
ar
X

iv
:2

20
7.

10
98

3v
1 

 [
ee

ss
.S

Y
] 

 2
2 

Ju
l 2

02
2

1

Two-Port Feedback Analysis On

Miller-Compensated Amplifiers
Myungjun Kim, Member, IEEE

Abstract—In this paper, various Miller-compensated amplifiers
are analyzed by using the two-port feedback analysis together
with the root-locus diagram. The proposed analysis solves prob-
lems of Miller theorem/approximation that fail to predict a pole-
splitting and that require an impractical assumption that an
initial lower frequency pole before connecting a Miller capacitor
in a two-stage amplifier should be associated with the input of
the amplifier. Since the proposed analysis sheds light on how
the closed-loop poles originate from the open-loop poles in the
s-plane, it allows the association of the closed-loop poles with
the circuit components and thus provides a design insight for
frequency compensation. The circuits analyzed are two-stage

Miller-compensated amplifiers with and without a current buffer
and a three-stage nested Miller-compensated amplifier.

Index Terms—Operational amplifier, Miller theorem, stability,
frequency compensation, poles and zeros, two-port feedback
analysis, root-locus diagram.

I. INTRODUCTION

M ILLER theorem converts a feedback circuit into an

open-loop circuit, allowing the association of the poles

with the circuit nodes, which thus provides a design insight

for frequency compensation. However, Miller theorem re-

quires an impractical condition that the voltage-gain transfer

function a(s) = V2/V1 in a given two-port network to be

independent of Y (s) which is an admittance connected across

the ports [1]. For example, consider a two-stage amplifier

in Fig. 1(a) where R1 and C1 (R2 and C2) model the

impedance at the input (output) and Cc is a compensation

capacitor. Since Y (s) = sCc and a(s) = −K < 0 which is

independent of Y (s), the Miller theorem can be applied to

this circuit. However, because a transistor is used to achieve

the voltage-gain from the input to output in practice, the

circuit should be modeled by using a controlled current source

with a transconductance gm as shown in Fig. 1(b). Then,

a(s) = −gmR2(1−sCc/gm)/[1+s(C2+Cc)R2] is a function

of Y (s); thus, Miller theorem cannot be applied to this circuit.

Alternatively, Miller approximation using a dc value of a(s),
|a(0)| = gmR2, is often used to achieve the open-loop circuit

as shown in Fig. 1(c). Assuming an initial lower frequency

pole before connecting Cc is associated with the input of the

amplifier (i.e., |po1| = 1/R1C1 < |po2| = 1/R2C2), the Miller

approximation predicts that the input pole moves to a lower

frequency and is located such that pc1 ≃ −1/gmR1R2Cc

which is true. However, it also predicts that a pole associated

with the output becomes pc2 with a lower frequency as well,

which is in variance with a pole-splitting [See Fig. 1(d)].
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Fig. 1. Small-signal model of two-stage Miller-compensated amplifier using
(a) controlled voltage source or (b) controlled current source. (c) Circuit
obtained from applying Miller approximation to circuit in Fig. 1(b). Wrong
estimation of the poles of circuit in Fig. 1(c) when the initial lower frequency
pole before connecting Cc is at (d) V1 node or (e) V2 node.

Moreover, if the initial low-frequency pole is at the output

(i.e., |po1| = 1/R1C1 > |po2| = 1/R2C2), which is a more

general case because amplifiers are often required to drive a

large load-capacitance, the Miller approximation predicts that

the input pole moves to a lower frequency, which is completely

false [See Fig. 1(e)]; the pole-splitting still occurs, implying

the input pole moves to a higher frequency [1], which is very

counter-intuitive.

On the other hand, the direct analysis (i.e., solving node

equations to achieve the desired transfer function) provides

accurate the pole/zero locations [2], [3]. However, it is so

complex that the design insight for frequency compensation

cannot be readily obtained.

In this paper, we use a two-port feedback analysis [4],

[5] together with the root-locus diagram [6] to analyze two-

and three-stage Miller-compensated amplifiers. This method

solves the problems of Miller theorem/approximation men-

tioned above. Also, because the proposed analysis sheds light

on how the closed-loop poles of the amplifier originated from

the open-loop poles which can be readily found by inspection

in the s-plane, it provides the design insight for frequency

compensation.

This paper is organized as follows. Section II analyzes a

simple two-stage Miller-compensated amplifier using the pro-

posed method. Specifically, we will see that a non-dominant
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Fig. 2. (a) Two-stage Miller-compensated amplifier analyzed using two-port feedback analysis. (b) a-circuit. (c) β-circuit.

Fig. 3. Positive root-locus diagram for a(s)β(s) given by (5). po1, po2 are
the poles of a(s)β(s) or equivalently the poles of A(s) when the feedback
loop is opened. pcd, pcnd are respectively the possible dominant and non-
dominant poles of A(s) when the feedback loop is closed.

pole location in a classical textbook [4] should be modified

to have a smaller magnitude when the right-half-plane (RHP)

zero is neglected in the amplifier transfer function. Section

III analyzes a two-stage Miller-compensated amplifier using a

current buffer and shows that the stability can be improved due

to the additional third-pole from the current buffer compared

to the case without the current buffer. Section IV analyzes a

three-stage nested Miller-compensated (NMC) amplifier [7].

Section V concludes the paper. Finally, appendices are in-

cluded to present a pole-splitting theorem and perform the

direct analysis to investigate the exact locations of the non-

dominant poles in the NMC amplifier.

II. TWO-STAGE MILLER-COMPENSATED AMPLIFIER

A two-stage Miller-compensated amplifier is shown in

Fig. 2(a). This circuit is a feedback transimpedance amplifier

that has a shunt-shunt feedback topology where the basic

amplifier and the feedback network are shown in the dashed

boxes. Thus, it can be decomposed into a- and β-circuit as

shown Fig. 2(b) and (c), respectively. Note that the a-circuit

includes the loading effect of the feedback network. Also, note

that there are two open-loop transimpedances with [a′(s)] or

without [a(s)] a non-inverting current source sCcVi at the

output that models the feedforward current through Cc.

Let us first investigate a(s). By inspection of Fig. 2(b),

a(s) =
Vo

Ii
(s)

= −
(

R1 ‖ 1

s(C1 + Cc)

)

gm

(

R2 ‖ 1

s(C2 + Cc)

)

= − gmR1R2

[1 + sR1(C1 + Cc)][1 + sR2(C2 + Cc)]
(1)

where X ‖ Y = XY/(X + Y ). Thus, a(s) has two left-half-

plane (LHP) real poles given by

po1 = − 1

R1(C1 + Cc)
(2)

po2 = − 1

R2(C2 + Cc)
(3)

where po1 and po2 are the open-loop poles associated with the

input and output of the amplifier, respectively.

Next, β(s) from Fig. 2(c) is given by

β(s) =
Ix
Vo

(s) = −sCc. (4)

Thus, β(s) has a zero zβ at the origin (i.e., zβ = 0).

Combining (1) and (4), the a(s)β(s) is given by

a(s)β(s) =
gmR1R2Ccs

[1 + sR1(C1 + Cc)][1 + sR2(C2 + Cc)]
. (5)

Using (5), we can draw the positive root-locus diagram for

increasing gm as shown in Fig. 3 to find the poles of the

closed-loop transimpedance A(s) = V2/I1 in Fig. 2(a). Note

that po1, po2 are the poles of a(s)β(s) or equivalently the

poles of A(s) when the feedback loop via Cc is opened, and

pcd, pcnd are the possible dominant and non-dominant poles

of A(s) when the feedback loop via Cc is closed. And zβ
is not a zero of A(s) because it is from β(s). Also note

that the root-locus diagram includes the two cases where the

initial lower frequency pole is either po1 or po2. As can be

readily seen, the root-locus diagram reveals the fact that po1
and po2 always split apart for increasing gm irrespective of

the condition about the initial low-frequency pole locations,

which the Miller approximation fails to predict.

Let us now find the exact locations of the closed-loop

pole pcd, pcnd. Since a(s)β(s) has two LHP real and distinct

poles, one zero at the origin and a large midband value1 a0β0

assuming gmR1, gmR2 and Cc are large, we can apply the

pole-splitting theorem presented in Appendix A. Depending

on whether the initial lower frequency pole of a(s)β(s) is po1
or po2, a0β0 is expressed differently as

a0β0 =















gmR2Cc

C1 + Cc

if |po1| < |po2| (6a)

gmR1Cc

C2 + Cc

if |po1| > |po2|. (6b)

1The closed-loop poles are found from the midband value of |a(jω)β(jω)|
if a(s)β(s) has zero(s) at the origin [8].
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Fig. 4. Negative root-locus diagram for a′(s)β(s).

Applying the pole-splitting relation (39) yields

pcd ≃ − 1

gmR1R2Cc

(7)

pcnd ≃ − gmCc

(C1 + Cc)(C2 + Cc)
. (8)

It should be mentioned that while the dominant pole pcd
given by (7) is the same as in [4], the non-dominant pole pcnd
given by (8) is in variance because

pcnd in [4] ≃ − gmCc

(C1 + Cc)(C2 + Cc)− C2
c

, (9)

implying (8) is located at a lower frequency than (9). This

variance is due to the assumption that the feedforward current

through Cc is neglected. This is verified as follow. The exact

transimpedance Aexact(s) = V2/I1 of the two-stage Miller-

compensated amplifier in Fig. 2(a) is given by (10a). With

some algebra, (10a) can be written in the form of the feedback

equation as (10b). Comparing (10b) with (11a) obtained from

the two-port feedback analysis shows that the only difference

is that (gm − sCc) has been replaced by gm. Thus, such a

deviation vanishes if we include the effect of sCcVi current

source in Fig. 2(b), yielding

a′(s) =
V ′
o

Ii
(s)

= −
(

R1 ‖ 1

s(C1 + Cc)

)

(gm − sCc)

(

R2 ‖ 1

s(C2 + Cc)

)

.

(12)

Therefore, Aexact(s) = a′(s)/[1 + a′(s)β(s)] as shown in

(10b), validating the two-port feedback analysis.

Fig. 5. Pole-zero diagram of (a) transimpedance V2/I1 and (b) input-
impedance V1/I1 when |po1| > |po2|.

Indeed, the non-dominant pole given by (8) is more accurate

than (9) if the RHP zero (zrhp = gm/Cc) of the two-stage

Miller-compensated amplifier is assumed to be at high fre-

quency so as to be neglected. zrhp can be ignored by assuming

a large gm so that (gm − sCc) ≃ gm at the frequencies of

interest. However, because the term (gm − sCc) also exists

in the denominator of (10b), such condition also alter the

non-dominant pole location by modifying the coefficient of

s2R1R2 to include an additional term of C2

c
as shown in the

denominator of (11b), which results in (8) to have a smaller

magnitude than (9).

Such increase in the magnitude of the non-dominant pole

can also be explained using the root-locus diagram for

a′(s)β(s) as shown in Fig. 4. Note that the negative locus

rule [6] is applied here because of the low-frequency sign

reversal associated with the RHP zero [8]. Similar to Fig. 3,

pcnd moves toward high frequency in the LHP as gm increases.

However, it eventually moves into the RHP, manifesting itself

at s = z+rhp if gm → ∞; thus, for a given finite gm, pcnd is

located at nearer to s = −∞ when the RHP zero is included

as illustrated in Fig. 4.

So far, we have investigated the pole/zero locations of the

transimpedance V2/I1 of the circuit in Fig. 2(a). It is worth

mentioning of the pole/zero locations of the input-impedance

V1/I1. Since the natural structure of the circuit is unchanged,

pcd, pcnd are also unchanged. However, the voltage-amplifier

Aexact(s) =
−(gm − sCc)R1R2

1 + s[R1C1 +R2C2 + (gmR1R2 +R1 +R2)Cc] + s2R1R2[C1C2 + Cc(C1 + C2)]
(10a)

=
−
(

R1 ‖ 1
s(C1+Cc)

)

(gm − sCc)
(

R2 ‖ 1
s(C2+Cc)

)

1 +
(

R1 ‖ 1
s(C1+Cc)

)

(gm − sCc)
(

R2 ‖ 1
s(C2+Cc)

)

sCc

=
a′(s)

1 + a′(s)β(s)
(10b)

A(s) =
−
(

R1 ‖ 1
s(C1+Cc)

)

gm

(

R2 ‖ 1
s(C2+Cc)

)

1 +
(

R1 ‖ 1
s(C1+Cc)

)

gm

(

R2 ‖ 1
s(C2+Cc)

)

sCc

=
a(s)

1 + a(s)β(s)
(11a)

=
−gmR1R2

1 + s[R1C1 +R2C2 + (gmR1R2 +R1 +R2)Cc] + s2R1R2[C1C2 + Cc(C1 + C2) +C
2

c
]

(11b)
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Fig. 6. (a) Two-stage Miller-compensated amplifier using current buffer analyzed using two-port feedback analysis. (b) a-circuit. (c) β-circuit.

Fig. 7. Positive root-locus diagram for aCB(s)βCB(s) given by (20). po1,
po2 and po3 are the poles of aCB(s)βCB(s) or equivalently the poles of
ACB(s) when the feedback loop is opened. Also, pcd, pcnd1 and pcnd2 are
respectively the possible dominant, first and second non-dominant poles of
ACB(s) when the feedback loop is closed.

Vo/Vi or V ′
o/Vi in Fig. 2(b) that has a pole po2 is now included

not in the basic amplifier but in the feedback network, and

thus po2 becomes a zero in the input-impedance. For example,

the pole-zero diagram of the transimpedance V2/I1, input-

impedance V1/I1 when |po1| > |po2| are shown in Fig. 5(a),

(b), respectively. The pole/zero pattern of the input-impedance

can be employed as a lag compensating network to control a

damping factor of the complex poles in a three-stage amplifier

in [9].

III. TWO-STAGE MILLER-COMPENSATED AMPLIFIER

USING CURRENT BUFFER

The RHP zero in the Miller-compensated two-stage ampli-

fier in the previous section was ignored by assuming a large

gm, which requires a large power consumption in practice.

Instead, the RHP zero can be removed by employing a unilat-

eral current buffer [10], [11] in the feedback network, allowing

only a current through Cc to flow backward from the output

to the input of the transconductor (gm) as shown in Fig. 6(a).

Note that the feedback network now has a current buffer with

an input impedance of 1/gmc and the transconductance gmc.

Since this circuit also has a shunt-shunt feedback topology, it

can be decomposed into a- and β-circuit as shown Fig. 6(b)

and (c), respectively. Note that unlike the amplifier without the

current buffer, the feedback loading only occurs at the output

of the amplifier in the a-circuit.

Assuming gmcR2 ≫ 1, the open-loop transimpedance

aCB(s) is

aCB(s) =
Vo

Ii
(s)

= − gmR1R2(1 + sCc/gmc)

[1 + sR1C1][1 + sR2(C2 + Cc)]
[

1 + sC2‖Cc

gmc

] . (13)

Thus, aCB(s) has three LHP real poles as

po1 = − 1

R1C1
(14)

po2 = − 1

R2(C2 + Cc)
(15)

po3 = − gmc

C2 ‖ Cc

(16)

and one LHP zero as

za = −gmc

Cc

(17)

From Fig. 6(c), βCB(s) is

βCB(s) =
Ix
Vo

(s) = − sCc

1 + sCc/gmc

. (18)

Thus, βCB(s) has one LHP real pole as

pβ = −gmc

Cc

(19)

and a zero zβ = 0.

Since (19) coincides with (17), the aCB(s)βCB(s) has the

three LHP poles, a zero zβ at the origin, and is expressed as

aCB(s)βCB(s)

=
gmR1R2Ccs

[1 + sR1C1][1 + sR2(C2 + Cc)]
[

1 + sC2‖Cc

gmc

] . (20)

The positive root-locus diagram of aCB(s)βCB(s) for in-

creasing gm is shown in Fig. 7. The resulting loci indicate

the locations of the poles of the closed-loop transimpedance

ACB(s) = V2/I1 in Fig. 6(a). As gm increases, po1 and po2
split apart and become the dominant pole pcd and the first non-

dominant pole pcnd1, respectively. Also, po3 moves toward

lower frequency and becomes the second non-dominant pole

pcnd2 for increasing gm, implying that pcnd1 and pcnd2 can

form a complex pole pair beyond some value of gm. Thus, we

should analyze how effective this amplifier is compared to the
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Fig. 8. Pole-zero diagram of the closed-loop transimpedance V2/I1 of the
two-stage amplifier (Not to scale): (a) without current buffer, (b) with ideal
current buffer that has infinite gmc, (c) with non-ideal current buffer that has
large gmc, (d) with non-ideal current buffer that has small gmc, (e) with
non-ideal current buffer that has optimum gmc.

previous amplifier in Section II and also investigate the effect

of the third pole po3 on the stability of the amplifier.

First, let us compare the Miller compensated amplifier using

the current buffer with the previous amplifier by assuming that

po3 → −∞ so as to be neglected. It is achieved by assuming

the ideal current buffer with zero input impednace (i.e., gmc →
∞). Then, (20) reduces to have the two LHP poles, a zero at

the origin and the midband value a0β0|CB as

a0β0|CB =















gmR2Cc

C1
if |po1| < |po2| (21a)

gmR1Cc

C2 + Cc

if |po1| > |po2|. (21b)

Since the midband value is typically very large, we apply

the pole-splitting theorem in Appendix A to find the splitted

closed-loop poles as

pcd(po3→−∞) ≃ − 1

gmR1R2Cc

(22)

pcnd1(po3→−∞) ≃ − gm
C2 + Cc

Cc

C1
. (23)

While the dominant pole (22) is the same with (7), the non-

dominant pole given by (23) is located at higher frequency

than (8) by a multiplication factor of 1 + Cc/C1 which is

typically large because C1 is a small parasitic capacitance.

Thus, the amplifier with the current buffer has the better

relative stability than the amplifier without the current buffer

if their gain-bandwidth products (GBWs) are the same.2 The

pole-zero diagrams of the transimpedance V2/I1 of the two-

stage amplifier without the current buffer and the two-stage

amplifier with the ideal current buffer is shown in Fig. 8(a),

(b), respectively.

Such increase of magnitude of the non-dominant pole is

explained as follows. When |po1| < |po2|, (21a) is larger

than (6a) by the multiplication factor of 1 + Cc/C1; thus,

such increased midband value help move po2 given by (15)

to become pcnd1 that is located at higher frequency than (8).

When |po1| > |po2|, though the midband value given by (21b)

is unchanged compared to (6b), the initial higher frequency

pole po1 given by (14) is located at more higher frequency

than (2) by the multiplication factor of 1 + Cc/C1 because

the loading effect does not occur at the input of the amplifier;

thus, pcnd1 is located at higher frequency than (8) as well.

Next, we consider a non-ideal current buffer that has a finite

gmc so that po3 and thus pcnd2 are not neglected. Assuming

gm, gmc ≫ 1/R1, 1/R2; Cc, C2 ≫ C1; gmR1 ≫ C2/Cc,

ACB(s) is given by (24) at the bottom of the page. Note that

the dominant pole pcd is the same as (22); this is because

po1 is typically located at much lower frequency than po3 and

thus |aCB(jω)βCB(jω)| at ω = |po1| is little affected by po3.

Therefore, po1 moves toward the origin for the same amount

and becomes pcd as before when feedback-loop is closed for

a given gm.

The other poles pcnd1, pcnd2 can be found by factoring

the second-order polynomial in the denominator of ACB(s).
Though simple expressions for pcnd1, pcnd2 cannot be readily

generated, they have the following simple relation:

pcnd1pcnd2 =
gmgmc

C1C2
. (25)

2GBWs of the voltage-gain V2/Vs of the amplifier in Fig. 2(a) and Fig. 6(a)
are expressed as gm0/Cc by replacing the input current source I1 with
gm0Vs where gm0 is an additional input transconductance applied to the
input voltage Vs.

ACB(s) =
aCB(s)

1 + aCB(s)βCB(s)
≃

−gmR1R2

(

1 + s
Cc

gmc

)

(1 + sgmR1R2Cc)

(

1 + s
CcC2 + gmcR1C1(Cc + C2)

gmR1gmcCc

+ s2
C1C2

gmgmc

) (24)
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Fig. 9. (a) Three-stage NMC amplifier analyzed using two-port feedback analysis. (b) a-circuit. (c) β-circuit.

Since the right-hand side of (25) can be obtained by multiply-

ing (16) with (23), we write

pcnd1 =
po3
pcnd2

pcnd1(po3→−∞). (26)

Thus, pcnd1 is modified with a multiplication factor of

po3/pcnd2 compared to pcnd1(po3→−∞). Let us consider the

following two cases where gmc and thus po3 (16) are different

but the midband values of aCB(s)βCB(s) are preserved since

(21a) and (21b) are not functions of gmc: 1) gmc is large and

thus po3 is located at high frequency so that pcnd1 and pcnd2
are real and 2) gmc is small and thus po3 is located at low

frequency so that pcnd1 and pcnd2 are complex.

1) When gmc is large so that pcnd1 and pcnd2 are real,

po3/pcnd2 is obviously larger than ”1” as shown in the root-

locus diagram in Fig. 7; thus, pcnd1 is located at higher

frequency than pcnd1(po3→−∞) as if attracted by pcnd2 as

shown in the pole-zero diagram of V2/I1 in Fig. 8(c). Note that

because za (17) is the zero of aCB(s) and pβ (19) is not the

pole of aCB(s)βCB(s), a zero za exists in ACB(s). Though

pcnd2 is at the lower frequency than in the previous ideal

current buffer case, the stability is not degraded if za and pcnd2
are closely spaced so as to be canceled as shown in Fig. 8(c).

Thus, this case is better than the Miller compensation with

the ideal current buffer since it achieves both the improved

stability margin and the lower power consumption with the

finite gmc.

2) When gmc is small so that pcnd1 and pcnd2 are complex,

the magnitude of the complex poles is still larger than that of

pcnd1(po3→−∞) [13]. Thus, power consumption can be further

reduced by decreasing gmc compared to the previous real

non-dominant poles case without deteriorating the stability.

However, since a real part of the complex pole-pair is fixed

at s ≃ po3/2, too small gmc can result in a small damping

ratio of the pole-pair, degrading stability margins shown in

Fig. 8(d). Therefore, for a given gm, an optimum design that

achieves both good stability and low power consumption can

be achieved by locating po3 with the optimum gmc, allowing

pcnd1 and pcnd2 to be located at near za so that they can

be considered a LHP real pole as shown in Fig. 8(e) (i.e.,

pc2 ≃ pcM ≃ za).

IV. THREE-STAGE NMC AMPLIFIER

In this section, we analyze three-stage NMC amplifiers [7]

by using two-port feedback analysis.

A three-stage NMC amplifier is shown in Fig. 9(a). Note

that two Miller capacitors Cc0, Cc1 are employed and the input

current source I0 is expressed as gm0Vs where Vs is the input

voltage of the NMC amplifier. Also, note that a two-stage

Miller-compensated amplifier in Section II is included in this

NMC amplifier. This circuit is also a feedback transimpedance

amplifier that has a shunt-shunt feedback topology where the

basic amplifier and the feedback network are shown in the

dashed boxes in Fig. 9(a). Thus, it can be decomposed into

a- and β-circuit as shown Fig. 9(b) and (c), respectively. It

should be noted that the a-circuit is drawn by neglecting the

signal feedforward through Cc0 for simplicity. Also, the a-

circuit includes the two-stage amplifier in Fig. 2(a) where the

output impedance includes the loading effect by Cc0.

Using the same approches and the results in Section II,

aNMC(s)βNMC(s) which is given by (27) shown at the

bottom of the page has three LHP poles given by

po0 = − 1

R0(C0 + Cc0)
≃ − 1

R0Cc0
(28)

po1 = − 1

gm2R1R2Cc1
(29)

po2 = − gm2Cc1

(C1 + Cc1)(C2 + Cc0 + Cc1)
≃ −gm2

C2
(30)

where the approximations in (28) and (30) follow if

C2 ≫ Cc0, Cc1 ≫ C0, C1 since typically C2 is a

large load capacitance and C0, C1 are small parasitics.

Also, aNMC(s)βNMC(s) has a zβ at the origin from the

βNMC(s) = If0/Vo in Fig. 9(c). Note that po1 and po2 are

expressed by neglecting the signal feedforward through Cc1.

aNMC(s)βNMC(s) =
gm1gm2R0R1R2Cc0s

[1 + sR0(C0 + Cc0)][1 + sgm2R1R2Cc1]

[

1 + s
(C1 + Cc1)(C2 + Cc0 + Cc1)

gm2Cc1

] (27)
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Fig. 10. Positive root-locus diagram for aNMC (s)βNMC (s) given by (27).
po0, po1 and po2 are the poles of aNMC (s)βNMC (s) or equivalently the
poles of ANMC(s) = V2/I0 when the feedback loop via Cc0 is opened.
Also, pcd, pcnd1 and pcnd2 are respectively the possible dominant, first and
second non-dominant poles of ANMC (s) when the feedback loop via Cc0

is closed.

Typically, |po1| < |po0| < |po2| because of a large gm2 in

the design of the NMC amplifier [2]. Thus, the positive root-

locus diagram for increasing gm1 can be drawn as shown in

Fig. 10. As can be seen, the two low frequency poles po1
and po0 split apart as gm1 increases and become a dominant

pole pcd and a first non-dominant pole pcnd1, respectively. It

should also be noted that po2 moves toward low frequency and

becomes a second non-dominant pole pcnd2 as gm1 increases.

Also, note that pcnd1 and pcnd2 can form a complex-conjugate

pole-pair beyond some value of gm1.

Using a similar approach in the Section III, let us first

assume po2 is located at very high frequency so as to be

neglected and investigate a dominant (pcd) and a first non-

dominant (pcnd1) pole locations; in this case, (27) can be

approximated to have the two LHP poles, a zero at the origin,

and a midband value a0β0|NMC as given by

a0β0|NMC =
gm1R0Cc0

Cc1
(31)

which is typically large. Thus, the splitted closed-loop poles

can be found by applying the pole-splitting relation (39),

which results in

pcd(po2 atHF ) ≃ − 1

gm1gm2R0R1R2Cc0
(32)

pcnd1(po2 atHF ) ≃ −gm1

Cc1
(33)

Thus, GBW of this NMC amplifier is gm0/Cc0. Typically, a

magnitude of the first non-dominant pole given by (33) is set

to be

gm1

Cc1
= 2GBW = 2

gm0

Cc0
(34)

so that the phase margin (PM) ≃ 90°−tan−1(1/2) ≃ 63° [2];

the pole-zero diagram of the voltage-gain of this NMC am-

plifier is illustrated in Fig. 11(a). It is worth mentioning that

the proposed analysis shows that po2 should be located at a

high frequency such that |po2| = |pcnd2| ≫ GBW to satisfy

Fig. 11. Pole-zero diagram of the voltage-gain V2/Vs of the three-stage NMC
amplifier (Not to scale): (a) when po2 is located at a very high frequency so
as to be neglected, (b) when po2 is located at s = −8GBW, and (c) when
po2 is located at s = −4GBW.

(34), implying a seperate pole approach in [2] that satisfies

not only (34) but |pcnd2| = 2 GBW cannot be achieved.

Next, we consider the case when po2 is located at a lower

frequency and investigate its effect on the stability. Though this

can be achieved by decreasing gm2, it will also affect po1 given

by (29). Instead, increasing C2 only allows po2 to be located

at a lower frequency. Then, as mentioned eariler, po2 moves

toward low frequency and becomes the second-nondominant

pole pcnd2. Similar to the case in the Miller compensated two-

stage using the non-ideal current buffer in Section III, the first

non-dominant pole pcnd1 here is at a higher frequency than

(33) as if attracted by pcnd2. This is verified as follows.

Assuming gm1, gm2 ≫ 1/R0, 1/R1, 1/R2; C2 ≫
Cc0, Cc1 ≫ C0, C1; ANMC(s) = V2/I0 in Fig. 9(a) is

approximately expressed as (35) shown at the bottom of the

page. From a quadratic function in the denominator of (35),

pcnd1 and pcnd2 have the following relation:

pcnd1pcnd2 ≃ gm1gm2

Cc1C2
. (36)

Because the right-hand side of (36) can also be obtained by

ANMC(s) =
V2

I0
(s) =

aNMC(s)

1 + aNMC(s)βNMC(s)
≃ −gm1gm2R0R1R2

(1 + sgm1gm2R0R1R2Cc0)

[

1 + s
Cc1

gm1
+ s2

Cc1C2

gm1gm2

] (35)
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multiplying (30) with (33), we can write

pcnd1 ≃
po2
pcnd2

pcnd1(po2 atHF ). (37)

Thus, pcnd1 is located at higher frequency than pcnd1(po2 atHF )

by a multiplication factor of po2/pcnd2 that is obviously larger

than unity as shown in the root-locus diagram in Fig. 10. This

implies that even if po2 is not located at very high frequency,

the stability margin may be little affected by pcnd2 because

the magnitude of pcnd1 is also increased.

For example, we consider two cases that have different

values of C2 so that 1) po2 = −8GBW, and 2) po2 = −4GBW

and the condition (34) holds in the both cases. The exact

analysis is carried out for the both cases in Appendix B.

1) When po2 = −8GBW, the NMC amplifier has the

pole-zero diagram as illustrated in Fig. 11(b). Note that the

dominant pole pcd is at the same location as in the previous

case because po1 is typically located at much lower frequency

than po2 and thus |aNMC(jω)βNMC(jω)| at ω = |po2| is

little affected by po2. However, po0 and po2 attract each other,

becoming the first (pcnd1) and second non-dominant (pcnd2)

pole, and form a double pole-pair at s = −4GBW, which

results in PM ≃ 90°−2tan−1(1/4) ≃ 62°. Thus, the stability

of the NMC amplifier is little affected compared to the

previous case.

2) When po2 = −4GBW, the NMC amplifier has the pole-

zero diagram as illustrated in Fig. 11(c). The location of pcd
is still the same as the previous cases. However, pcnd1 and

pcnd2 form a complex-conjugate pole-pair that has the same

magnitude of the real- and imaginary-part as 2GBW (i.e.,

|pcnd1| = |pcnd2| = 2
√
2GBW) with a damping ratio (ξ) of

1/
√
2 ≃ 0.707, which results in

PM ≃ 90° − tan−1

[

2ξ GBW

2
√
2GBW

1− ( GBW

2
√
2GBW

)2

]

≃ 60°. (38)

Thus, the stability of the NMC amplifier is also little affected

compared to the previous cases.

V. CONCLUSION

In this paper, various Miller-compensated amplifiers are

analyzed by using the two-port feedback analysis together

with the root-locus diagram. This method solves the prob-

lems of Miller theorem/approximation that fail to predict the

pole-splitting and that requires an an impractical assumption

where an initial low-frequency pole before connecting a Miller

capacitor in a multi-stage amplifier should be associated with

the input of the amplifier. Also, because the proposed analysis

sheds light on how the closed-loop poles of the amplifier orig-

inated from the open-loop poles which can be readily found

by inspection in the s-plane, it provides the design insight for

frequency compensation, helping allow the association of the

closed-loop poles with the circuit parameters.

Specifically, in Section II, the proposed analysis shows

that when the RHP zero is neglected the nondominant pole

location of the two-stage Miller-compensated amplifier should

be modified to have a smaller magnitude than in a classical

textbook [4]. Also, in Section III, when the current buffer is

used in a Miller compensated two-stage amplifier to block

the feedforward path through the compensation capacitor, the

stability can be improved because of the absence of the RHP

zero and the loading effect of compensation capacitor at the

input of the amplifier. Moreover, the additional third pole

from the current buffer and the zero of the a-circuit can be

optimally located to improve the stability and to lower the

power consumption. Finally, in Section IV, the stabiltiy of the

three-stage NMC amplifier can be little affected even if the

second non-dominant pole is considered because the first non-

dominant pole is located at a higher frequency as if attracted

by the second non-dominant pole.

APPENDIX A

POLE-SPLITTING THEOREM

Let a(s)β(s) of a feedback circuit has two distinct real

poles, pod and pond, in the left-half of the s-plane such that

|pod| < |pond|, a zero at the origin, and a midband value

a0β0 ≫ 2. Then, the following Pole-splitting relation holds:

a0β0 ≃ pod
pcd

≃ pcnd
pond

(39)

where pcd and pcnd are the closed-loop poles of the circuit.

�

Proof: For a given condition, a(s)β(s) can be written

a(s)β(s) =
a0β0

s
|pod|

(

1 + s
|pod|

)(

1 + s
|pond|

) . (40)

The closed-loop poles of the circuit [or equivalently the zeros

of the characteristic equation 1 + a(s)β(s)] can be found as

the zeros of

P (s) = 1 + s
a0β0

|pod|
+ s2

1

|podpond|
. (41)

The two zeros of P (s), pcd and pcnd, are real and widely

spaced (i.e., |pcnd| ≫ |pcd|). This can be verified by compar-

ing (41) with the standard form of the second-order polynomial

with a damping ratio ξ and a natural frequency ωn given by

S(s) = 1 + s
2ξ

ωn

+ s2
1

ω2
n

. (42)

Equating (41) with (42) yields

ξ =
1

2

√

pond
pod

a0β0 >
1

2
a0β0 ≫ 1. (43)

Thus, we can write

P (s) ≃ 1 + s
1

|pcd|
+ s2

1

|pcdpcnd|
. (44)

Equating the coefficient of s in (41) and (44) results in

|pcd| ≃
|pod|
a0β0

. (45)

Similarly, by equating coefficients of s2 in (41) and (44) and

using (45), pcnd can be estimated as

|pcnd| ≃ |pond|a0β0. (46)
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Fig. 12. Pole-splitting relation

Using (45), (46) and eliminating the absolute functions, the

pole-splitting relation given by (39) is established and is

illustrated in Fig. 12.

�

APPENDIX B

Applying the quadractic formula to the quadratic function

in the denominator of (35), pcnd1 and pcnd2 are

pcnd1, pcnd2 = −gm2

2C2
± gm2

2C2

√

1− 4
gm1

Cc1

C2

gm2
. (47)

Using (30) and (34), we can write

pcnd1, pcnd2 ≃
po2
2

∓ po2
2

√

1 +
8GBW

po2
. (48)

Thus, when po2 = −8GBW, pcnd1, pcnd2 ≃ po2/2 =
−4GBW. And, when po2 = −4GBW, pcnd1, pcnd2 ≃ po2/2∓
jpo2/2 = −2GBW ∓j2GBW.
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