
 1

FPGA Architecture for Fast Parallel

Computation of Co-occurrence Matrices

D.K. Iakovidis*, D.E. Maroulis , and D.G. Bariamis

Dept. of Informatics and Telecommunications, University of Athens,

Panepistimiopolis, Ilisia, 15784 Athens, Greece

This paper presents a novel architecture for fast parallel computation of co-

occurrence matrices in high throughput image analysis applications for which

time performance is critical. The architecture was implemented on a Xilinx

Virtex-XCV2000E-6 FPGA using VHDL. The symmetry and sparseness of the

co-occurrence matrices are exploited to achieve improved processing times,

and smaller, flexible area utilization as compared with the state of the art. The

performance of the proposed architecture is evaluated using input images of

various dimensions, in comparison with an optimized software implementation

running on a conventional general purpose processor. Simulations of the

architecture on contemporary FPGA devices show that it can deliver a

speedup of two orders of magnitude over software.

Keywords: Image analysis, Co-occurrence matrix, FPGA, Texture

* Corresponding author. Tel.: +30-210-7275317, Fax: +30-210-7275333, Email: rtsimage@di.uoa.gr

 2

1. Introduction

The co-occurrence matrix is a powerful statistical tool which has proved its

usefulness in a variety of image analysis applications, including biomedical

[1,2], remote sensing [3], quality control [4], and industrial defect detection

systems [5]. It captures second-order grey-level information, which is mostly

related to human perception and the discrimination of textures.

 Although the computational complexity of the co-occurrence matrix for

an image of N×N dimensions is only O(N2), the processing power

requirements for the computation of multiple co-occurrence matrices per time

unit can be prohibiting for the analysis of large image streams, using software

co-occurrence matrix implementations on general purpose processors. Such

demanding applications include video analysis [1,6], content-based image

retrieval [7], real-time industrial applications [5] and high-resolution

multispectral image analysis [2].

Field Programmable Gate Arrays (FPGAs) are low cost, reconfigurable

high density gate arrays capable of performing many complex computations in

parallel while hosted by conventional computer hardware [8]. Their features

enable the development of a hardware system dedicated to performing fast

co-occurrence matrix computations, thus meeting the requirements of real-

time image analysis applications. On the other hand, the Very Large Scale

Integration (VLSI) architectures could be considered as competitive

alternatives [9]. However, they are not reconfigurable and they involve high

development cost and time-consuming development procedures.

Within the first FPGA architectures, dedicated to co-occurrence matrix

computations, was the one presented in [5,6] for the computation of two

 3

statistical measures of the co-occurrence matrix. However, these measures

were being approximated, without needing to compute the matrix itself. In a

later work, Tahir et al. [2] developed an FPGA architecture for the

computation of 16 co-occurrence matrices in parallel. The implementation

considerations include symmetry, but do not include sparseness. As a result,

a large FPGA area is utilized even for small input images.

 In this paper, we present a novel FPGA architecture for parallel

computation of 16 co-occurrence matrices that exploits both their symmetry

and sparseness to achieve improved processing times and smaller, flexible

area utilization.

2. The Co-occurrence Matrix

The co-occurrence matrix of an NxN-pixel image I, comprises of the

probabilities Pd,θ(i, j) of the transitions from a grey-level i to a grey-level j in a

given direction θ at a given intersample spacing d:

∑∑
= =

=
g gN

i

N

j
d

d
d

jiC

jiC
jiP

1 1
,

,
,

),(

),(
),(

θ

θ
θ (1)

where),(, jiCd θ = # {(m, n), (u, v) ∈ NxN: f(m, n) = j, f(u, v) = i, |(m, n)-(u, v)| =

d, ∠((m, n), (u, v)) = θ}, # denotes the number of elements in the set, f(m, n)

and f(u, v) correspond to the grey-levels of the pixel located at (m, n) and (u,

v) respectively, and Ng is the total number of grey-levels in the image [11]. In

accordance with [2], we choose Ng = 32 (5-bit representation).

The co-occurrence matrix can be regarded symmetric if the distribution

between opposite directions is ignored. The symmetric co-occurrence matrix

is derived as () 2/),(),(),(,,,
Τ+= jiPjiPjiP ddd θθθ , where symbol T denotes the

 4

transpose matrix. Therefore, the co-occurrence matrix can be represented as

a triangular structure without any information loss, and θ is chosen within the

range of 0° to 180°. Common choices of θ include 0°, 45°, 90° and 135°

[1,2,6,12]. Moreover, depending on the image dimensions, the co-occurrence

matrix can be very sparse, as the number of grey-level transitions for any

given distance and direction, is bounded by the number of image pixels.

3. Architecture

The presented architecture was developed in Very high speed

integrated circuits Hardware Description Language (VHDL). It was

implemented on a Xilinx Virtex-XCV2000E-6 FPGA, which is characterized by

80×120 Configurable Logic Blocks (CLBs) providing 19,200 slices (1 CLB = 2

slices). The device includes 160 256x16-bit Block RAMs and can support up

to 600kbit of distributed RAM. The host board, Celoxica RC-1000 has four

2MB static RAM banks. The RAM banks can be accessed by the FPGA and

the host computer independently, whereas simultaneous access is prohibited

by the board’s arbitration and isolation circuits.

 An overview of the proposed FPGA architecture is illustrated in Fig. 1.

The FPGA includes a control unit, four memory controllers (one for each

memory bank) and 16 Co-occurrence Matrix Computation Units (CMCUs). Up

to four input images of Ng grey-levels can be loaded in parallel to the available

RAM banks. In accordance with [2], a 5-bit grey-level representation was

used, i.e. Ng = 32. However, in [2] each image is loaded into a corresponding

RAM bank using a 5-bit per pixel representation whereas in the proposed

architecture a 25-bit per pixel representation is used. Each pixel is

 5

represented by a vector],,,,[13590450 aaaaaa p= that comprises of five 5-bit

components, namely, the grey-level ap of the pixel and the grey-levels a0, a45,

a90 and a135 of its neighboring pixels at 0°, 45°, 90° and 135° directions.

CMCU CMCU CMCU CMCU

Memory Bank 0

Memory Bank 1

Memory Bank 2

Memory Bank 3

M
em

or
y

C
on

tro
lle

rs

Control
Unit

Is
ol

at
or

 C
irc

ui
t

Is
ol

at
or

 C
irc

ui
t

Memory
Arbiter

Request/Grant Bits

Control/Status Bytes

PCI Bus

FPGAFPGA

CMCU CMCU CMCU CMCU

CMCU CMCU CMCU CMCU

CMCU CMCU CMCU CMCU

CMCU CMCU CMCU CMCU

Memory Bank 0

Memory Bank 1

Memory Bank 2

Memory Bank 3

M
em

or
y

C
on

tro
lle

rs

Control
Unit

Is
ol

at
or

 C
irc

ui
t

Is
ol

at
or

 C
irc

ui
t

Memory
Arbiter

Request/Grant Bits

Control/Status Bytes

PCI Bus

FPGAFPGA

CMCU CMCU CMCU CMCU

CMCU CMCU CMCU CMCU

CMCU CMCU CMCU CMCU

Figure 1. Overview of the FPGA architecture.

 All FPGA functions are coordinated by the control unit which generates

synchronization signals for the memory controllers and the CMCUs. The

control unit also handles communication with the host, by exchanging control

and status bytes, and requesting or releasing the ownership of the memory

banks. Each CMCU is used for the computation of the co-occurrence matrix of

an image for a particular direction and distance.

3.1 Co-occurrence Matrix Computation Units

Three main objectives have been determined upon the requirements of

the proposed application, for the development of a CMCU: a) small FPGA

area utilization to allow for a potential expansion of the proposed architecture

 6

b) high throughput of one result per cycle to achieve a high per-clock

performance, and c) low design complexity that will contribute to achieving

high operation frequency. To meet these objectives we have considered

various alternatives for the implementation of the CMCUs. These include the

utilization of the existent FPGA BlockRAM arrays, the implementation of

standard sparse array structures that store pairs of indices and values, and

the implementation of set-associative sparse arrays. The BlockRAM arrays

and the standard sparse array structures would not suffice to meet all three

objectives. The BlockRAM arrays would lead to a larger area utilization

compared with the sparse implementations. The standard sparse arrays

would result in a lower throughput compared with the other two

implementations, as the cycles needed to traverse the indices of the array are

proportional to its length. In comparison, the set-associative arrays could be

considered as a more flexible alternative that can be effectively used for

achieving all our three objectives.

Figure 2 illustrates a CMCU as implemented by means of an n-way

set-associative array of Nc cells and auxiliary circuitry which include n

comparators, a n-to-log2n priority encoder and an adder.

 7

i
j

tag(i,j)

set(i,j)

tags0

addr
data

tags1

addr
data

tagsn-1

addr
data

…

= = =

n-to-log2n priority encoder

offset set(i,j) data

addr0

data0

addr1

data1
+

1

register port1

port0

i
j

tag(i,j)

set(i,j)

tags0

addr
data

tags0

addr
data

tags1

addr
data

tags1

addr
data

tagsn-1

addr
data

tagsn-1

addr
data

…

== == ==

n-to-log2n priority encoder

offset set(i,j)set(i,j) data

addr0

data0

addr1

data1
++

1

register port1

port0

Figure 2. The Co-occurrence Matrix Computation Unit (CMCU).

The set-associative arrays can be utilized for efficient storage and

retrieval of sparse matrices, ensuring a throughput of one access per cycle

with a latency of four cycles. An n-way set-associative array consists of n

independent tag arrays (tags0 - tagsn-1) as illustrated in Fig. 2. The tag-arrays

are implemented in the FPGA’s distributed RAM and each of them consists of

Nc/n cells. The set-associative array uniquely maps an input pair of 5-bit gray-

level intensities (i, j) into an address of the Nc-cell data array. The data arrays

are implemented using FPGA Block RAMs, each of which can hold up to 256

co-occurrence matrix elements. The data array cells contain the number of

occurrences of the respective (i, j) pairs. Each of these pairs is represented by

 8

a single 10-bit integer k, resulting from the concatenation of i and j. This

integer can be considered to consist of two parts: the first is called set(i, j) and

comprises of the log2(Nc/n) least significant bits of k, whereas the second part

is called tag(i, j) and comprises of the 10-log2(Nc/n) most significant bits of k.

The increment of a data array cell that corresponds to an input pair (i, j) is

implemented in four pipeline stages:

Stage 1. The tag array cells located in the set(i, j) row are retrieved and

stored in temporary registers.

Stage 2. The values of the temporary registers values are compared with

tag(i, j).

 a. If a match is found the column number of the matching

tag is written in the offset register.

 b. If there are not any matches the tag(i, j) is stored in the

tags array, at the first available cell of the set(i, j) row.

Stage 3. The contents of both the offset register and set(i, j) form an

address a. The data array element stored in a, is read.

Stage 4. The value read in the previous cycle increases by one and it is

written back to a.

After all input pairs are read and processed the data array will contain

the co-occurrence matrix of the input image.

4. Results

Experiments focusing to the evaluation of the time performance and

the area utilization of the proposed architecture were performed using

 9

standard texture images from the Brodatz album of 16x16, 32x32, 64x64,

128x128, 256x256 and 512x512-pixel dimensions (Fig. 3) [13].

512

256

128

64

512

256

128

64

Figure 3. Texture image D9 from the Brodatz album cropped at various sizes.

Given a triangular co-occurrence matrix of Ng = 32, the number of pixel

pairs that can be considered for its computation in the case of a 16x16-pixel

input image, is smaller than the total number of co-occurrence matrix

elements, and reaches the number of all image pixels. Therefore, the co-

occurrence matrix will be sparse and Nc is set to a maximum possible value of

16x16 = 256. In the case of a 32x32-pixel or a larger input image, the co-

occurrence matrix is not considered sparse as the number of all possible pixel

pairs that can be considered for its computation is larger than the total number

of its elements (i.e. 528). Therefore, Nc is set to 528. It is worth noting that the

effect of sparseness in area utilization is amplified and becomes more useful

as Ng increases. For example, if Ng was set at 64 or at 128 grey-levels, the

 10

co-occurrence matrix could be considered sparse for images up to 32x32 or

64x64-pixel dimensions, respectively. By following a grid search approach for

the determination of n, it was found that the sixteen-way set-associative

arrays (n = 16) result in the optimal tradeoff between time performance and

area utilization.

The proposed architecture, as implemented on the Xilinx Virtex-

XCV2000E-6 FPGA, operates at 38.4MHz and utilizes only 39% of the FPGA

area for 16x16 input images, where the sparseness of the co-occurrence

matrices is exploited. The use of larger input images results in approximately

the same operating frequency reaching 38.2MHz and a larger area utilization

of 45%. In comparison, the architecture proposed in [2] operates at 50MHz

and utilizes a larger area percentage (59%) on an FPGA of the same type, for

the same Ng, regardless of the image dimensions. The time performance

reported in [2] for the computation of a total of 64 co-occurrence matrices in

512x512-pixel 16-band multispectral images was 6.3x105 μs. For the same

computations, the proposed architecture requires 28,041x4=1.1x105 μs (Table

1), which can be interpreted in approximately 500% reduction of the

processing time. This improvement in time performance is mainly attributed to

the use of vectors a for the retrieval of five pixels in one cycle instead of the

five cycles required in the per pixel retrieval used in [2].

Even though the implementation of the proposed architecture was

based on the Xilinx Virtex-XCV2000E-6 FPGA, we run several simulations on

state of the art FPGA devices, such as Virtex-XCV2000E-8 (19200 slices),

Virtex2-XC2V6000-6 (33792 slices) and Spartan3-XC3S4000-5 (27648

slices). The processing times achieved for the computation of 16 co-

 11

occurrence matrices in hardware and software respectively are presented in

Table 1.

Implementation Frequency Image Dimensions (pixels)

 (MHz) 16x16 32x32 64x64 128x128 256x256 512x512
Hardware
XCV2000E-6 38 30 113 442 1,756 7,013 28,041
XCV2000E-8 51 22 83 323 1,283 5,123 20,483
XC3S4000-5 72 15 59 230 915 3,653 14,606
XC2V6000-6 83 13 51 198 788 3,149 12,590

Software

P
ro

ce
ss

in
g

tim
es

 (μ
s)

Athlon XP 2700+ 2,167 1,371 3,247 10,018 36,320 143,600 562,080

Table 1. Processing times (μs) achieved for various input image dimensions

using various FPGA devices, and software.

Software processing times were measured using an MMX optimized

software implementation developed in C programming language and

executed on an Athlon XP2700+ processor. The optimizations were based on

the guidelines suggested by Intel and AMD [14,15]. These include contiguous

arrays allocation for improving CPU caching performance, system call

overhead reduction by allocation of static arrays for data used iteratively

within the program, usage of efficient C library functions such as memset()

and memcpy(), and vectorization of several functions using the MMX

instruction set [16]. Additional code fine-tuning includes code rearrangement

for breaking dependencies in tight loops, dereferencing of commonly used

pointers and reduction of the function call overhead using inline functions.

The results reveal the superior performance of the hardware

implementations of the proposed architecture over the software

implementation. The speedup factors achieved in hardware vary depending

 12

on the FPGA model used. The minimum speedup is approximately 20 in the

case of XCV2000E-6 for 512x512 images, whereas it exceeds 100 in the case

of XC2V6000-6 for 16x16 images. The variance in speedup is mainly

attributed to the different frequencies of the various FPGA models and does

not correlate with the sparseness of the co-occurrence matrix, which mainly

affects the area utilization. In Table 1 it can be observed that the increase in

processing times as the image dimensions increase by two is not exactly

divided by four, as it would have been expected by the quadruplication of the

image pixels. This is explained by the constant time period spent for resetting

the FPGA circuit.

5. Conclusions

We presented a novel FPGA architecture which is capable of

performing fast parallel co-occurrence matrix computations in grey-level

images. It performs better than the state of the art FPGA architecture

presented in [2]. The proposed architecture and the architecture in [2] have

two main differences pinpointed to the input data format and the co-

occurrence matrix representation. The vector representation of the input

image pixels and the use of set-associative arrays for the sparse

representation of the co-occurrence matrix result in a higher time performance

and smaller area utilization respectively. Its advantageous time performance

compared with the architecture in [2] and with an optimized software

implementation for general purpose processors, makes it appealing for use in

high throughput applications. Moreover, the smaller FPGA area it utilizes,

allows for the exploitation of the remaining area for other tasks, such as the

 13

computation of co-occurrence matrix features [11], or the computation of more

co-occurrence matrices in parallel, if the host board is equipped with more

RAM banks.

It is worth noting that the computation of co-occurrence matrices in

conjunction with feature extraction in the same FPGA design still remains a

challenge. In [2], two different FPGA designs, one for the computation of co-

occurrence matrices and one for the feature extraction, are interchangeably

configured on a single FPGA.

Within our future perspectives are the extension of the current

architecture for efficient on-chip extraction of multiple textural features from

grey-level and color images, in the same FPGA design, and its integration in a

complete, hardware/software system with real-time video analysis capabilities.

Acknowledgement

This research was funded by the Operational Program for Education and

Vocational Training (EPEAEK II) under the framework of the project

“Pythagoras - Support of University Research Groups” co-funded by 75%

from the European Social Fund and by 25% from national funds.

References

1 S.A. Karkanis, D.K. Iakovidis, D.E. Maroulis, D.A. Karras, M. Tzivras,
Computer aided tumor detection in endoscopic video using color wavelet
features, IEEE Trans. Inf. Technol. Biomed. 7 (2003) 141-152.

2 M.A. Tahir, A. Bouridane, F. Kurugollu, An FPGA based coprocessor for

GLCM and haralick texture features and their application in prostate
cancer classification, Anal. Int. Circ. Signal Process. 43 (2005) 205-215.

 14

3 A. Baraldi, and F. Parmiggiani, An investigation of the textural
characteristics associated with gray level cooccurrence matrix statistical
parameters, IEEE Trans. Geosc. Rem. Sens. 33 (2) (1995) 293-304.

4 K. Shiranita, T. Miyajima, R. Takiyama, Determination of meat quality by

texture analysis, Patt. Rec. Lett. 19 (1998) 1319-1324.

5 J. Iivarinen, K. Heikkinen, J. Rauhamaa, P. Vuorimaa, A. Visa, A defect

detection scheme for web surface inspection, Int. J. Pat. Rec. Artif. Intell.
(2000) 735-755

6 D.K. Iakovidis, D.E. Maroulis, S.A. Karkanis, I.N. Flaounas, Color texture

recognition in video sequences using wavelet covariance features and
support vector machines, Proc. 29th EUROMICRO, Sept. 2003, Antalya,
Turkey, pp. 199-204.

7 C.-H. Wei, C.-T. Li, R. Wilson, A content-based approach to medical

image database retrieval, in Database Modeling for Industrial Data
Management: Emerging Technologies and Applications, ed. by Z. Ma,
Idea Group Publishing, 2005.

8 T.A. York, Survey of field programmable logic devices, Microprocessors

and Microsystems. 17 (7) (1993) 371-381.

9 M. Ba, D. Degrugillier, C. Berrou, Digital VLSI using parallel architecture

for co-occurrence matrix determination, Proc. Int. Conf. on Acoustics,
Speech, and Signal Proc., 1989, Vol. 4, pp. 2556 – 2559

10 K. Heikkinen, and P. Vuorimaa, Computation of two texture features in

hardware, Proc. 10th Int. Conf. Image Analysis and Processing, Sept.
1999, Venice, Italy, pp. 125-129.

11 R.M. Haralick, K. Shanmugam, I. Dinstein, Textural features for image

classification, IEEE Trans. Syst. Man Cybern. 3 (1973) 610-621.

12 S. Theodoridis, K. Koutroumbas, Pattern Recognition, Academic Press,

San Diego, 1999.

13 P. Brodatz, Textures: A Photographic Album for Artists and Designers,

Dover Publications, New York, 1966.

14 IA-32 Intel Architecture Optimization Reference Manual, Intel Corp., 2004.

15 Athlon Processor x86 Code Optimization Guide, AMD Inc., 2002.

16 Intel Pentium 4 Processor Optimization Reference Manual, Intel

Corporation, 1999-2000.

 15

Authors’ Biographies

Dimitris K. Iakovidis received his B.Sc. degree in Physics from the

University of Athens, Greece. In April 2001, he received his M.Sc. degree in

Cybernetics and in February 2004 his Ph.D. degree in Computer Science

from the Dept. of Informatics and Telecommunications, University of Athens,

Greece. Currently he is working as a Research Fellow in the same Dept. and

he has co-authored more than 30 papers on image analysis, systems, and

biomedical applications. Also he is a regular reviewer for many international

journals. His research interests include image analysis, system development,

pattern recognition and bioinformatics.

Dimitris E. Maroulis received the B.Sc. degree in Physics, the M.Sc. degree

in radioelectricity, the M.Sc. in electronic automation and the Ph.D. degree in

Computer Science, all from the University of Athens, Greece, in 1973, 1977,

1980 and 1990, respectively. In 1979, he was appointed Assistant in the Dept.

of Physics, in 1991 he was elected Lecturer and in 1994 he was elected

Assistant Professor, in the Dept. of Informatics of the same university. He is

currently working in the above Dept. in teaching and research activities,

including Projects with European Community. His main areas of activity

include data acquisition systems, real-time systems, signal processing and

biomedical systems.

Dimitris G. Bariamis is a student of the Dept. of Informatics and

Telecommunications, pursuing a Ph.D. degree in hardware architecture

 16

design. His research interests include FPGA design, and software

programming and optimization techniques.

