Chip (SoC).

This paper is organized as follows: in section 2, an overview of all
the functional details of Siwa’s1 proposed architecture is provided as
well as a description of the implementation for the main components of
its micro-architecture. In section 3, a comparison of the proposed micro-
architecture with regards to other RISC-V implementations and other
processors commonly used in implantable medical devices is presented.
Finally, in section 4, some conclusions of this work, as well as some
prospects of its development, are shared.

2. Proposed micro-architecture

This section details the micro-architectural implementation of a
low power system on chip (SoC) for biomedical applications centered
around Siwa, a RISC-V RV32I based central processing unit (CPU), a
universal asynchronous receiver-transmitter interface, a serial periph-
eral interface, eight general purpose input/output interfaces, and an
analog block intended for biological stimulation (details about this
application can be found in Ref. [12]). Fig. 1 represents the main func-
tioning blocks of the system; here, the cardiac stimulation and sens-
ing interfaces are represented by the block called “Analog Interface”;
a basic description of each unit in the micro-architecture, as well as
the details of the programming model required for its correct utiliza-
tion, are provided next (details about the RISC-V open platform can be
found in Ref. [14–16]).

2.1. Bootloading and programming model

The SoC has a hardwired bootstrap subroutine, that takes control of
the SPI interface after a reset, and loads the system’s program stored in
an external 16 MB flash memory into the micro-controller’s 8 kB static

1 Siwa: From the Bribri, a Costa Rican indigenous language, meaning wisdom
or knowledge.

random access memory (SRAM). Once the bootstrap process is finished,
the CPU executes a fetch micro-instruction, and the flash memory driver
becomes accessible for normal write and read operations, serving as
a secondary storage device. A hand-shaking protocol is provided for
the bootstrap process in order to avoid an overflow in the bus access
queues, due to differences in clock speed between Siwa and the flash
memory.

2.1.1. Control and status registers (CSR)
Siwa employs a custom implementation of the RISC-V RV32I stan-

dard, with several of its CSR’s modified from their original definition in
Ref. [15]. This saves area and power, and some registers from the spec-
ification were not even implemented at all; more details can be found
in Ref. [17]. This must be taken into account by the programmer while
using the standard RISC-V tool-chain. A general pre-processing script
has been generated to help the programmer handle most of these varia-
tions. A main configuration register (MCR) is used to configure some of
the basic features of the system, such as the masking of external or inter-
nal interrupts. From here, the programmer can also activate/deactivate
the memory and bus controller (MBC) in order to save power, configure
the general input/output registers (GPIO), and check the status of the
internal timers.

A machine exception program counter (MPEC) holds the value of
the program counter while an interrupt is serviced and two machine
exception cause registers, (mcauseA) and (mcauseB) are used to direct
the interrupt handler to the appropriate service. A machine trap-vector
base-Address (mvtec) is used to point to the address where the interrupt
handling routine is located. The PC jumps there every time an inter-
rupt/exception is detected. By default, this register points to address
zero after reset and must be configured by the basic input/output sys-
tem (all the code in Siwa runs at machine privilege level, so it is possible
for the main code to directly modify this register). Two extra registers
are used to control the internal timer: the Machine Timer Fence register
(TMRFNC) holds the maximum count value at which the system trig-

2



R. Garcia-Ramirez et al. Microelectronics Journal 98 (2020) 104753

Fig. 2. Bit fields detail for each CSR implemented in Siwa’s Micro-Architecture.

gers an interrupt; the Machine Timer Value register (TMRVAL) holds
the current value of the internal timer. Fig. 2 shows a detailed descrip-
tion of the positions of each field for the implemented CSRs. The solid
blue spaces in the registers of Fig. 2 represent read-only reserved bits
which are tied to zero in this implementation (specific details of each
register and their configuration bits can be found in Refs. [17]).

2.1.2. Memory map
Both the UART and the SPI are managed as memory mapped devices

(MMIO) instead of port mapped devices (PMIO). The memory map is
hard-coded instead of being programmable in order to save area.

The CPU’s memory and bus controller (MBC) directs every access in
the range from 0 to 8 kB to the SRAM memory, while the accesses in the
range from 8 MB to 32 MB are directed to the SPI and the UART; any
attempted access to the region from 8 kB to 8 MB triggers a bad address
interruption and it is managed by the interrupt handler software.

2.1.3. Interrupts
There are two sources of non-maskable interrupts in the system:

those generated by an invalid instruction in the instruction decoder
and those generated by an invalid address transaction. There are three
sources of maskable interruptions: those coming from external devices
connected to the bus, SPI or UART, those coming from the internal
timer, and those coming from an external pin (the latter are called ana-
log interruptions in this document, as they are intended to be used by
the cardiac stimulation device). The central control unit of the CPU
checks for interruptions after loading the next instruction in the pro-
gram counter (PC) and before the fetch of the instruction from memory
and into the instructions decoder (ID). The behavior of the machine,
whenever an interruption is detected, is the same for both maskable
and non-maskable interrupts: The current PC is saved into MEPC, and
all the maskable interrupts are turned off for the execution of the inter-
rupt controller routine.

Once the interrupt handler routine is loaded, it must save all the
CSR and GPR registers in the stack before checking the mcauseA and
mcauseB CSRs in order to deduce which interrupt is requesting service.
The interrupt handler routine identifies the interrupt by checking the
source vector field in the MCAUSEA register; extra information about
the interrupt is provided in the rest of the vector fields. Servicing an

Fig. 3. Siwa’s bus micro-architecture. FIFOs are used to synchronize data among
devices with different speeds. Instead of having a central arbitration block for
the bus, this function is distributed among each bus controller making the bus
more robust against failures in a central point.

interrupt disables the handling of further interrupts until the service
routine is completed and a return to normal executions is performed,
except for system exceptions that are always accepted.

2.2. System bus

All of the SoC’s data agents capable of generating and consuming
data, such as the UART, the SPI, and the MBC, are communicated via
a 64-bit parallel bus with distributed arbitration. Two FIFOs are used
to interface any devices that connect to the bus, as illustrated in Fig. 3;
these FIFOs avoid flow control issues deriving from speed differences
between the units connected to the bus. In order to keep FIFOs from
overflowing, a handshaking protocol is used. To save area, FIFOs have
a depth of only two messages in this implementation, but this option is
re-configurable for future, performance oriented versions of Siwa. The
fact that the bus has a distributed arbiter instead of a central one is
important because it reduces the number of connections that would be

3



R. Garcia-Ramirez et al. Microelectronics Journal 98 (2020) 104753

Fig. 4. Basic block diagram of the FSM for the central control unit of the CPU.

otherwise necessary between the arbiter and the bus interfaces, at the
expense of larger bus controller interfaces. This option also removes the
arbiter as a critical point of failure, because of the distributed redundant
bus arbitration.

The data package presented in Fig. 1 represents the format used to
transmit information in the system’s bus. Here, the destination and the
source of the package of information are encoded using particular IDs,
and specific codes are defined for each device protocol.

The CPU services each communication with the agents in the sys-
tem as an interrupt. The interrupt handler interprets each field in the
message received from the bus agents, except for the data field (bits 31
to 0), which is transparent for the handler and must be interpreted at a
higher software level of abstraction.

2.3. General central processing unit micro-architecture

Siwa’s CPU is based on a RISC-V R32I programming architecture.
As depicted in Fig. 1, five general blocks are implemented: the memory
and bus controller (MBC), in charge of interfacing the CPU with the
general bus and the system’s memory; an instruction decoder (ID) that
translates instructions into micro-coded data going to the ALU and the
RF, and command fields serving as the input to the CPU’s controller
finite state machine (FSM); a 32 word, 32-bit data register file (RF) that
also includes all the special CSRs of the system; a 32-bit arithmetic and
logic unit (ALU) capable of signed addition, word rotation and standard
the boolean logic functions defined by the R32IV specification; and the
central micro-coded finite state machine FSM which coordinates all the
CPU (not shown in Fig. 1).

Choosing a centrally controlled micro-architecture instead of a
pipelined one allowed for a smaller footprint, without extra segmen-
tation registers or feedback units used to handle data dependencies
common in pipelined architectures. The impact in degraded processing
performance is an expected trade-off considering the intended appli-
cation in implantable devices, where area and power performance are
the key factors, for systems that any way, handle very slow biolog-
ical signals (in the order of several Hz to a few KHz). Constraints
in budget and area limited the system to only one memory level
(used as main memory for both data and program) and a secondary
flash storage device connected to the SPI interface. The internal mem-
ory in this first implementation is limited to 8 kB of SRAM due to
space reasons; the micro-controller had to leave space for the ana-
log stimulus section, typically consuming a major section of area for
the handling of high voltage drivers and fine tuned current sources.
However, the processor’s general design allows for a much larger
amount of memory, with at least an extra level of cache. A dia-

Fig. 5. Detailed micro-architecture for the memory and bus controller (MBC).
Here the SRAM block is an IP provided by the foundry.

gram of the implementation of the controlling FSM is presented in
Fig. 4.

2.3.1. Memory and bus controller (MBC)
As previously mentioned, the MBC interfaces the bus with the CPU.

This unit also controls transactions to the SRAM. Fig. 5 describes the
general MBC’s micro-architecture. Like most other blocks in the design,
Siwa’s MBC may be configured, in this case, for handling higher mem-
ory spaces if required.

Since the RV32I specification allows for the read and writes of indi-
vidual bytes, half words and full words, the MBC transactions have dif-
ferent latencies depending on the instruction and the final target of the
transaction.

From the CPU’s point of view, the MBC flags its readiness to execute
a transaction if the mem_rdy bit is asserted, and starts transactions with
a pulse in the enable bit. While the transaction is being executed, the
mem_rdy bit is low and when the transaction finishes the mem_rdy pin
is asserted again, meaning that data is ready in the D_Read line and the
package of information has been written in memory or that the package
of information has been sent to the appropriate device through the bus.

In the case of an invalid instruction, the Error_drs bit is asserted
and the MBC waits for a pulse in the Enable bit in order to become
functional for the next transaction.

4



R. Garcia-Ramirez et al. Microelectronics Journal 98 (2020) 104753

Fig. 6. Description for each one of the instruction formats specified in the RISC-V architectural description [14].

2.3.2. Instruction decoder (ID)
This combinational block is in charge of decoding the instruc-

tions stored in memory and provides the system with the information
required for the correct execution of the code, as well as to identify ille-
gal instructions. RISC-V RV32I is a fixed instruction length architecture,
with six different instruction formats available for the user and privi-
leged mode [14]: R-type for register to register operations, I-type for
short immediate arguments and loads, S-type for stores, B-type for con-
ditional branches, U-type for long immediate arguments and J-type for
unconditional jumps. The detail for the format of each kind of instruc-
tion is presented in Fig. 6. Based on these instruction formats, RISC-
V provides 47 instructions which are available from user mode [14].
In this first version, SIWA does not implement the Fence and Fence.i
instructions, being a single physical/logical thread architecture. When
an instruction is not recognized, the code returned to the control unit
has its bits all set to 1, being thus equivalent to have an illegal instruc-
tion exception. For each one of the supported instructions this block
decode the information required to execute the instruction correctly; for
instance, in some cases, the immediate output (IMM) is sign extended
while in others it is zero extended.

The ID unit function is straightforward: once the next instruction is
ready in the input port of the block (D_Read), the instruction is captured
with a pulse in the ld_id pin, and is subsequently decoded, providing
thus the central FSM with the identity of the fetched instruction, and all
of the necessary bit fields to execute it. Specifically, the fields returned
by ID block are: a unique 7-bit codification (CODIF) that corresponds
unequivocally to a particular instruction, and function fields particular
to each instruction type, as presented in Fig. 6.

The other fields returned by the instruction decoder correspond with
the fields described in Fig. 6: immediate operand (IMM), destination
register (RD), register source 1 (RS1), register source 2 (RS2) and con-
trol ans status register identifier (CSR). To get a better understanding
of the use of each field for each instruction please refer to [16].

2.3.3. Arithmetic and logic unit (ALU)
The functions provided by SIWA’s ALU are: signed and unsigned

addition, subtraction and comparison, logical AND, logical OR, logical
XOR, and logical and arithmetic shifts (both to the right and to the left).
Two’s complement codification is used for the signed variables. From
the control’s point of view, the operation of the ALU is straightforward:
the operands are processed according to a control code.

The ALU’s boolean and comparison blocks are fast, small and rel-
atively simple to implement via the foundry leaf cells library. On the
other hand, the shifter and the adder blocks are large and poten-

Table 1
Implemented instructions grouped according to their
codification type.

Instruction Type Instruction Mnemonic

U-type LUI, AUIPC
J-type JAL
B-type BNE,BGE,BGEU

BEQ,BLT,BLTU
S-type SH, SW, SH
I-type LH, LW, LBU,LHU,XORI

LBU,ADDI, SLTIU,SLTI
R-type SLLI, SRAI,SRLI,SUB

SLT,XOR,SRA,AND
ADD,SLL,SLTU,SRL,OR

Machine Mode
I-type

EBREAK, CSRRW,CSRRC
CSRRSI, ECALL,MRET
CSRRS, CSRRWI,CSRRCI

tially slow depending on the selected architecture. Several options from
the literature were evaluated in terms of area power and delay (see
Table 1).

Several adders were conceptually analyzed, including logarithmic
look ahead adders as the Brent Kung, and carry skip adders variations,
including a Manchester Carry Chain topology and a Carry Select adder
(CSA). Being area and power consumption the most important con-
straints in this version of the processor, logarithmic look ahead adders
were readily taken off the list, while adders such as the ripple carry
adder (RCA) were excluded due to their low speed over operands of
8 bits or more [18]. Three architectures were selected after this pre-
screening: Constant Width Carry Skip adder (CSK), Manchester Carry
Chain adder (MCC), and Variable Width Carry Skip adder (VSCK). The
three candidate architectures were logically and physically synthesized
in order to determine the best fit for the project. Table 2 gives a sum-
mary of the post-layout results; based on these results the CSK topology
was selected because of its better power, area and delay metrics (with
the MCC and the VSCK being about 20% slower than the CSK, and about
7–10% more energy expensive). Data from Table 2 was generated using
a 20 MHz clock, with post-layout extracted data from the three adders,
applying random data to their inputs every clock cycle.

Power consumption results in Table 2 may be pessimistic because
these assume a new calculation every clock cycle, however, these are
only used as a selection metric. The considered activity factor for these
estimates is way over the expected ALU real data toggling, as any ALU
data execution in this version of Siwa takes only one clock cycle from
the multi-cycled completion of any instruction.

5



R. Garcia-Ramirez et al. Microelectronics Journal 98 (2020) 104753

Table 2
Summary of post-layout data for selected adders using 32-bit data
words. For a better comparison, all data normalized to the CSK
results. Clearly, the CSK beats the MCC and the VCSK from 7% to
21% on all metrics.

Adders Power (mW) Area (𝝁m2) Delay (ns)
CSK 0.7245 1715.18 16.24
MCC 0.7805 1823.45 19.34
VCSK 0.7993 1838.91 19.65
Adders Norm. Power Norm. Area Norm. Delay
CSK 1 1 1
MCC 1.0773 1.0631 1.1909
VCSK 1.1032 1.0721 1.210

Two options were evaluated for the selection of the shifter: a funnel
shifter and a barrel shifter implementation [19]. The barrel shifter was
selected due to its shorter delay characteristics, being very similar in
terms of power, according to Ref. [20].

2.3.4. Register file (RF)
The register file is the general block encompassing the status and

general purpose registers (GPRs). Due to budget restrictions, the module
was implemented using static latches instead of a denser SRAM IP. The
latch cells, anyway, allowed for a 50% area saving when compared with
a preliminary flip-flop RF version.

The implemented register file block is based on pass-gate multiplex-
ers and allows for the coherent read and write of the same register in
one clock cycle by using an intermediate retention latch working in the
complementary level.

3. Post-layout evaluation

Fig. 7 shows the diagram of the implemented layout of the proces-
sor, with the SRAM block located at the top left corner. This block rep-
resents one of the biggest physical constraints of the present implemen-
tation in terms of performance, because in restrict the amount of cache
memory available in the micro-architecture. A limited cache memory
implies that in order to run big programs, (which do not fit in the inter-
nal SRAM), it is necessary to access an external memory which sig-
nificantly reduces the performance in terms of power consumption and
executed instructions per time unit. In the case of the present implemen-
tation, this external memory block is implemented with a flash memory
connected to the bus via the SPI interface.

The custom analog interface for the cardiac stimulus unit is not
shown in Fig. 7, and the ports required for this interface are aligned
in the right side of the die.

A post-layout estimation of the energy consumed by each one of the
implemented instructions is given in Fig. 8. The energy consumption
is estimated by running a test with 1000 iterations of each instruction,
with random operators, and using the average power consumption from
the extracted post-layout model given by Synopsys IC compiler. The
bootload process is not taken into account. As expected, because of the
memory accesses they must perform, the load/store instruction family
are the most expensive in terms of energy consumption. In particular,
the subset of load/store byte and half word instructions require the
highest energy, because of the costlier unaligned access to memory.
These instructions also take more clock cycles to execute; this is why
the average power consumption, as given in Fig. 8 remains relatively
constant. The introduction of architectural clock gating and block sleep
modes were left for subsequent versions of SIWA.

The average clock cycles per instruction (CPI) was calculated with
the number of cycles need it for each instruction and the total instruc-
tions for each MCU. The information required from commercial MCUs

Fig. 7. Physical layout of the proposed Siwa RISC-V SoC. To the right, 3.3 V
ports provide interfacing with analog stimulus circuits (not shown).

Fig. 8. Estimation of the energy consumed by each implemented instruction.
In order to estimate the energy consumed by each instruction, 1000 iterations
of the instruction with random operators were executed and averaged, using a
clock speed of 20 MHz and 1.8 VDD. Here the names in the axis of the abscissa
represent the instructions implemented in SIWA.

was taken from Ref. [21,22] y [23], such that:

CPI =
∑

Cycles taken per instruction
Total number of instructions

(1)

The energy per cycle metric represents the average energy consumed
by cycle for a micro-architecture running a task. This metric can also
be found in the equivalent terms of 𝜇W∕MHz:

𝜇W
MHz

= 𝜇W
1000000 clock cycles

1 s

= 𝜇W · s
1000000

= pJ
cycle

(2)

For commercial MCUs, power consumption data was extracted from
data sheets where the average total consumption was reported for a
specific frequency and voltage. This metric can be calculated as:

Energy
cycles

= Average Power Consumption
Frequency

= Joules/s
Cycles/s

(3)

6



R. Garcia-Ramirez et al. Microelectronics Journal 98 (2020) 104753

Table 3
Comparison between different RISC-V cores, scaled according to Ref. [27]. The data used for the proposed
micro-architecture is estimated based on post-layout simulations.

Core Siwa Mriscv Riscy Zero-riscy Micro-riscy

Reference This work [24,25] [26] [26] [26]
Technology 0.18 𝜇m 0.13 𝜇m 65 nm 65 nm 65 nm
Frequency 20 MHz 160 MHz Not reported Not reported Not reported
ISA RV32I RV32IM RV32IM + DSP RV32IM RV32E
Program memory 8 kB 4 kB Not reported Not reported Not reported
Average CPI 4 Not reported 1.27 1.49 1.49
pJ/cycle 48.31 850 63.68 26.12 23.61
pJ/cycle (not scaled) 48.31 167 5.07 2.08 1.88
pJ/Instruction 193.24 Not reported 80.87 38.91 35.17
Core Area (𝜇m2) 672,146 350,250 703,296 326,592 200,448

Table 4
Comparison of the proposed micro-architecture with other MCU architectures common in the IMDs field.

Core Siwa 8051-compatible Atmega328p PIC16LF1823 MSP430

References This work [28,29] [21] [22] [23]
Technology 0.18 𝜇m 0.18 𝜇m Not reported Not reported Not reported
Instruction word size (bits) 32 8–24 16 8 16
Program memory 8 kB SRAM Not reported 32 kB FLASH 2 kB 8 kB RAM
Freq. 0–20 MHz 13 MHz 0–20 MHz 31 kHz-32MHz 4–16 MHz
Average CPI 4 Not reported 1.62 1.1837 ≈ 1
pJ/cycle 48.31 70.6 360 54 803
Average power 48.31 70.61 360 54 803
(𝜇W) @1 MHz @1 MHz @1 MHz @1 MHz @1 MHz
VDD (V) 1.8 Not reported 1.8 1.8 2.2

For the calculations of power consumption in the proposed SoC, we
used the power estimations obtained through simulation and reported
in Fig. 8, assuming a balanced test running all the instructions in the
same proportion.

Table 3 compares other reported RISC-V micro-architectures with
similar characteristics to SIWA. The first one was developed in a
130 nm technology, and implements a RV32IM ISA, an AXI-LITE, and
an APB bus [24,25]. In Ref. [26], three cores are presented: Riscy
(RV32IM + DSP), Zero-riscy (RV32IM) and Micro-riscy (RV32E), imple-
mented in a 65 nm technology and embedded on a PULPino platform.
The first of these cores was intended for DSP, the second was intended
for integer operations, and the last one, with the lowest performance,
area, and energy consumption, was customized for administrative tasks
only.

Since the technologies used to implement these micro-architectures
are different from the one used in the present work, the power con-
sumption and area of these cores was scaled using the method and
equations provided in Ref. [27], to approximate their behavior as if
these had been fabricated on a 0.18 𝜇m process. It can be noticed
from the data in Table 3 that the scaled average energy consump-
tion per clock cycle of the proposed architecture is between 2 and 9
times better with respect to other RISC-V cores considered. However,
the average power per instruction might not be favorable, since most of
the reported cores are segmented architectures and intended for other
applications where performance is more relevant. The fabrication pro-
cess selection is responsible of the larger area metrics for the proposed
architecture, which is justified by fabrication costs, process reliability,
and high-voltage device capabilities; these features might not be avail-
able in more recent CMOS technologies.

Table 4 provides a comparative basis between the proposed archi-
tecture and those commonly used for IMD applications reported in the
literature. One of the challenges to compare among different micro-
architecture implementations is that they obviously do not have the
same features. Moreover, the use of performance standard metrics is
not common either in this field of application; for instance, the use of
the Drhystone benchmark (DMIPS), pervasive in the measurement of

general purpose microprocessors performance, is unfeasible for small
micro-controllers (MCUs) due to memory requirements.

Nevertheless, the comparative data in Table 4 shows that the pro-
posed architecture has a lower energy per cycle while running at much
higher frequency and having a wider word size. Customization capabil-
ities and the possibility of monolithic integration with other function-
alities are again other clear advantages of the proposed architecture in
the field on IMD applications.

It is expected that future versions of Siwa may have better metrics
in terms of area and power consumption. Next iterations might include
power states, which reduce the power consumption by adding the capa-
bility of turning off specific hierarchical blocks depending on the code
that is being executed. Regarding the total area, further improvements
can include the optimization of the bus architecture with a simplified
central arbiter.

4. Conclusions and future work

The use of external intellectual property for the development of SoCs
is tied to restrictive and expensive licenses; also, the IP blocks are not
open for customization, which makes them unsuitable for small devel-
opment teams with particular design targets and restricted budgets. An
original SoC based on the RISC-V R32I architecture and intended for
low power medical devices was presented and evaluated against other
RISC-V implementations and other processors used in the literature for
implantable medical devices.

Even this first version of the core processor, based on post-layout
analysis, presents the lowest energy per cycle metric of all the evaluated
commercial micro-architectures and RISC-V cores when escalated using
the method presented in Ref. [27] to compensate the differences from
fabrication technologies.

This initiative demonstrates the feasibility of designing a customized
architecture with a small development team, enabling the possibility of
implementing flexible low-power and low-area solutions for robust and
cost-effective ASICs.

7



R. Garcia-Ramirez et al. Microelectronics Journal 98 (2020) 104753

Future work can address further customization and optimization of
the architecture for low-power and low-area implementations in new
SoC designs. Validation of the fabricated hardware and formal bench-
marking against other architectures is also planned in the near future
for further evaluation of the proposed SoC.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

CRediT authorship contribution statement

Ronny Garcia-Ramirez: Investigation, Project administration, Soft-
ware, Conceptualization, Methodology, Validation, Writing - origi-
nal draft. Alfonso Chacon-Rodriguez: Funding acquisition, Inves-
tigation, Project administration, Software, Conceptualization, Super-
vision, Methodology, Writing - review & editing. Roberto Molina-
Robles: Software, Validation. Reinaldo Castro-Gonzalez: Software.
Egdar Solera-Bolanos: Investigation, Software, Validation. Gabriel
Madrigal-Boza: Investigation, Software. Marco Oviedo-Hernandez:
Investigation, Software. Diego Salazar-Sibaja: Software. Dayhana
Sanchez-Jimenez: Software. Melissa Fonseca-Rodriguez: Software.
Johan Arrieta-Solorzano: Software. Renato Rimolo-Donadio: Fund-
ing acquisition, Project administration, Conceptualization, Supervision,
Writing - review & editing. Alfredo Arnaud: Conceptualization, Fund-
ing acquisition, Writing - review & editing. Matias Miguez: Writing -
review & editing. Joel Gak: Writing - review & editing.

Acknowledgments

Work supported by ANII – Uruguay grant FMV_1_2017_136543.
Thanks to Universidad Católica del Uruguay and Instituto Tecnológico
de Costa Rica. Thanks also to the Europractice IC Service, and Synopsys
Electronic Design University program.

References

[1] G.I. Alkady, I. Adly, H.H. Amer, T.K. Refaat, Mitigation of soft and hard errors in
FPGA-based pacemakers, in: 2018 13th International Conference on Computer
Engineering and Systems (ICCES), 2018, pp. 284–289.

[2] I. Kuon, J. Rose, Measuring the gap between FPGAs and ASICs, in: Proceedings of
the 2006 ACM/SIGDA 14th International Symposium on Field Programmable Gate
Arrays, FPGA ’06, ACM, New York, NY, USA, 2006, pp. 21–30.

[3] A. Boutros, S. Yazdanshenas, V. Betz, You cannot improve what you do not
measure: FPGA vs. ASIC efficiency gaps for convolutional neural network
inference, ACM Trans. Reconfigurable Technol. Syst. (TRETS) 11 (2018)
20:1–20:23.

[4] D. Patterson, A. Waterman, The RISC-V Reader: an Open Architecture Atlas,
Strawberry Canyon, 2017.

[5] M. Gautschi, et al., Near-threshold RISC-V core with DSP extensions for scalable
IoT endpoint devices, IEEE Trans. VLSI Syst. 25 (2017) 2700–2713.

[6] R. Uytterhoeven, W. Dehaene, A sub 10 pJ/cycle over a 2 to 200 MHz
performance range RISC-V microprocessor in 28 nm FDSOI, in: 44th European
Solid-State Circuits Conference (ESSCIRC, 2018, pp. 236–239.

[7] P. Chiu, C. Celio, K. Asanović, D. Patterson, B. Nikolić, An out-of-order RISC-V
processor with resilient low-voltage operation in 28nm CMOS, in: IEEE
Symposium on VLSI Circuits, 2018, pp. 61–62.

[8] C. Salazar-Garcia, R. Castro-Gonzalez, A. Chacon-Rodriguez, RISC-V based sound
classifier intended for acoustic surveillance in protected natural environments, in:
2017 IEEE 8th Latin American Symposium on Circuits Systems (LASCAS), 2017,
pp. 1–4.

[9] Ultrasoc Technologies Ltd, 2019.
[10] Codasip Ltd., 2019.
[11] Sifive, 2019.
[12] A. Arnaud, M. Miguez, J. Gak, R. Puyol, R. Garcia-Ramirez, E. Solera-Bolanos, R.

Castro-Gonzalez, R. Molina-Robles, A. Chacon-Rodriguez, R. Rimolo-Donadio, A
risc-v based medical implantable soc for high voltage and current tissue stimulus,
in: 2020 IEEE 11th Latin American Symposium on Circuits & Systems (LASCAS),
2020.

[13] R. Garcia-Ramirez, A. Chacon-Rodriguez, R. Castro-Gonzalez, A. Arnaud, M.
Miguez, J. Gak, R. Molina-Robles, G. Madrigal-Boza, M. Oviedo-Hernandez, E.
Solera-Bolanos, D. Salazar-Sibaja, D. Sanchez-Jimenez, M. Fonseca-Rodriguez, J.
Arrieta-Solorzano, R. Rimolo-Donadio, Siwa: a risc-v 32i based micro-controller for
implantable medical applications, in: 2020 IEEE 10th Latin American Symposium
on Circuits Systems (LASCAS), 2020.

[14] A. Waterman, K. Asanovic, The Risc-V Instruction Set Manual-Volume I: User-Level
Isa-Document Version 2.2, RISC-V Foundation, 2017. May 2017.

[15] A. Waterman, Risc-v Privileged Architecture, 2017.
[16] D. Patterson, A. Waterman, The RISC-V Reader: an Open Architecture Atlas,

Strawberry Canyon, 2017.
[17] R. Garcia Ramirez, Development of Integrated Electronics Subsystems for

Biomedical Applications, Ph.D. thesis, Instituto Tecnologico de Costa Rica, Costa
Rica, 2019.

[18] C. Nagendra, M.J. Irwin, R.M. Owens, Area-time-power tradeoffs in parallel
adders, IEEE Trans. Circuit. Syst. II: Analog Dig. Sign. Process. 43 (1996) 689–702.

[19] N.H. Weste, D.M. Harris, Integrated Circuit Design, Pearson, 2011.
[20] S. Huntzicker, M. Dayringer, J. Soprano, A. Weerasinghe, D.M. Harris, D. Patil,

Energy-delay tradeoffs in 32-bit static shifter designs, in: 2008 IEEE International
Conference on Computer Design, 2008, pp. 626–632.

[21] Z.T. Irwin, D.E. Thompson, K.E. Schroeder, D.M. Tat, A. Hassani, A.J. Bullard, S.L.
Woo, M.G. Urbanchek, A.J. Sachs, P.S. Cederna, W.C. Stacey, P.G. Patil, C.A.
Chestek, Enabling low-power, multi-modal neural interfaces through a common,
low-bandwidth feature space, IEEE Trans. Neural Syst. Rehabil. Eng. 24 (2016)
521–531.

[22] S. Rodriguez, S. Ollmar, M. Waqar, A. Rusu, A batteryless sensor ASIC for
implantable bio-impedance applications, IEEE Trans. Biomed. Circuit. Syst. 10
(2016) 533–544.

[23] C.S. Mestais, G. Charvet, F. Sauter-Starace, M. Foerster, D. Ratel, A.L. Benabid,
Wimagine: wireless 64-channel ECoG recording implant for long term clinical
applications, IEEE Trans. Neural Syst. Rehabil. Eng. 23 (2015) 10–21.

[24] C. Duran, D.L. Rueda, G. Castillo, A. Agudelo, C. Rojas, L. Chaparro, H. Hurtado, J.
Romero, W. Ramirez, H. Gomez, J. Ardila, L. Rueda, H. Hernandez, J. Amaya, E.
Roa, A 32-bit RISC-V AXI4-lite bus-based microcontroller with 10-bit SAR ADC, in:
2016 IEEE 7th Latin American Symposium on Circuits Systems (LASCAS), 2016,
pp. 315–318.

[25] C. Duran, L.E. Rueda, G, A. Amaya, R. Torres, J. Ardila, L. Rueda, D, G. Castillo, A.
Agudelo, C. Rojas, L. Chaparro, H. Hurtado, J. Romero, W. Ramirez, H. Gomez, H.
Hernandez, E. Roa, A system-on-chip platform for the internet of things featuring a
32-bit RISC-V based microcontroller, in: 2017 IEEE 8th Latin American
Symposium on Circuits Systems (LASCAS), 2017, pp. 1–4.

[26] P. Davide Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini, E. Flamand, L.
Benini, Slow and steady wins the race? A comparison of ultra-low-power RISC-V
cores for Internet-of-Things applications, in: 2017 27th International Symposium
on Power and Timing Modeling, Optimization and Simulation, PATMOS, 2017, pp.
1–8.

[27] A. Stillmaker, B. Baas, Scaling equations for the accurate prediction of CMOS
device performance from 180nm to 7nm, Integration 58 (2017) 74–81.

[28] X. Zhang, H. Jiang, L. Zhang, C. Zhang, Z. Wang, X. Chen, An energy-efficient
ASIC for wireless body sensor networks in medical applications, IEEE Trans.
Biomed. Circuit. Syst. 4 (2010) 11–18.

[29] X. Zhang, H. Jiang, B. Zhu, X. Chen, C. Zhang, Z. Wang, A low-power
remotely-programmable MCU for implantable medical devices, in: 2010 IEEE Asia
Pacific Conference on Circuits and Systems, 2010, pp. 28–31.

8

http://refhub.elsevier.com/S0026-2692(19)30378-7/sref1
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref2
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref3
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref4
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref5
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref6
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref7
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref8
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref9
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref10
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref11
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref12
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref13
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref14
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref15
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref16
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref17
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref18
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref19
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref20
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref21
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref22
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref23
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref24
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref25
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref26
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref27
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref28
http://refhub.elsevier.com/S0026-2692(19)30378-7/sref29

	Siwa: A custom RISC-V based system on chip (SOC) for low power medical applications
	1. Introduction
	2. Proposed micro-architecture
	2.1. Bootloading and programming model
	2.1.1. Control and status registers (CSR)
	2.1.2. Memory map
	2.1.3. Interrupts

	2.2. System bus
	2.3. General central processing unit micro-architecture
	2.3.1. Memory and bus controller (MBC)
	2.3.2. Instruction decoder (ID)
	2.3.3. Arithmetic and logic unit (ALU)
	2.3.4. Register file (RF)


	3. Post-layout evaluation
	4. Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


