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Abstract

An automated sizing approach for analog circuits using evolutionary algorithms is presented in this paper. A targeted
search of the search space has been implemented using a particle generation function and a repair-bounds function that
has resulted in faster convergence to the optimal solution. The algorithms are tuned and modified to converge to a
better optimal solution with less standard deviation for multiple runs compared to standard versions. Modified versions
of the artificial bee colony optimisation algorithm, genetic algorithm, grey wolf optimisation algorithm, and particle
swarm optimisation algorithm are tested and compared for the optimal sizing of two operational amplifier topologies.
An extensive performance evaluation of all the modified algorithms showed that the modifications have resulted in
consistent performance with improved convergence for all the algorithms. The implementation of parallel computation
in the algorithms has reduced run time. Among the considered algorithms, the modified artificial bee colony optimisation
algorithm gave the most optimal solution with consistent results across multiple runs.
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1. Introduction

Automation in analog integrated circuit (IC) design
has yet to advance to the same extent as digital IC design,
mainly due to highly complex analog design procedure[1,
2]. The optimal design of analog circuits depends on sev-
eral design specifications, including gain, phase margin,
power, area, and bandwidth [3]. Analog circuits are more
often designed manually, where the experience of analog
designers plays a significant role. Analog circuit automa-
tion continues to be an active area of research due to the
complexities and time involved in manually designing ana-
log circuits [4, 5, 6].

Different approaches have been reported in the liter-
ature to automate the device sizing aspect of the analog
IC design[7, 8, 9]. One such approach is the simulation-
based optimisation method[10, 11, 12]. In this approach,
an optimisation algorithm is used to arrive at an analog
IC’s optimal design parameters satisfying the target spec-
ifications. Electronic design automation tools are used in
combination with optimisation algorithms to evaluate the
solutions generated by the algorithm. Several optimisation
algorithms, including simulated annealing[13, 14], multi-
ple start points algorithm[15], Bayesian optimisation[16,
17], artificial intelligence based optimisation [18], machine
learning-assisted optimisation[19, 20], artificial neural net-
work based optimisation[21], surrogate based optimisation
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[22, 23, 24], gravitational search algorithm [25] and evo-
lutionary algorithms (EAs)[26, 27, 28, 29, 30] have been
reported in the literature to optimise the analog circuit
sizing problem.

Several studies have used evolutionary computation tech-
niques for optimising analog circuits. A performance eval-
uation of different EAs, namely, genetic algorithm (GA),
particle swarm optimisation (PSO), and artificial bee colony
optimisation (ABCO), was carried out for the optimal de-
sign of analog filters in [31]. In [32], PSO was reported to
be used for optimising a low-noise amplifier and a second-
generation current conveyor (CC). The results showed the
effectiveness of PSO in optimising analog circuits. Hier-
archical PSO, a modified version of the standard PSO,
was reported in [33] for the automatic sizing of low-power
analog circuits and was found to generate circuits with
better performance than manually designed circuits. PSO
was utilized for the optimal sizing of analog circuits with
high accuracy and reduced computational time in [34]. In
[35], ABCO was reported to have better performance than
other reported studies for the optimisation of a folded cas-
code operational transconductance amplifier (OTA). The
performance of the ABCO for an inverter design consider-
ing propagation delays was studied in [36]. A tool that
can synthesize complementary metal oxide semiconduc-
tor (CMOS) operational amplifiers (op-amps) called DAR-
WIN, based on GA, was reported in [37]. An optimisation
system based on a non-dominated sorting GA and multi-
objective EA based on decomposition was reported in [38]
and was applied for the optimisation of two CC circuits. In
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[39], a method for device sizing of an OTA using GA was
presented, with the simulation results confirming the effi-
ciency of GA in finding the optimal design. An adaptive
immune GA was reported in [40] for the optimal design
of a low-pass filter. A rule-guided GA for analog circuit
optimisation reported in [41] was found to have faster con-
vergence when compared to standard GA.

The main drawback of the simulation-based approach
is that the circuit simulations can get computationally ex-
pensive; hence, there is a need to reduce the number of
evaluations to find the optimal design and speed up the
convergence of algorithms. In this work, we have pro-
posed a simulation-based analog circuit design optimisa-
tion methodology using different evolutionary algorithms
for faster convergence and run time reduction. In the pro-
posed method, characteristics of the analog circuit under
study are considered for setting the search space bound-
aries during the execution of the optimisation algorithms.
This is implemented using a particle generation function,
which generates candidate solutions for the initial popula-
tion, and the repair-bounds function, which ensures each
candidate solution is in a feasible region in the search space
after every update. This helps the algorithms’ targeted
search in the search space, resulting in fewer spice calls
and reduced execution time. Parallel computation has
been implemented in all the optimisation algorithms for
lesser run time. Since the standard versions of the consid-
ered evolutionary algorithms converged to solutions with
high standard deviation for multiple runs, all the algo-
rithms have been modified and tuned for convergence to
better optimal solutions with lesser standard deviation for
multiple runs. This study aims to find the best evolution-
ary algorithm for analog design from among the algorithms
considered in this study by conducting a performance anal-
ysis through exhaustive simulations. In our prior studies,
a modified version of PSO was applied for the area op-
timisation of a differential amplifier[42] and a two-stage
op-amp[43].

The remainder of this paper is organized as follows.
Section 2 describes the proposed automated sizing ap-
proach. Different algorithms used for the optimisation are
described in Section 3. The formulation of the optimisa-
tion problems is summarised in section 4. Section 5 reports
the simulation results and discussion, and the conclusion
is provided in Section 6.

2. Automated Sizing Approach Using Evolution-

ary Algorithms

If analog circuit design is considered as an optimisation
problem with various circuit specifications as constraints,
design parameters as decision variables, and the circuit
parameter to be optimised as the objective function, opti-
misation algorithms can be used to obtain optimal design
parameters. Objective functions and the decision variables
are chosen depending on the circuit under consideration.
Bounds for the decision variables form the search space

for the analog circuit optimisation problem. According to
the optimisation algorithm used, different sets of decision
variables are moved in the search space in search of the op-
timal solution. The primary aim of our work is to optimise
analog circuits in terms of transistor sizing. Therefore, the
circuit area is chosen as the objective function to be opti-
mised in the analog circuits considered in this study.

The proposed optimisation methodology is divided into
three phases: population generator function, survivability
test, and optimisation algorithm with repair bounds.

2.1. Population Generator Function

Any population-based metaheuristic optimisation algo-
rithm requires an initial population, where each member
is a potential solution for the optimisation problem. In
the optimisation methodology proposed here, a popula-
tion generator function (PGF) generates the members for
the initial population. This function is framed based on
the mathematical modeling of analog circuits.

In analog circuits, operation regions of all the transis-
tors are to be ensured. Also, the optimised design must
meet all the constraints of the targeted circuit specifica-
tions. By mathematically modeling these conditions of
circuit specifications and the correct region of operation,
it is possible to find the feasible bounds of values for each
circuit design parameter where these conditions are met.
Each design parameter also has the bounds that form the
search space for the optimisation problem. An intersection
of these two bounds is considered for each design parame-
ter. A random value is picked from the respective bounds
for each circuit design parameter to form a potential solu-
tion in the initial population.

In PGF, for the mathematical modeling of the analog
circuit under study, lower-order, simple models of the tran-
sistors are used. Hence, the result obtained from the mod-
eling of transistors lacks accuracy compared to any circuit
simulator, which employs more accurate and higher-order
transistor models. Even then, a solution generated using
PGF has a higher probability of satisfying all the con-
ditions than a solution generated randomly from within
the specified bounds. PGF can substantially reduce the
time required to generate a member satisfying all the con-
straints for the initial population.

2.2. Survivability Test

The survivability test is used to test whether all the
candidate solutions in the population satisfy the optimi-
sation problem’s constraints. As explained in the above
section, the PGF uses less accurate models for generating
a candidate solution; hence, it cannot be ensured that the
generated solution satisfies all the constraints. Therefore,
for all the solutions generated by the PGF, a survivability
test is carried out using circuit simulator software to get
more accurate results. The survivability test is also car-
ried out for every new solution generated during the execu-
tion of the optimisation algorithm. This additional check

2



ensures that all the updated solutions in the population
in every iteration satisfy the constraints. Ngspice is used
for the circuit simulations in this test. Different analyses,
namely, DC operating point analysis, AC analysis, noise
analysis, etc., are performed as part of the survivability
test.

2.3. Optimisation Algorithm with Repair-Bounds

Four different EAs, namely, ABCO, GA, gray wolf op-
timisation (GWO), and PSO, have been considered in this
work due to their broad applicability in various engineer-
ing fields. Modified versions of the algorithms are used to
optimise the area of two op-amp topologies: a two-stage
op-amp and a folded cascode op-amp. Standard versions
of the algorithms mentioned above were used initially for
optimisation. Multiple runs were carried out for the same
circuit design to test the robustness of the standard algo-
rithms. Although the standard algorithms converged to
reasonable solutions, the standard deviations in the objec-
tive function values across multiple runs were significant.
All the algorithms were then modified to obtain better
optimal solutions with lesser standard deviation, with a
substantial reduction in the number of spice calls and sim-
ulation times. The modified algorithms are explained in
detail in section 3. Since all the candidate solutions in a
population are independent of each other in the algorithms
considered in this study, codes have been parallelised for
faster execution.

Whenever the optimisation algorithm updates a can-
didate solution, it is passed onto a repair-bounds function
before invoking the survivability test. The repair-bounds
function calculates the feasible bounds for each decision
variable in the same manner as the PGF. The primary ob-
jective of the repair-bounds function is to check whether
any decision variables have gone beyond the calculated
bounds. In case the value goes beyond the bounds, that
decision variable is set to the lower or the upper bound,
whichever is the nearest. This has resulted in significantly
reducing the number of spice calls per candidate solution
during the execution of the algorithms.

3. Evolutionary Algorithms

3.1. Modified Artificial Bee Colony Optimisation (MABCO)

ABCO is a population-based metaheuristic algorithm
proposed by Karaboga in 2007[44]. It is based on honey
bees’ intelligent organizational nature and foraging behav-
ior when seeking a quality food source. The standard ver-
sion of the ABCO is explained in detail in [45].

The following modifications are made to standard ABCO
to obtain faster convergence and consistent results for mul-
tiple runs. Let the population size be N and the dimen-
sion of the search space be D. The limit parameter of the
ABCO is denoted as limit. The PGF generates the initial

Algorithm 1: MABCO.

Input: N , D, maxite, maxcount

Output: Best food source (Optimal solution)

1 Generate initial N food sources, X, using PGF.
2 Calculate fitness value, f(X) and set trial[N ] = 0.
3 for j ← 1 to maxite do

4 Update limitj and dimj using equations, (3)
and (4). Set count = 0.

5 for i← 1 to N do

6 while true do

7 Generate new food source, vi,j , using
equation (2) in employed bee phase.

8 Perform greedy selection.
9 Conduct survivability test for food

source.
10 if survivability test passed then

11 Set count = 0 and break.
12 else

13 count = count+ 1.
14 end

15 if count = maxcount then

16 Retain the old food source, xi,j .
17 Set count = 0 and break.

18 end

19 end

20 if unable to find better food source then

21 Update trial[i] = trial[i] + 1.
22 end

23 while true do

24 Select a food source, xi,j(o) using a
roulette wheel selection scheme.

25 Generate new food source, vi,j(o), using
equation (2) in onlooker bee phase.

26 Perform greedy selection.
27 Conduct survivability test for food

source.
28 if survivability test passed then

29 Set count = 0 and break.
30 else

31 count = count+ 1.
32 end

33 if count = maxcount then

34 Retain the old food source, xi,j(o).
35 Set count = 0 and break.

36 end

37 end

38 if trial[i] ≥ limitite then

39 Find new food source from xi,j and the
best food source.

40 Find another new food source from two
randomly picked food sources.

41 Replace xi,j with the best out of the
above two solutions in the scout bee
phase.

42 Set trial[i] = 0.

43 end

44 end

45 Memorize the best food source.

46 end
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food sources. The ith food source in the jth iteration can
be represented as

xi,j = [x1, x2, x3, · · · , xD]i,j . (1)

In the employed bee and the onlooker bee phase, all the
elements, x1, x2, x3, · · · , xD, constituting the food source,
xi,j , are updated to find a new food source, using the equa-
tion,

vi,j = xi,j + rand(−1, 1)× (xi,j − xk,j) (2)

where i, k ∈ (1, 2..., N) and i 6= k, in the standard ABCO
algorithm. In the modified version, the number of elements
in the food source that are updated is kept to a high value
in the initial stages and a lower value in the final stages
to facilitate faster convergence of the algorithm. Also, the
elements which have to be updated are picked randomly.

The limit parameter value is kept constant in the stan-
dard ABCO in the scout bee phase. It is observed that
as the limit value is decreased, the algorithm enters the
scout bee phase more often. The lower limit value in-
creases the randomness in the population towards the fi-
nal stages leading to slow convergence. If the limit value is
kept high, the scout bee phase is executed rarely, leading to
less randomness in the population resulting in premature
convergence. Hence, in the MABCO, the limit is initially
set to a higher value to aid global exploration and lower
values in the final stages to facilitate faster convergence.
The limit parameter, limitite, and the number of dimen-
sions to be updated, dimite, for the ite

th iteration is found
using the equations,

limitite = integer[limitmin + (1− ite

itemax

)×

(limitmax − limitmin)] and

(3)

dimite = max[D × (1− ite

itemax

), 1] (4)

where D is the dimension of the search space, itemax is
the maximum number of iterations, limitmin is the lower
bound, and limitmax is the upper bound of the limit pa-
rameter.

In the standard ABCO, once the limit is reached in the
scout bee phase, the exhausted food source is eliminated
and replaced with a new random food source. This aids
in the global exploration of the search space. The algo-
rithm generally enters the scout bee phase more often in
the final stages. If we replace the exhausted solution with
a completely random solution, there is a high probability
that the random solution will be away from the best so-
lution, leading to slower convergence. Furthermore, the
experience of the exhausted solution is not being used to
generate the new solution. We have modified this stage
of the standard ABCO. Rather than eliminating the ex-
hausted solution, a new potential solution is created from
the exhausted solution, and the best solution achieved so
far by a crossover operation. Another candidate solution

is generated by a crossover operation between two ran-
domly selected existing solutions. The crossover operation
used here is the same as in GA. The crossover point is
picked randomly. This process is repeated till two new
candidate solutions are obtained. The better of the two
candidate solutions is selected to replace the exhausted
solution. These steps are carried out throughout the iter-
ations till the stopping criteria are met. A pseudo-code of
the MABCO is given in Algorithm 1.

3.2. Modified Genetic Algorithm (MGA)

GA is a metaheuristic optimisation method based on
the theory of natural evolution, introduced by John Hol-
land in 1971[46]. This algorithm is governed by the con-
cept of the survival of the fittest. The standard version of
the algorithm is explained in detail in [47].

In MGA, the PGF generates the initial population. Af-
ter the selection based on the fitness scores, parents are
randomly chosen to create offspring in each generation us-
ing the crossover operation. The crossover point is ran-
domly selected. For each crossover offspring produced, a
mutated offspring is also generated. This study uses ran-
dom mutation for the mutation operation. The number
and which genes to be mutated are picked randomly. This
random mutation has resulted in faster convergence and
avoided premature algorithm convergence. Some parents
are also randomly picked to create mutated offspring. A
survivability test is carried out for all the offspring gen-
erated. If any generated offspring fails the test, the steps
are repeated until a suitable offspring is generated. The
parents, crossover offspring, crossover mutated offspring,
and parent mutated offspring are then pooled together,
and the fittest among them are carried over to the next
generation.

We have introduced a search space parameter, α, in the
algorithm. α is linearly decreased from αmax to αmin over
the generations. This parameter is used to limit the search
space for the mutation operation. The varying values of α
in the initial and later generations aid global and local ex-
plorations, respectively. This parameter has helped faster
convergence to an optimal global solution for multiple runs
for the test cases considered. For the mutation operation,
the upper bound, UBgen,j , and the lower bound, LBgen,j ,
of the search space for the jth gene in an individual, x, in
the genth generation are given by the equations,

α = αmin + (1− gen

genmax

)× (αmax − αmin), (5)

UBα = xgen,j +α×xgen,j , LBα = xgen,j−α×xgen,j , (6)

UBgen,j = min(UB,UBα), andLBgen,j = max(LB,LBα)
(7)

where genmax is the maximum number of generations, and
UB and LB are the upper and the lower bounds specified
for the decision variables in the optimisation problem. A
pseudo-code of the MGA is given in Algorithm 2.
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Algorithm 2: MGA.

Input: N , D, genmax

Output: Best individual (Optimal solution)

1 Generate initial population, X, using PGF.
2 for i← 1 to N do

3 Calculate fitness value, f(xi)
4 end

5 for gen← 1 to genmax do

6 for i← 1 to N do

7 while true do

8 Randomly pick two parents and the
crossover point.

9 Generate crossover offspring, xc,i.
10 if offspring passes survivability test

then

11 break.
12 end

13 end

14 while true do

15 Find search space parameter, α and
outer bounds using equations (5) to
(7).

16 Randomly pick mutationcount and
mutationno.

17 Generate mutated crossed offspring,
xcm,i.

18 if offspring passes survivability test
then

19 break.
20 end

21 end

22 while true do

23 Find search space parameter and outer
bounds using equations (5) to (7).

24 Randomly pick a parent, mutationcount

and mutationno.
25 Generate mutated parent offspring,

xpm,i.
26 if offspring passes survivability test

then

27 break.
28 end

29 end

30 end

31 Pool together the parents, X and offspring,
Xc, Xcm, and Xpm, to form Xnew.

32 for i← 1 to 4N do

33 Calculate fitness, f(xnew,i).
34 end

35 Select fittest N individuals to form new
population, X .

36 Update best individual.

37 end

Algorithm 3: MGWO.

Input: N , D, maxite, maxcount

Output: Alpha (Optimal solution)

1 Generate initial N search agents, X, using PGF.
2 for ite← 1 to maxite do

3 for i← 1 to N do

4 Calculate fitness value, f(xi)
5 end

6 Find the best three search agents and
designate them as Alpha, Beta, and Delta.

7 for i← 1 to N do

8 set count = 0.
9 while true do

10 Update position, xi, of search agent i
using equations (8) to (11).

11 Conduct survivability test for the
updated search agent, xi.

12 if survivability test passed then

13 break.
14 else

15 count = count+ 1
16 if count = maxcount then

17 Set xi to the upper bound of the
search space.

18 break.

19 end

20 end

21 end

22 end

23 end

3.3. Modified Grey Wolf Optimisation (MGWO)

GWO, introduced by Mirjalili et al., 2014 [48], is a
metaheuristic swarm optimisation algorithm based on the
social hierarchy and the hunting mechanism of grey wolves.
The standard version of the algorithm is explained in detail
in [48].

The initial population for the MGWO is generated us-
ing the PGF. Consider N as the population size and D as
the search space dimension. Let xi,j denote the position
vector of a search agent in the ith dimension in the jth

iteration in the search space. Let the vectors, xα, xβ , and
xδ represent the positions of the alpha, beta, and delta in
the jth iteration. In every iteration, the fitness values of
the search agents are calculated, and the positions of al-
pha, beta, and delta are updated. The positions of all the
search agents are updated using the same update equa-
tions as those of the standard GWO. The position update
equation of a search agent in the (j+1)th iteration can be
expressed by the equations,

di,α = |ci,1 ⊙ xi,α − xi,j |, di,β = |ci,2 ⊙ xi,β − xi,j |,
di,δ = |ci,3 ⊙ xi,δ − xi,j |,

(8)
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x1 = xi,α − di,αai,1, x2 = xi,β − di,βai,2,

x3 = xi,δ − di,δai,3, and
(9)

xi,j+1 =
x1 + x2 + x3

3
(10)

where ⊙ represents an element-wise product, ai,1, ai,2,
ai,3, ci,1, ci,2, and ci,3 are randomly generated vectors
using,

ad,k = 2ar1 − a and cd,k = 2r2 (11)

where a is linearly decreased from 2 to 0 over the iterations,
r1 and r2 are randomly generated numbers from [0, 1], d =
1, 2, · · · , D, and k = 1, 2, 3. After updating the position
of each search agent, a survivability test is carried out. If
a search agent fails the survivability test, its position is
repeatedly updated until a suitable position is obtained or
the number of updates reaches a predefined value. In the
latter case, the position of the search agent is set to the
upper bounds specified by the optimisation problem. The
repeated updates help in faster convergence to the optimal
solution. This process is carried out for all the search
agents in each iteration. At the end of the iteration, the
new fitness is calculated, and the alpha, beta, and delta
positions are updated. These steps are repeated until the
stopping criteria are met. A pseudo-code of the MGWO
is given in Algorithm 3.

3.4. Modified Particle Swarm Optimisation (MPSO)

Kennedy and Eberhart introduced PSO in 1995[49].
PSO is inspired by the societal behaviour of a swarm of
birds. The standard version of the PSO is explained in de-
tail in [50]. In this study, we have used PSO with linearly
decreasing inertia weight[51]. In this modified variant of
PSO, the initial swarm is generated using the PGF. The
position and velocity update equations are the same as
the standard PSO. A survivability test is carried out after
each particle’s position and velocity updates in every iter-
ation. For the particles failing the test, the velocity and
position update is repeated until it passes the test or the
number of velocity and position updates reaches a prede-
fined limit. Even after the predefined number of updates,
if the particles fail the test, they are replaced by new par-
ticles generated by the PGF. The personal best of each
particle, the global best, and the PSO parameters are up-
dated. The subsequent iterations are carried out similarly
until the stopping criteria are met. Further details and the
pseudo-code of the MPSO can be found in [42, 43].

4. Problem Formulation for Op-amp Design

The formulation of the optimisation problem for the
two op-amp topologies considered in this study is detailed
in this section. The methodology used for finding the
bounds of the decision variables by the PGF and repair-
bounds function for the op-amp optimisation is given in
Algorithm 4. Since the study focuses performance evalua-
tion of different algorithms for the area minimisation of the

Algorithm 4: To find bounds for the decision
variables

Input: Op-amp design specifications
Output: Bounds for the decision variables

1 Set the bias current bounds from the slew rate
and the power specification.

2 Set the maximum and minimum bounds for VSG

of the PMOS load transistors from the
ICMRmax and the threshold voltage, VTH , of
the PMOS transistor, respectively. Find the
bounds of the widths of the input transistors (M3

and M4 for topology 1 as well as topology 2)
from the bounds of VSG.

3 Set the minimum and maximum bounds for the
widths of the input transistors (M3 and M4 for
topology 1 as well as topology 2) from the unity
gain bandwidth specification, minimum
transconductance and VTH of the NMOS
transistors.

4 Set the maximum and minimum bounds for VSG

of the tail transistor (M5 for topology 1 as well as
topology 2) from the ICMRmin and the
threshold voltage, VTH , of the NMOS transistor
respectively. Find the bounds of the widths of
the tail transistor from the bounds of VSG.

5 Find the bounds for the widths of the second
stage PMOS transistors ((M6 for topology 1 and
M10 and M11 for topology 2) using the maximum
output voltage.

6 Find the bounds for the widths of the second
stage NMOS transistors ((M7 for topology 1 and
M6 to M9 for topology 2) using the minimum
output voltage

op-amps, we have considered the minimum channel length
for the transistors in the respective technologies for the
two test cases. All the other specifications for the op-amp
design are fixed accordingly.

4.1. Two-Stage Miller Compensated Op-amp

A schematic of the two-stage Miller compensated op-
amp is shown in Fig. 1. In Fig. 1, it is assumed that
the transistors M1 and M2, M3 and M4, and M5 and M8

are pairwise matched so that W1 = W2, W3 = W4, and
W5 = W8, whereWk is the width of the kth transistor. The
circuit area is chosen as the fitness function. The widths
and the bias current are chosen as the decision variables
for the optimisation problem. All the design specifica-
tions are considered as constraints. Since all the transis-
tors have to be in the saturation region of operation for
the proper working of the circuit, the saturation condition
is also added as a constraint.

The position vector, x, and the fitness function, f(x),
are:

x = [W1,2,W3,4,W5,8,W6,W7, Ibias] and (12)

6



Μ1

M3 M4

M2

M5
M8

VDD

vin

Ibias

+

vout

CL

M
6

M
7

Cc–

Figure 1: Schematic of a two-stage op-amp with Miller compensa-
tion.

f(x) = ΣM
i=1Wi × Li, (13)

respectively, where M is the total number of transistors
in the circuit, and Wi and Li are the width and length of
the ith transistor. For the circuit in Fig. 1, M = 8. The
optimisation problem is framed as:

min
x

f(x)

subject to Voltage gain (Av) ≥ 20 dB

Power dissipation (P ) ≤ 400 µW

Slew Rate (SR) ≥ 100Vµs−1

Cut-off frequency (f3dB) ≥ 10MHz

Unity gain bandwidth (UGB) ≥ 100MHz

Phase margin (PM) ≥ 60◦

2 ≤ Aspect ratio (W/L) ≤ 200

Noise power spectral density (Sn(f))

≤ 60 nV/
√
Hz at 1MHz

All transistors in saturation.

where x and f(x) are given by (12) and (13), respec-
tively.

The two-stage op-amp is designed in a 65 nm technol-
ogy. The supply voltage is taken as 1.1V. The length of all
the transistors is fixed to 60 nm, and all the specifications
like gain are considered accordingly [52, 25]. The value of
load capacitor, CL, is taken as 200 fF. To ensure a phase
margin of 60◦, the value of Cc is taken as 0.3 times CL

[53].

4.2. Folded Cascode Op-amp

A schematic of the folded cascode op-amp is shown in
Fig. 2. In Fig. 2, we have assumed that the transistors
M1 and M2, M3, M4, and Mbp, Mbn and M5, M6 and M7,
M8 and M9, and M10 and M11 are pairwise matched such
that W1 = W2, W3 = W4 = Wbp, Wbn = W5, W6 = W7,
W8 = W9, and W10 = W11, where Wk is the width of
the kth transistor. The widths and the bias current of the

M5

M1 M2

M3 M4

M11 M10

M9 M8

M7 M6

Mbp

Mbn

VDD

Ibias

vip vin

Vcm1

Vcm2

vout

CL

Figure 2: Schematic of a folded cascode op-amp.

circuit are selected as the decision variables. The area of
the circuit is chosen as the fitness function. The circuit
specifications are considered as the constraints along with
the saturation condition of the transistors.

The position vector, x, and the fitness function, f(x),
are:

x = [W1,2,W3,4,bp,Wbn,5,W6,7,W8,9,W10,11, Ibias] (14)

and f(x) = ΣM
i=1Wi × Li, (15)

respectively, where M is the number of transistors in the
circuit, and Wi and Li are the width and length of the
ith transistor. For the circuit in Fig. 2, M = 13. The
optimisation problem is framed as:

min
x

f(x)

subject to Voltage gain (Av) ≥ 40 dB

Power dissipation (P ) ≤ 5mW

Slew Rate (SR) ≥ 20Vµs−1

Unity gain bandwidth (UGB) ≥ 40MHz

Phase margin (PM) ≥ 60◦

4

3
≤ Aspect ratio (W/L) ≤ 1000

All transistors in saturation.

where x and f(x) are given by (14) and (15), respectively.
The folded cascode op-amp is designed in a 180nm

technology. The supply voltage, VDD, is taken as 1.8V. As
in the previous test case, the length of all the transistors is
fixed to 180nm. The load capacitor, CL, is taken as 5 pF
[54].

5. Simulation Results and Discussion

The performance of the four EAs, namely, MABCO,
MGA, MGWO, and MPSO, were compared in terms of
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Table 1: Optimum parameters obtained by MABCO,MGA, MGWO,
and MPSO for the area optimisation

of two op-amp topologies.
Design MABCO MGA MGWO MPSO

Parameter

Two-stage op-amp

Ibias (µA) 28.8 29.4 29.3 28.6
W1,2 (nm) 259 264 263 257
W3,4 (nm) 797 787 789 801
W5,8 (nm) 121 130 127 121
W6 (nm) 1114 1099 1104 1113
W7 (nm) 183 195 191 183

Folded cascode op-amp

Ibias (µA) 259.5 257.8 258.0 258.8
W1,2 (nm) 8686 8956 8690 8715
W3,4,bn (nm) 3417 3450 3367 3418
W5,bp (nm) 1118 1059 1133 1169
W6,7 (nm) 805 784 801 892
W8,9 (nm) 367 355 367 339
W10,11 (nm) 6156 5945 6220 6035

Table 2: Design Specifications obtained for the area optimisation of
two op-amp topologies using MABCO, MGA, MGWO, and MPSO
in ngspice.

Design Specifi- MABCO MGA MGWO MPSO

Criteria cations

Two-stage op-amp

Av (dB) ≥ 20 21.9 21.7 21.8 21.9
f3dB (MHz) ≥ 10 13.27 13.71 13.61 13.22
UGB (MHz) ≥ 100 156.0 157.9 157.6 154.9
PM (◦) ≥ 60 60.0 60.0 60.0 60.0
SR (V µs−1) ≥ 100 265 269 268 264
Sn(f)@1MHz ≤ 60 53.30 53.22 53.24 53.35

(nV/
√
Hz)

P (µW) ≤ 150 88.2 89.9 89.6 87.5
Saturation - Met Met Met Met
A (µm2) ≤ 1 0.2191 0.2194 0.2192 0.2192

Folded cascode op-amp

Av (dB) ≥ 40 40.91 40.79 41.03 40.74
UGB (MHz) ≥ 40 40.00 40.00 40.00 40.00
PM (◦) ≥ 60 89.87 89.88 89.87 89.88
SR (V µs−1) ≥ 20 21.22 21.14 21.14 21.14
P (mW) ≤ 5 1.233 1.225 1.226 1.230
Saturation - Met Met Met Met
A (µm2) - 8.013 8.019 8.014 8.020

convergence time and accuracy for different population
sizes and iterations. The simulations were carried out on
a desktop with Intel® CoreTM i7-9700F CPU @3.00GHz
and 16GB RAM. Implementing parallel processing for the
update of each solution in every iteration reduced the ex-
ecution time substantially for all the algorithms. All the
algorithms were coded in Python, and the circuit simula-
tions were performed in ngspice. Population sizes of 10,
20, and 30 were considered for each algorithm, with the
maximum number of iterations set to 300 for each run. A

statistical study is needed to validate the robustness of the
proposed methodology with the different algorithms. For
this, ten simulation runs of each algorithm starting from
ten different initialisations were carried out, as in [52]. For
all algorithms, the best value, the worst value, the mean
value, and the standard deviation (STDEV) of the fitness
function value, along with the mean run time (MRT) and
the number of circuit simulations per run (CSPR), were
recorded for the 100th, 200th, and the 300th iterations, re-
spectively. The results for the area optimisation of the
two-stage and the folded cascode op-amps for the different
algorithms are summarized in Table. 3 and Table. 4. The
design parameters and the corresponding specifications of
the best solution obtained by the algorithms for a popu-
lation size of 30 for the two op-amp topologies are given
in Table. 1 and Table. 2, respectively. The introduction
of PGF and the repair-bounds function in the two-stage
op-amp test case resulted in an average reduction of 69%
in the CSPR for every optimisation run. Similarly, for the
folded cascode op-amp test case, there was a 43% reduc-
tion in CSPR for each run.

For MABCO, the bounds for the limit parameter value
were set as limitmin = 5 and limitmax = 15. Convergence
plots showing the mean and STDEV of the fitness function
value for multiple runs for different swarm sizes for the two
test cases are given in Fig. 3(a) and Fig. 4(a), respectively.
The figures show that as the population size increases, the
algorithm converges to the optimal solution in fewer itera-
tions. For the test case of the two-stage op-amp in Table 3,
it is inferred that as the population size is increased from
10 to 20, the mean and the STDEV of the fitness func-
tion value obtained for multiple runs decrease. Further,
when the population size is increased from 20 to 30, there
is not much variation in the mean and the STDEV values
of the results. For a swarm size of 10, it is seen that the
convergence to the optimal solution occurs after the 250th

iteration. For the swarm size of 20 and 30, the convergence
to the optimal solution happens before the 200th iteration.
As the population size increases, the MRT and CSPR for
each simulation increases. Considering all the above fac-
tors, a swarm size of 20 with maximum iterations of 200
gives the best result for this test case. Similarly, for the
test case of folded cascode op-amp in Table 4, a population
size of 30 with maximum iterations of 200 is found to be
the best choice in the same manner.

For MGA, the convergence plots for multiple runs for
the area optimisation of two-stage op-amp and folded cas-
code op-amp are given in Fig. 3(b) and Fig. 4(b), respec-
tively. For the folded cascode op-amp test case, it is seen
that as the population size is increased, the algorithm con-
verges to the optimal solution in a fewer number of iter-
ations. The STDEV of the results for multiple runs for a
population size of 10 is larger when compared to the results
with population sizes of 20 and 30. With a population size
of 30, the mean, STDEV, and the best value obtained for
the fitness function are better than the results obtained
with population sizes of 10 and 20. For the considered
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Table 3: Simulation results of MABCO, MGA, MGWO, and MPSO for 10 runs for the area optimisation of two-stage op-amp.

Algorithm Population Iterations Mean Best Worst STDEV MRT CSPR

Size (µm2) (µm2) (µm2) (µm2) (sec)

100 0.2477 0.2213 0.2671 7.777× 10−3 208 1760
10 200 0.2238 0.2191 0.2357 6.338× 10−3 474 4590

300 0.2198 0.2191 0.2219 8.143× 10−4 806 7684
100 0.2259 0.2210 0.2347 4.393× 10−3 461 4597

MABCO 20 200 0.2196 0.2193 0.2206 3.739× 10−4 1093 9816

300 0.2194 0.2191 0.2206 4.279× 10−4 1722 17027
100 0.2220 0.2200 0.2269 2.209× 10−3 832 6939

30 200 0.2195 0.2191 0.2207 5.081× 10−4 1999 15675
300 0.2194 0.2191 0.2207 5.216× 10−4 2962 20717

100 0.2350 0.2240 0.2444 6.911× 10−3 181 6086
10 200 0.2295 0.2219 0.2404 5.882× 10−3 378 12470

300 0.2212 0.2196 0.2228 9.889× 10−4 576 19038
100 0.2287 0.2209 0.2412 6.506× 10−3 1174 12481

MGA 20 200 0.2258 0.2202 0.2348 5.150× 10−3 2609 24908
300 0.2202 0.2196 0.2210 5.028× 10−4 4154 37615
100 0.2293 0.2226 0.2347 5.500× 10−3 1610 18766

30 200 0.2243 0.2206 0.2374 5.272× 10−3 3502 37692
300 0.2202 0.2194 0.2221 8.324× 10−4 5497 56686

100 0.2439 0.2287 0.2553 8.516× 10−3 1425 4436
10 200 0.2245 0.2227 0.2266 1.545× 10−5 3398 9644

300 0.2196 0.2194 0.2198 1.193× 10−4 4747 12623

100 0.2413 0.2346 0.2530 6.205× 10−3 4156 8662
MGWO 20 200 0.2243 0.2217 0.2258 1.228× 10−3 8965 17751

300 0.2194 0.2192 0.2198 1.716× 10−4 12726 25654
100 0.2393 0.2324 0.2488 5.409× 10−3 7350 16439

30 200 0.2232 0.2207 0.2251 1.251× 10−3 15577 33239
300 0.2194 0.2192 0.2195 1.271× 10−4 22180 46868

100 0.2259 0.2219 0.2323 3.708× 10−3 343 6266
10 200 0.2196 0.2192 0.2203 3.773× 10−4 1085 13231

300 0.2194 0.2192 0.2198 2.055× 10−4 1780 19245
100 0.2226 0.2203 0.2247 1.446× 10−3 1432 17838

MPSO 20 200 0.2194 0.2192 0.2195 8.020× 10−5 4761 32456

300 0.2194 0.2192 0.2195 7.183× 10−5 7320 41786
100 0.2217 0.2209 0.2242 1.087× 10−3 3180 31451

30 200 0.2197 0.2192 0.2213 6.355× 10−4 9515 55671
300 0.2196 0.2192 0.2213 6.419× 10−4 14665 76589

population sizes, convergence to the optimal solution oc-
curs between the 200th and the 300th generations. Hence,
a population size of 30 with a maximum generation of 300
is found to give the best results for the folded cascode op-
amp optimisation problem. For the test case of the two-
stage op-amp, a population size of 30 with a generation of
300 is similarly found to give the best results.

For MGWO, the convergence plots obtained for the
area optimisation of the two-stage op-amp and folded cas-
code op-amp are given in Fig. 3(c) and Fig. 4(c), respec-
tively. For the two-stage op-amp test case, the mean,
STDEV, and the best result obtained for the population
sizes of 10, 20, and 30 using MGWO are comparable. The
best results are obtained with the maximum iterations as
300 for all the considered population sizes. As the num-
ber of iterations is increased, it is found that the STDEV,
mean, and the best value of the results have improved for

all the considered population sizes. After considering the
MRT and CSPR as well, a population size of 10 with the
number of iterations as 300 is found to give the best result
for MGWO for the two-stage op-amp test case. Similarly,
for the folded cascode op-amp test case, a population size
of 20 with maximum iterations of 300 is found to be the
best choice.

For MPSO, the inertia weight, w, was varied linearly
between wmax = 0.8 and wmin = 0.5 for the two-stage
op-amp test case. For the optimisation of folded cascode
op-amp, wmax and wmin were chosen as 0.8 and 0.3, re-
spectively. The parameters, c1 and c2, were set to 1.7 for
both the test cases. The fine-tuning of PSO parameters
for the two cases considered was found to be more time-
consuming. The mean and STDEV curves for the results
for the two-stage op-amp and the folded cascode op-amp
are given in Fig. 3(d) and Fig. 4(d), respectively. For the
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Table 4: Simulation results of MABCO, MGA, MGWO, and MPSO for 10 runs for the area optimisation of folded cascode op-amp.

Algorithm Population Iterations Mean Best Worst STDEV MRT CSPR

Size (µm2) (µm2) (µm2) (µm2) (sec)

100 9.628 8.118 18.10 3.083 358 15398
10 200 8.614 8.057 12.094 1.240 501 26656

300 8.155 8.030 8.645 1.814× 10−1 653 43642
100 8.146 8.044 8.431 1.174× 10−1 422 26105

MABCO 20 200 8.039 8.016 8.137 3.528× 10−2 730 33530
300 8.026 8.014 8.067 1.606× 10−2 984 47736
100 8.073 8.023 8.190 5.912× 10−2 582 40895

30 200 8.024 8.013 8.065 1.507× 10−2 877 67485

300 8.015 8.013 8.019 1.882× 10−3 1193 89968

100 8.257 8.038 8.463 1.197× 10−1 165 11406
10 200 8.1234 8.038 8.200 6.430× 10−2 220 17117

300 8.064 8.020 8.166 4.975× 10−2 266 21977
100 8.325 8.090 9.190 3.217× 10−1 236 27628

MGA 20 200 8.115 8.042 8.208 6.421× 10−2 315 38574
300 8.032 8.023 8.043 6.429× 10−3 379 46711
100 8.2263 8.036 8.423 1.352× 10−1 314 39252

30 200 8.144 8.024 8.282 9.443× 10−2 419 54643
300 8.031 8.019 8.041 7.525× 10−3 443 67885

100 8.308 8.171 18.611 1.362× 10−1 228 11979
10 200 8.082 8.051 8.182 3.730× 10−2 292 20224

300 8.026 8.014 8.054 1.276× 10−2 334 24060
100 8.208 8.107 8.302 6.636× 10−2 378 27387

MGWO 20 200 8.050 8.042 8.061 7.393× 10−3 501 41719
300 8.019 8.016 8.025 2.987× 10−3 565 50073

100 8.218 8.135 8.296 5.183× 10−2 558 46168
30 200 8.046 8.033 8.090 1.611× 10−2 724 70241

300 8.019 8.014 8.026 4.924× 10−3 813 83283

100 8.706 8.246 9.099 2.834× 10−1 154 4172
10 200 8.250 8.142 8.394 8.937× 10−2 204 7459

300 8.115 8.066 8.169 3.057× 10−2 236 9000
100 8.357 8.185 8.542 1.089× 10−1 293 8307

MPSO 20 200 8.149 8.057 8.248 5.332× 10−2 358 16306
300 8.098 8.057 8.133 2.564× 10−2 408 22296
100 8.214 8.138 8.247 3.517× 10−2 368 13367

30 200 8.086 8.038 8.133 3.082× 10−2 440 24988
300 8.047 8.020 8.098 2.366× 10−2 496 34590

Table 5: Comparison of standard versions with modified versions
of the algorithms for 10 runs for the area optimisation of two-stage
Miller compensated op-amp in 65 nm.

Algorithm Best Worst Mean STDEV

(µm2) (µm2) (µm2) (µm2)

SABCO 0.3010 0.3750 0.3230 0.02
MABCO 0.2213 0.2671 0.2477 0.008
SGA 0.3120 0.4099 0.3428 0.05
MGA 0.2240 0.2444 0.2350 0.007
SGWO 0.4081 0.5968 0.4951 0.07
MGWO 0.2287 0.2553 0.2439 0.009

test case of the two-stage op-amp, for the population sizes
of 10, 20, and 30, there is no significant change in results

Table 6: Comparison with Bayesian Optimisation for the uncon-
strained optimisation of two-stage op-amp in 180 nm.

Algorithm Best Worst Mean STDEV

MACE [17] 690.36 690.27 690.34 0.03
MPSO [43] 2110.1 2100.1 2104.8 2.9
MABCO 2112.8 2106.7 2108.8 1.4
MGA 2090.1 2077.1 2088.2 3.2
MGWO 2108.1 2099.1 2103.8 2.8

∗ Not with technology file from the same foundry

between the 200th and the 300th iteration. The results ob-
tained with a population size of 20 are better than those
with a population size of 10. There is no significant varia-
tion in results when the population size increases from 20
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Figure 3: Convergence plots of (a) MABCO, (b) MGA, (c) MGWO, and (d) MPSO for two-stage op-amp with population sizes of 10, 20,
and 30.
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Figure 4: Convergence plots of (a) MABCO, (b) MGA, (c) MGWO, and (d) MPSO for folded cascode op-amp with population sizes of 10,
20, and 30.

to 30. After considering the MRT and CSPR, a population
size of 20 with maximum iterations of 200 is found to give
the best results for this test case. For the folded cascode
op-amp, a maximum iteration of 300 gives the best results
for all the population sizes. A population size of 30 gives
better results than population sizes of 10 and 20. For this
test case, a population size of 30 with maximum iterations
of 300 is found to be the best choice.

Table. 5 shows the results of the area optimisation of

two-stage Miller compensated op-amp in 65 nm for the
standard as well as modified versions of the algorithms.
The best, worst, mean, and standard deviation of the re-
sults for 10 consecutive runs with a population size of 10
and maximum iterations of 100 is given. SABCO, SGA,
and SGWO correspond to the standard versions of the al-
gorithms. It can be seen that the modified algorithms con-
verge to better values for the objective function with con-
siderably less standard deviation for multiple runs. The
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Figure 5: Box and whisker plots for area optimisation of (a) two-stage op-amp and (b) folded cascode op-amp for a population size of 30.

Table 7: Comparison with flower pollination algorithm [55] for the
power optimisation of two-stage op-amp in 180 nm.

Design Specifi- FPA MABCO MGA MGWO MPSO

Criteria cations [55]

Av (dB) ≥ 65 69.8 67.83 66.65 66.28 65.52
UGB (MHz) ≥ 5 5.252 8.025 9.694 10.873 9.281
PM (◦) ≥ 60 66.45 63.43 60.16 61.09 60.22
SR (V µs−1) ≥ 10 10.38 10.22 10.03 10.04 10.68
CMRR (dB) ≥ 80 88 80.03 80.97 80.50 80.01
CL (pF) ≥ 10 10 10 10 10 10
A (µm2) ≤ 300 252 191 166 168 187
P (µW) ≤ 3000 712.2 317.9 361.5 354.9 332.3

∗ Not with the technology file from the same foundry

performance of the proposed methodology with MPSO for
the area optimisation of a two-stage op-amp was compared
with other reported studies in [43], and the results clearly
showed that the algorithm worked better for all the test
cases considered. It is to be noted that the MPSO in [43]
was implemented in MATLAB, and the simulations were
run serially. All the algorithms in this study have better
performances than the MPSO reported in [43]. The pro-
posed method with the modified algorithms has been com-
pared with [17] for the unconstrained optimisation of the
op-amp topology reported, and the results are tabulated
in Table. 6. The results clearly show that the proposed
methodology is able to obtain a better result in terms of
the best optimal value obtained. The proposed method-
ology has also been compared with [55] for the power op-
timisation of a two-stage Miller compensated op-amp in
180 nm, and the results are tabulated in Table. 7. All four
algorithms are able to achieve a better value for power
than the value reported in [55].

Noise optimisation has also been carried out for the
two op-amp topologies considered. The design parameters
and the corresponding specifications of the best solution
obtained by the algorithms for 20 consecutive runs for a
population size of 20 for the two op-amp topologies are
given in Table. 8 and Table. 9, respectively. It is seen
from the results that all four algorithms are converging to a
narrow range. This shows that the proposed methodology
can be used for the optimisation of any desired circuit
specification.

Table 8: Optimum parameters obtained by MABCO, MGA, MGWO,
and MPSO for the noise optimisation of two op-amp topologies.

Design MABCO MGA MGWO MPSO

Parameter

Two-stage op-amp

Ibias (µA) 90.3 90.7 90.9 90.8
W1,2 (µm) 0.74 0.74 0.74 0.74
W3,4 (µm) 3.33 3.32 3.31 3.33
W5,8 (µm) 0.80 0.91 0.74 0.95
W6 (µm) 6.05 5.66 5.92 5.45
W7 (µm) 0.93 1.06 0.96 1.15

Folded cascode op-amp

Ibias (µA) 386.6 380.8 414.8 393.1
W1,2 (µm) 49.88 49.75 49.05 49.86
W3,4,bn (µm) 4.19 4.39 4.82 4.40
W5,bp (µm) 6.58 9.54 8.04 7.65
W6,7 (µm) 6.37 5.79 6.07 6.21
W8,9 (µm) 0.416 0.396 0.465 0.434
W10,11 (µm) 13.77 11.18 12.29 12.57

6. Conclusion

Four different evolutionary algorithms, namely, artifi-
cial bee colony optimisation, genetic algorithm, grey wolf
optimisation, and particle swarm optimisation, have been
used to design a two-stage op-amp in 65 nm technology
and a folded cascode op-amp in 180nm technology in this
study. All the algorithms are modified for optimal per-
formance. The proposed optimisation approach has used
a particle generation function, and repair-bounds function
for targeted search in the search space, resulting in fewer
spice calls and faster convergence for all the algorithms.
A performance evaluation of all the modified algorithms
is conducted based on population size, convergence, and
run-time by performing exhaustive simulations. The opti-
mal results obtained by the algorithms are found to meet
all the required circuit specifications. The implementation
of parallel computation has reduced the run time consider-
ably for all the algorithms. The box and whisker plot of the
fitness function value for ten consecutive runs for a popu-
lation size of 30 for the two op-amp topologies are given in
Fig. 5(a) and Fig. 5(b), respectively. For the two-stage op-
amp test case in Fig. 5(a), it is clear that MABC, MGWO,
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Table 9: Design Specifications obtained for the noise optimisation of
two op-amp topologies using MABCO, MGA, MGWO, and MPSO
in ngspice.

Design Specifi- MABCO MGA MGWO MPSO

Criteria cations

Two-stage op-amp

Av (dB) ≥ 20 23.6 23.2 23.3 22.9
f3dB (MHz) ≥ 10 35.91 37.33 37.15 38.65
UGB (MHz) ≥ 100 507.8 504.9 514.4 505.3
PM (◦) ≥ 60 60.2 60.0 60.9 60.3
SR (V µs−1) ≥ 500 721 716 702 697
A (µm2) ≤ 1 0.999 0.999 0.988 0.998
P (µW) ≤ 500 260 258 266 259
Saturation - Met Met Met Met
N oise@1MHz 25.95 25.89 25.92 25.85

(nV/
√
Hz)

Folded cascode op-amp

Av (dB) ≥ 40 40.0 40.0 40.1 40.0
UGB (MHz) ≥ 40 90.74 87.88 93.81 90.10
PM (◦) ≥ 60 87.6 87.7 87.66 87.6
SR (V µs−1) ≥ 20 36.2 35.9 38.2 36.2
P (mW) ≤ 2 1.84 1.82 1.98 1.88
Saturation - Met Met Met Met
A (µm2) ≤ 30 29.99 29.97 29.93 29.99
N oise@10kHz - 45.71 46.10 45.79 45.67

(nV/
√
Hz)

and MPSO have comparable performances, whereas MGA
has a higher median and standard deviation for the fit-
ness function value for the multiple runs. The box and
whisker plot for the folded cascode op-amp in Fig. 5(b)
shows that MABCO and MGWO have comparable per-
formances and the median values obtained by MGA and
MPSO are similar, but the standard deviation is higher
for MGA. MABCO is found to perform consistently bet-
ter with respect to the best value of the fitness function
and the variation of the converged result across multiple
runs, along with the mean run time for the two specific
cases considered in this study. However, the results sug-
gest that all the modified algorithms converge to a reason-
able solution, with MABCO marginally better for the two
cases considered. The results show that the modifications
performed on the algorithms resulted in them exhibiting
significant improvement in convergence and run-time for
optimising the two op-amp topologies. The study shows
that the proposed methodology can help design op-amp
circuits with high accuracy and in less time. This study
is performed with a fixed channel length for all the tran-
sistors. It can be easily extended to consider transistor
lengths also as decision variables. The proposed approach
with any of the presented modified algorithms can be ex-
tended for multi-objective optimisation problems and the
design of more complex analog circuits.
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