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RESUMO

Nos últimos anos, a redução do consumo de energia das aplicações dos sistemas embar-
cados tem recebido uma grande atenção da comunidade cient́ıfica, visto que, como o
tempo de resposta e o baixo consumo de energia são requisitos conflitantes, esses estudos
tornam-se altamente necessários. Nesse contexto, é proposta uma metodologia aplicada
nas fases iniciais de projeto para dar suporte às decisões relativas ao consumo de energia
e ao desempenho das aplicações desses dispositivos embarcados.

Além disso, esse trabalho propõe modelos temporizados de eventos discretos que são
avaliados através de uma metodologia de simulação estocástica com o objetivo de repre-
sentar diferentes cenários dos sistemas com facilidade. Dessa forma, para cada cenário é
preciso decidir o número máximo de simulações e o tamanho de cada rodada da simulação,
onde ambos os fatores podem impactar no desempenho para se obter tais estimativas.
Essa metodologia considera também, um modelo intermediário que representa a descrição
do comportamento do sistema e, é através desse modelo que cenários são analisados. Esse
modelo intermediário é baseado em redes de Petri coloridas temporizadas que permitem
não somente a análise do software, mas também fornece suporte a um conjunto de métodos
bem estabelecidos para verificações de propriedades.

É nesse contexto que o software, ALUPAS, responsável por estimar o consumo de
energia e o tempo de execução dos sistemas embarcados é apresentado. Por fim, um
caso de estudo real, assim como também, exemplos customizados são apresentados com
a finalidade de mostrar a aplicabilidade desse trabalho, onde usuários não especializados
não precisam interagir diretamente com o formalismo de redes de Petri.

Palavras-chave: Redes de Petri Coloridas, Simulação Estocástica, Sistemas Embarca-
dos, Consumo de Energia e Desempenho.
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ABSTRACT

Over the last years, the issue of reducing energy consumption in embedded system appli-
cations has received considerable attention from the scientific community, since respon-
siveness and low energy consumption are often conflicting requirements. In this context,
this dissertation proposes a methodology applied in early design phases for supporting
design decisions on energy consumption and performance of embedded applications.

In addition, this work proposes temporized discrete event models that have been
evaluated through a stochastic simulation approach to represent different system scenarios
in an easier way. For each scenario, it is important to decide the maximum number of
simulations and the duration of each simulation, where both may impact the performance
estimates. Such approach also considers an intermediate model which represents the
system behavioral description and, through these models, the scenarios are analyzed.
The intermediate model is based on timed Colored Petri Net, a formal behavioral model
that not only allows the software execution analysis, but it is also supported by a set of
well established methods for property verifications.

In this context, a software, named ALUPAS, for estimating energy consumption and
execution time of embedded systems is presented. Lastly, a real-world case study as well
as customized examples are presented, showing the applicability of this work in which
non-specialized users do not need to interact directly with the Petri net formalism.

Keywords: Coloured Petri Net, Stochastic Simulation, Embedded System, Energy
Consumption and Performance.
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CHAPTER 1

INTRODUCTION

Embedded system is the one whose principal function is not computational, but it
is controlled by a computer embedded (e.g.: microprocessor or microcontroller) within
it [Wil01]. The word embedded means that the computer lies inside the overall system,
hidden from view, forming an integral part of a greater whole and, as a result, the user
may be unaware of the computers existence [Tav06].

Nowadays, embedded systems are present in practically all areas of human lives. Mo-
bile phones, clocks, refrigerators, microwaves, oscilloscopes and routers are a few examples
of those devices that have a digital processor responsible for performing specific tasks.
Within such devices embedded applications that have always been running the same
tasks are present and, thus, the software updates after being in production are unusual.
Besides, embedded systems do not terminate, unless it fails [Lee02].

Depending on the purpose of the application, the design of embedded systems may
have to take into account several constraints, for instance, time, size, weight, cost, relia-
bility and energy consumption. Furthermore, advances in microelectronics have allowed
for the development of embedded systems with several complex features, thereby up-
holding the development of powerful mobile mechanism such as military gadgets (e.g.:
spy satellites and guide missiles) and medical devices (e.g.: thermometers and pulse-
oximeters). These devices generally rely on constrained energy sources (e.g.: battery),
in such a way that if the energy source is depleted, the system stops functioning. The
power consumption control is also becoming an important design goal in designs that are
not battery-operated, because the excessive heat generated from high power consumption
can seriously degrade chip performance and cause physical damage to the chip [HZDS95].
Hence estimating energy consumption in early design phases can provide important in-
sights to the designer about the battery lifetime as well as parts of the application that
need optimization.

Embedded applications that deal with time constraints are classified as Embedded
Real-Time Systems (ERTS). In these systems, not only the logical results of computations
are important, but also the time instant in which they are obtained. Some constraints are
considered “hard”, while others are “soft”, meaning the timing deadlines may or may not
be violated. In other words, soft ERTS accepts a soft delay to obtain the results (e.g.: web
servers, mobile phones, Voice over Internet Protocol (VoIP) Calls, digital TV, web video
conferences, and others). On the other hand, in the hard ERTS if the time constraints
are not satisfied, a catastrophe may occur (e.g.: car races, health care devices, military
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INTRODUCTION 2

applications, aircraft and nuclear control centers)[TMSO08]. Hence, time predictability
is an essential issue on the development life cycle of those systems [BL04, TMS+07].

The context of this work is related to embedded systems with timing and energy
constraints. More specifically, this work is concerned about the adoption of formal models
for modeling hard real-time systems with energy constraints as well as the utilization
of techniques for estimating their energy consumption and execution time. A formal
approach, based on Coloured Petri Nets (CPN), for estimating execution time as well
as energy consumption of embedded system applications through a stochastic simulation
method is presented. The formal mechanism, such as CPN, has being adopted in order
to trade off and system’s representation based on abstraction levels that might focus on
processor instructions or high-level programming languages, in which applications may
be modeled instruction-by-instruction or by blocks of instructions.

Originally, most part of embedded systems was hardware-based, using for instance
ASICs (Application Specific Integrated Circuit). However, with the constant micro-
electronic advances, the technology evolved in a such way that the computational ca-
pability of processors has been increased and, correspondingly, their cost and size have
been decreased. Consequently, the software has been responsible for 80% of an embedded
system development so far [SVM01]. This process has been moving functionalities from
hardware to software, and some advantages such as flexibility, lower cost, and accessibil-
ity are improved. On the other hand, functionalities implemented in hardware still have
better performance and consume less energy.

It is important to state that many works deal with energy consumption of embedded
systems at different abstraction levels. The differences of each abstraction level [Oel00]
[Bea01] resulted i the following classification:

� Application/System level: the energy consumption related to the execution of a
particular program can be considered in such level.

� Behavioral/Algorithm level: different algorithms for the same purpose gives differ-
ent amount of power consumption, and at this level such behavior is analyzed.

� Architectural level: in this level, the power consumption analysis of caches, core
and processor buses are performed.

� Logic (gate) level: at this level both the function and the style of any circuit are
decided. There are various design styles and each one has its power-performance
trade-offs.

� Transistor (circuit) level: this is the lowest level of abstraction; studies of changing
the input voltage and reordering of transistors, for example, are analyzed in such
level.

Figure 1.1 summarizes the relation of those levels considering capacity, accuracy,
speed, resources and energy saving analysis on each level. The reader should have in
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Figure 1.1: Levels of Abstraction

mind that it does not have a level better than the others. On the other hand, a level
may be more applicable in a specific case, but all of them are important in order to have
a low power energy consumption in embedded systems. Furthermore, this work focuses
the application and behavior levels.

Without loss of generality, there are two basic approaches based on simulation for
estimating embedded software energy consumption: (i) instruction based simulation and
(ii) hardware based simulation [NN02]. In hardware simulation, despite the very high
computation effort, more accurate results might be obtained in comparison with instruc-
tion simulation due to the laborious system specification. However, instruction simulation
has been adopted by many works in order to provide energy consumption estimation in a
satisfactory period of time. Although there are some works about these methods, to the
best of our knowledge, only a small number may represent the embedded applications at
a different abstraction level with good accuracy for estimating energy consumption and
execution time in a short period of runtime.

In addition, performance has been a central issue in the design, development and con-
figuration of systems [Wel02]. The performance as well as power will get more importance
if we consider embedded systems with energy and time constraints. In this context, it
is not enough to know that systems work properly, they must also work effectively in
order to respect their constraints. Studies about performance analysis of systems have
been conducted to evaluate existing and/or planned softwares, to compare alternative
configurations and to find an optimal system configuration. Thus, being able to estimate
the performance and power consumption of a system is important because if such re-
quirements are not satisfied, the system designers can make changes in a very early stage
of the design, thereby saving both time and money.

The redesign of both software and hardware is costly and may cause late system
delivery. Figure 1.2 shows the error detection costs in a different stages of the development
life cycle. Thus, in such illustration is demonstrated that earlier detected errors cost less
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money for the companies. Moreover, as the system are getting more and more complex,
the adoption of formal evaluation models can provide a significant help in order to reduce
the global development cost of embedded systems.

Font: [Hal07, p. 2]

Figure 1.2: Cost of correcting a requirements defect according to the stage at which it is
discovered.

1.1 OBJECTIVES AND CONTRIBUTIONS

In order to assure that the embedded system constraints (e.g.: energy consumption and
execution time) are preserved, this dissertation focuses on providing a methodology that
aims at evaluating energy consumption as well as execution time of embedded real-time
systems in early design phases. From an Assembly code or C program, models have been
built in order to represent the system behavior and compute both energy consumption
and execution time of each code instruction.

More specifically, the objectives are:

� to propose a temporized discrete event model supported by a precise semantic in
order to be able to represent Assembly language and a representative subset of the
C ANSI language;

� to propose a simulator for evaluating the proposed model in order to estimate the
energy consumption and execution time of embedded systems applications;

� to propose a characterization mechanism of the microcontroller instruction set con-
sidering its energy consumption and performance.
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This dissertation presents a methodology for estimating energy consumption and exe-
cution time of embedded systems. This work extends the approach proposed by Oliveira
[OJ06] by simplifying such methodology considering other microcontroller (ARM7-based
instead of 8051) and dealing with C programs. Furthermore, a simulation tool is pro-
posed in order to improve the runtime evaluation. Specific contributions are depicted as
follows:

� Framework. A mechanism for supporting design decisions on energy consumption
and performance of embedded applications in early design phases is proposed;

� Modeling. The proposed methodology automatically translates the embedded
code into a Coloured Petri net, a formal behavioral model that allows the software
execution analysis. The modeling phase is based on composition of basic blocks
that represents each relevant behavior of the ARM7-based instruction set micro-
controller.

� Simulating. A stochastic evaluation approach through discreet event simulation
is proposed for output data analysis. A new simulating tool is proposed to simulate
the specific CPN models in a much faster simulation runtime than the other generic
engines available for CPN simulation.

1.2 OUTLINE

This work is organized as follows:

Chapter 2 overviews the main concepts of concern in this dissertation, such as em-
bedded systems, real-time systems, and Petri nets. Chapter 3 reviews the related works,
and Chapter 4 depicts the proposed methodology for embedded system evaluation. Af-
terwards, Chapter 5 describes the proposed models for embedded hard real-time systems.
Next, Chapter 6 explains the simulation environment. Chapter 7 shows experiments con-
ducted using the proposed methodology. Finally, Chapter 8 concludes this dissertation
and presents future works.



CHAPTER 2

BACKGROUND

This chapter shows a summary of the background information needed for a
better understanding about this work. First of all, it is performed an overview
of energy consumption and performance evaluation, including measurement
techniques and evaluation models. After that, it is presented the system
classification. Next, it is shown an overview about Petri nets and Coloured
Petri nets (CPN). Afterwards, some definitions such as binding, marking,
enable transitions, fire rules and reduction process are introduced.

2.1 ENERGY CONSUMPTION AND PERFORMANCE EVALUATION

Energy is one of the most important non-functional requirements for embedded system
design. It is important to stress that the energy consumption of embedded system depends
on the hardware platform and software. The energy design problems can be classified into
two groups: (i) analysis and (ii) optimization [Yea98]. Analysis problems are concerned
with the accurate estimation of the energy consumption in order to assure that the energy
consumption constraints are not violated. The analysis techniques differ in their accuracy
and efficiency, in which the accuracy depends on the available design information. In
early design phases, the focus should be to obtain energy consumption estimates quickly
through little design information. Thus, in such phases, less accuracy results are expected.
As the design proceeds, more details are available and more accurate results can be
obtained through longer analysis time.

Optimization has been considered as the process that improves the design without vio-
lating any design specification. An automatic design optimization requires a fast analysis
engine to evaluate different design scenarios. On the other hand, manual optimization
demands a tool in order to provide energy consumption estimation of different design
choices. It is important to highlight that a design decision involves trade-offs from dif-
ferent sources such as the impact to the circuit delay, which affects the performance and
throughput of the chip, and the chip area, which may increase the manufacturing costs.
Furthermore, the design decisions to achieve a low energy consumption may affect other
factors such as cycle time, quality and reliability.

Nowadays, it is not always enough to know that systems work properly, they must also
work effectively. Thus, Performance Evaluation (PE) is often a central issue in the design,
development, and configuration of systems. The goals of the PE may be to maximize the
throughput of the system, process a given workload for a minimum cost (e.g.: to reduce
the energy consumption), or any number of other objective functions [Luc71]. These
goals provide the overall environment for evaluation and determine what level of effort

6
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can be devoted to the models or measurement techniques that should be applied in order
to obtain the performance metric of a system.

In order to have a history overview of the firsts approaches that deal with PE, Table
2.1 shows the pioneers in PE. However, such list showed by [Her02] is incomplete and
should contain a hundred or more names. In such table, it is possible to observe that
in the sixties, researchers have been adopting PE techniques in the world of computers
and computer communication systems. Furthermore, since 80s performance simulation
approaches have been taken over in the Internet.

Table 2.1: Some Pioneers in Performance Evaluation.

Pioneers Year in approaches

Erlang 1908-18 Telephone traffic fundamental delay and loss formulas

Palm 1943 Telephone traffic long-term variations

Jacobaeus 1950 switching networks congestion in link systems

Clos 1953 switching networks nonblocking systems

Wilkinson 1955 toll traffic engineering alternate routing systems

Cobham 1954 operation research priority assignment

Jackson 1957 operation research queuing in networks

Conway 1958-67 operation research scheduling

Scherr 1965 time-sharing systems measurement and modeling

Kleinrock 1964-74 ARPA performance and reliability

Buzen 1971 computers central server model

Bux 1981 token ring network performance simulation

Bellcore 80th Internet traffic long-range dependency

In addition, performance analysis studies are conducted to evaluate existing or planned
systems, to compare alternative configurations, or to find an optimal configuration of a
system [Wel02]. The following sections presents an overview of the evaluation models and
measurements techniques that have been conducted in order to measure and estimate the
energy consumption and execution time of embedded system applications.

2.1.1 Evaluation models

The performance evaluation can be classified into performance modeling and performance
measurement [Joh06]. There are advantages and drawbacks to each of these techniques.
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Figure 2.1: Performance Evaluation

The most direct method for performance as well as power evaluation are based on actual
measurement of the system under study. Although measurement techniques can provide
exact answers regarding the performance and power, during the design phase, the system
(hardware prototype) is not always available for such experiments, and yet performance
of a given design needs to be predicted to verify that it meets design requirements and to
carry out necessary trade-offs [Bol06]. Another drawback of the measurement approach
is that performance (energy consumption also) of only the existing configuration can be
measured or, in the best cases, it might allow limited reconfiguration through code chang-
ing. Furthermore, the measurement results may or may not be accurate depending on
the current states of the system, in which such technique has been performed. It is also
important to state that a possible solution for such issue could be the adoption of statisti-
cal approaches that may guarantee the measurement results. Instead, the computational
effort (human also) may turn this solution inadequate.

Modeling methods are typically adopted in early stages of the design process, when en-
tire systems or prototypes are not yet available for measurements. Performance modeling
may further be divided into simulation-based modeling and analytical modeling. Figure
2.1 shows the classification of performance evaluation, in which the analytical models
deal with probabilistic methods, queuing theory, Markov models, or Petri nets [Joh06].
The basic principle of the analytic approaches is to represent the formal system descrip-
tion either as a single equation from which the interesting measures can be obtained as
closed-form solutions, or as a set of system equations from which exact or approximate
metrics can be calculated through numerical methods [Bol06]. However, in order to be
able to have tractable solutions, simplified assumptions are often made regarding the
structure of the model and, hence, a compromise between tractability and accuracy is
often a challenge. In fact, Jain [Jai91] has observed that “analytical modeling requires
so many simplifications and assumptions that if the results turn out to be accurate, even
the analysts are surprised”.

An alternative to analytical models is the adoption of simulation-based models, where
the most popular of them are based on discrete-event simulation (DES) [Bol06]. The re-
sults obtained through simulation approaches have not been so accurate as the ones
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provided by measurements techniques, but it is possible to calculate the estimates pre-
cision. The principal drawback of simulation models, however, is the time taken to run
such models for large, realistic systems, particularly when results with high accuracy (i.e.:
narrow confidence intervals) are desired. Simulation approaches deal with a statistical
investigation of output data of both performance and energy analysis, and the verification
and validation of simulation experiments.

It is important to state that each technique can be adopted in different situation.
Thus, the decision of which approach should be adopted depends on each situation.
Another characteristic that the reader should be in mind is to create appropriate models
containing only needed details to simplify the models. The next section describes some
measurement strategies and their issues.

2.1.2 Measurement Strategies

It is possible to adopt many different types of performance metrics in order to perform a
measurement. Different strategies are adopted for measuring the values of these metrics
considering the system state changes (events). These events are classified as:

� Event-count metrics. Metrics that just counts the number of times a specific event
occurs. An Example of event-count metrics is the number of disk input/output
requests performed by a software.

� Secondary-event metrics. These types of metrics record the values of secondary
parameters after an event happens. For instance, in the performance evaluation of
a software, its energy consumption value may be computed.

� Profiles. A profile is an aggregate metric used to characterize the overall behavior
of an application program or of an entire system. Typically, it is used to identify
where the program or system is spending its execution time.

The above event-type classification is useful for helping the performance analyst to
decide which measurement technique will be adopted, since different types of measure-
ment tools are appropriate for measuring different types of events. There are basically
three measurement strategies:

(i) Event-driven. This strategy records only the information necessary to compute
the performance metric. The simplest type of an event-driven measurement tool
adopts the Event-count metrics in order to produce the results. This measurement
technique is usually considered for low-frequency event systems.

(ii) Sampling. Samples of the executing program are taken at fixed points in time. As
a consequence, statistical approach has to be adopted to obtain precise results.
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(iii) Indirect. This strategy is considered when the desired performance metric is difficult
(or impossible) to measure directly. In this case, another metric is measured from
which the results are obtained.

There are advantages and drawbacks to each of these techniques. An event-driven
measurement tool provides only a higher-level summary of the system behavior, such
as overall counts or average durations. In contrast, sampling strategy adopts statistical
approaches in order to provide the information. Thus, its results vary slightly each time
the experiment is performed. The indirect strategy is just performed when the direct
metric is not available. Several of the fundamental techniques that have been used for
implementing the various measurement strategies are described in the following sections.

Interval timers

An interval timer is adopted to measure the execution time of a software or any
code blocks within an application. It can also provide the time basis for a sampling
measurement tool. The interval timer basic idea is to count the number of clock pulses
that happens among the events. For that, calls to a routine that record the current timer
count values are inserted before and after the predefined events. There are two common
implementations of interval timers, one considering software interrupt and one adopting
hardware counter.

Hardware timers compute the number of pulses they receive at their clock input from
a clock source. The counter starts from “0” when the system is powered up and, so, the
value read from the counter corresponds to the number of clock ticks that have occurred.
On the other hand, the software interrupt adopts the hardware clock to generate a pro-
cessor interruption. The interrupt-service routine is responsible to increment the counter
variable that is read by an application.

Measurement perturbations

The measurement techniques implementation can perturb the computer systems per-
formance measurement results. In order to obtain higher resolution measurements, for
instance, more instrumentation points in a program are adopted. However, this causes
more perturbations in the program than in its usual execution behavior. As a result, only
the important data to infer the behavior of the system should be considered.

Measurement noise

Time is a fundamental quantity that needs to be measured to determine almost any
aspect of a computer system’s performance [Mea00]. There are three important charac-
teristics that determine the quality of the measurement results: (i) accuracy, the absolute
difference between a measured value and the corresponding reference value; (ii) precision,
the repeatability of the measurements performed; and (iii) resolution, the smallest incre-
mental change that can be detected and displayed by a measuring tool.
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Figure 2.2 depicts a histogram that shows the number of times each specific measure-
ment occurred. Moreover, the histogram distribution indicates the measurement precision
by the spread of the measurements around the mean value. On the other hand, accuracy
is the difference between the mean of the measured values and the true value (see Figure
2.2).

Figure 2.2: Histogram showing accuracy and precision.

Measuring accuracy, precision and resolution individual errors are difficult to be quan-
tified by the results. Instead, a confidence interval for the mean value is adopted to quan-
tify the precision of measurement results. On the other hand, quantifying the accuracy
of measurements is more difficult because it involves, for example, the calibration of the
clock source with a standard measurement of time.

2.2 SIMULATION PROCESS

Simulation is the execution of a model that reproduces the system behavior that it rep-
resents. In this context, there are two types of systems: terminal and non terminal.
The terminal systems, also called transient systems, are those ones in which there are
initial and final states well determined. The non terminal, also named stationary sys-
tems, consists of systems that the simulation is finished through a statistical stop criteria
evaluation instead of an event that could happen. A stationary simulation approach has
been adopted in this work.

Figure 2.3 depicts a general simulation process [LK99]. The simulation starts on the
main program which invokes the initialization routine. The initialization routine sets the
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simulation clock to “0” (variable indicating the current value of simulated time), initializes
counters (variables used for storing statistical information about system performance and
energy consumption), and starts the event list (list that contains the transition times for
each transition able to fire). Afterwards, the main program invokes the timing routine
which determines the next event type (the transition that is fired) and advances the
simulation clock. Next, the main program invokes the event routine, in which the system
state and statistical counters are updated, future events are generated and added to the
event list. Then, it is determined whether the simulation should be finished or not,
according to the stop criteria evaluation. After finishing the simulation, the estimates
results are showed.

Figure 2.3: Simulation process diagram.

2.3 SYSTEM CLASSIFICATIONS

This dissertation adopts a temporized discrete event system through stochastic simula-
tion. Before getting into the details of this particular class of systems, it is reasonable
to start out by simply describing what the word “system” means, and by presenting the
system classifications. Systems does not have an exact definition. Three representative
system definitions are presented as follows:

(i) An aggregation or assemblage of things so combined by nature or man as to form
an integral or complex whole (Encyclopedia Americana).

(ii) A regularly interacting or interdependent group of items forming a unified whole
(Webster’s Dictionary).

(iii) A combination of components that act together to perform a function not possi-
ble with any of the individual parts (IEEE Standard Dictionary of Electrical and
Electronic Terms).

The system classifications have been adopted to describe the scope of different aspects
of system and control theory. Such classification is really important in order to understand
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the adopted models and simulation mechanism (temporized discrete event models through
stochastic simulation) by this work. Figure 2.4 depicts these classifications in which
systems are divided into two main groups, Static, system that does not depend on the
past, and Dynamic, which are systems whose output depends on the input. The Dynamic
systems can be dived into time-varying and time-invariant. The time-invariant systems,
also called stationary systems, are divided into linear and non-linear systems. The
non-linear, a system whose performance cannot be described by equations, is divided
into discrete-state and continuous-state systems. The discrete-state system is divided
into event-drive and time-driven systems. The event-drive system, in which the state
is changed by the occurrence of an event, is divided into stochastic and deterministic
systems. The stochastic system is divided into discrete-time and continuous-time. The
following items describe each system in more details.

� Static and Dynamic Systems. Systems whose output is always independent of past
values of the input are classified as static. On the other hand, dynamic systems are
those systems whose output depend on past values of the input. In order to describe
the behavior of dynamic systems, differential equations are generally required.

� Time-varying and Time-invariant Systems. The behavior of time-invariant systems
does not change with time. This property, also called stationarity, implies that such
systems always respond in the same way.

� Linear and Nonlinear Systems. A linear system satisfies the condition g(a1u1 +
a2u2) = a1g(u1) + a2g(u2), where u1, u2 are two input vectors, a1, a2 are two real
numbers, and g(�) is the resulting output. Thus, linear systems correspond to
system where all the interrelationships among the quantities involved cannot be
expressed by linear equations (e.g.: algebraic, differential or integral)

� Continuous-State and Discrete-State Systems. The state variables can generally
take on any real (or complex) value in continuous-state systems. In discrete-state
systems, the state variables are elements of a discrete set (e.g.: the non-negative
integers).

� Time-driven and Event-driven Systems. The state continuously changes as time
changes in time-driven systems. In event-driven systems, it is only the occurrence of
asynchronously generated discrete events that forces instantaneous state transitions.

� Deterministic and Stochastic Systems. A system becomes stochastic whenever one
or more of its output variables is a random variable. In this case, the state of
the system is described by a stochastic process, and a probabilistic framework is
required to characterize the system behavior.

� Discrete-time and Continuous-time Systems. In continuous-time systems, all input,
state, and output variables are defined for all possible values of time. On the other
side, discrete-time systems have one or more of these variables defined at discrete
points in time only, usually as the result of some sampling process.
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Figure 2.4: System classifications.

2.4 PETRI NETS

Formal methods consist of writing formal descriptions, analyzing those descriptions and,
in some cases, producing new descriptions from them in order to obtain refinements
[Hal07]. Among the formal methods, Petri nets have been adopted in this work.

Petri nets (PN) were introduced in 1962 by the PhD dissertation of Carl Adams
Petri [Pet62], at Technical University of Darmstandt, Germany. The original theory
was developed as an approach to model and analyze communication systems. Petri
Nets (PNs)[Mur89] are a graphic and mathematical modeling tool that can be applied in
several types of systems and allow the modeling of parallel, concurrent, asynchronous and
non-deterministic systems. Since its seminal work, many representations and extensions
have been proposed for allowing more concise descriptions and for representing systems
feature not observed on the early models. Thus, the simple Petri net has subsequently
been adapted and extended in several directions, in which timed, stochastic, high-level,
object-oriented and coloured nets are a few examples of the proposed extensions.
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2.4.1 Place-Transition Nets

Place/Transition Petri nets are one of the most prominent and best studied class of Petri
nets, and it is sometimes called just by Petri net (PN). A marked Place/Transition Petri
net is a bipartite directed graph, usually defined as follows:

Definition 2.4.1. (Petri Net) A Petri net [Mur89] is a 5-tuple:

PN = (P, T, F, W, M0)

where:

(i) P = {p1, p2, ..., pm} is a finite set of places;

(ii) T = {t1, t2, ..., tn} is a finite set of transitions;

(iii) F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow relation);

(iv) W : F →{1, 2, 3, ...} is a weight function;

(v) M0 : P → {0, 1, 2, 3, ...} is the initial marking;

This class of Petri net has two kinds of nodes, called places (P ) represented by circles
and transitions (T ) represented by bars, such that P ∩T = Ø and P ∪T �= Ø. Figure 2.5
depicts the basic elements of a simple PN. The set of arcs F is used to denote the places
connected to a transition (and vice-versa). W is a weight function for the set of arcs. In
this case, each arc is said to have multiplicity k, where k represents the respective weight
of the arc. Figure 2.6 shows multiple arcs connecting places and transitions in a compact
way by a single arc labeling it with its weight or multiplicity k.

Figure 2.5: Petri net basic elements.

Places and transitions may have several interpretations. Using the concept of condi-
tions and events, places represent conditions, and transitions represent events, such that,
an event may have several pre-conditions and post-conditions. For more interpretations,
Table 2.2 shows other meanings for places and transitions [Mur89].
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Figure 2.6: Compact representation of a PN

Table 2.2: Interpretation for places and transitions.

Input Places Transitions Output Places

pre-conditions events post-conditions

input data computation step output data

input signals signal processor output signals

resource needed tasks resource releasing

conditions logical clauses conclusions

buffers processor buffers

It is important to show that there are another way to represent PN’s elements. As
an example, the set of input and output places of transitions is shown in Definition
2.4.2. Similarly, the set of input and output transitions of determinate place is shown in
Definition 2.4.3.

Definition 2.4.2. (Input and Output Transitions of a place) The set of input

transitions (also called pre-set) of a place pi ∈ P is:

•pi = {tj ∈ T |(tj, pi) ∈ F}.

and the set of output transitions (also called post-set) is:

pi• = {tj ∈ T |(pi, tj) ∈ F}.

Definition 2.4.3. (Input and Output Places of a transition) The set of input

places of a transition tj ∈ T is:
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•tj = {pi ∈ P |(pi, tj) ∈ F}.

and the set of output places of a transition tj ∈ T is:

tj• = {pi ∈ P |(tj, pi) ∈ F}.

2.4.2 Marked Petri Nets

A marking (also named token) has a primitive concept in PNs such as place and transi-
tions. Markings are information attributed to places; the number and mark distributions
consist of the net state in determined moment. The formal definitions are presented as
follows.

Definition 2.4.4. (Marking) Considering the set of places P in a net N , the formal

definition of marking is represented by a function that maps the set of places P into non

negative integers M : P → N.

Definition 2.4.5. (Marking vector) Considering the set of places P in a net N , the

marking can be defined as a vector M = (M(p1), ..., M(pn)), where n = #(P ), ∀pi ∈ P /

M(pi) ∈ N. Thus, such vector gives the number of tokens in each place for the marking

Mi.

Definition 2.4.6. (Marked net) A marked Petri net is defined by a tupla NM =

(N ; M0), where N is the net structure and M0 is the initial marking.

A marked Petri net contains tokens, which reside in places, travel along arcs, and
their flow through the net is regulated by transitions. A peculiar distribution (M) of the
tokens in the places, represents a specific state of the system. These tokens are denoted
by black dots inside the places as shown in Figure 2.5 (d).

2.4.3 Transition Enabling and Firing

The behavior of many systems can be described in terms of system states and their
changes. In order to simulate the dynamic behavior of a system, a state (or marking) in
a Petri net is changed according to the following firing rule:
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(i) A transition t is said to be enabled, if each input place p of t is marked with at
least the number of tokens equal to the multiplicity of its arc connecting p with t.
Adopting a mathematical notation, an enabled transition t for given marking mi is
denoted by mi[t >, if mi(pj) ≥ W (pj, t), ∀pj ∈ P .

(ii) An enabled transition may or may not fire (depending on whether or not the re-
spective event takes place).

(iii) The firing of an enabled transition t removes tokens (equal to the multiplicity of the
input arc) from each input place p, and adds tokens (equal to the multiplicity of the
output arc) to each output place p′. Using a mathematical notation, the firing of a
transition is represented by the equation mj(p) = mi(p)−W (p, t)+W (t, p), ∀p ∈ P .
If a marking mj is reachable from mi by firing a transition t, it is denoted by
mi[t > mj .

Figure 2.7 (a) shows a Petri net model example with three places and one transition.
Figure 2.7 (b) outlines its respective graphical representation, and Figure 2.7 (c) provides
the same graphical representation after the firing of t0. For this example, the set of reach-
able markings is m = {m0 = (3, 1, 0), m1 = (1, 0, 2)}. The marking m1 was obtained by
firing t0, such that, m1(p0) = 3 - 2 + 0, m1(p1) = 1 - 1 + 0, and m1(p2) = 0 - 0 + 2.

Figure 2.7: (a) Mathematical formalism; (b) Graphical representation before firing of t0; (c)

Graphical representation after firing of t0.

2.4.4 Petri Net Analysis Methods

In order to verify that a given PN satisfies certain properties (e.g.: deadlock freedom,
liveness [Mur89]), it is necessary to adopt some analysis methods. The Petri net analysis
methods may be divided into three groups: the reachability tree method, analysis based
on the matrix-equations and reduction techniques. In this work, the analysis based on
reachability tree and reduction techniques are presented.
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Reachability Based Methods

The analysis method namely Reachability Tree is based on the building of a tree that
makes possible to represent all reachable markings of a net [MLC96].

From the initial marking of a PN, it is possible to obtain some markings through
the fireable transitions. Such possibilities can be represented as a tree, where the nodes
correspond the markings and the arcs represent the fired transitions.

The reachability tree has been generated through initial marking of the net and adding
directly reachable markings as leaves. Next, the process proceeds by these new markings
in order to determine their directly reachable markings. These markings now become the
new leaves of the already generated part of the reachability tree. If the desired marking is
reached, it is not necessary to continue building the tree any further at that node. Such
Reachability trees can be transformed directly into graphs by removing multiple nodes
and connecting the nodes appropriately. This graph is called a reachability graph.

Definition 2.4.7. (Reachability Tree) Considering a Marked Petri net MN = (N ; M0),

a reachability tree is defined by RT = (S, A), where S represents the markings and A the

labeled arcs by tj ∈ T .

Some PN’s properties such as boundedness, safetness, deadlock freedom and reacha-
bility can be analyzed through these reachability tree T by adopting the following rules
[Mur89]:

(i) A Marked Petri net (N ; M0) is bounded and thus R(M0) is finite if and only if (iff)
W (from the weight function - Definition 2.4.1) does not appear in any node labels
in T ;

(ii) A Marked Petri net (N ; M0) is safe iff only 0’s and 1’s appear in code labels in T ;

(iii) A transition t is dead iff it does not appear as an arc label in T ;

(iv) If M is reachable from M0, then there will be a node labeled M ′ such that M ≤ M ′.

A major problem of this approach arises with the analysis of systems in which the
number of reachable markings is infinite (unbounded systems). Due to the infinite num-
ber of markings, such systems are not easily represented by enumeration.

Reduction techniques

Reduction analysis deals with the reduction of the Place-Transition net by replacing
subnets of the net by less complex subnets such that several properties remain invariant.
A reduction technique that reduces sequential states (places) has been considered in the
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Figure 2.8: Simple reduction rule.

Petri net model showed in Figure 2.8. This figure shows that the places p1 and p2 were
replaced by the place p′.

Figure 2.9 (a) depicts a petri net model in which it is possible to observe that the place
p3 represents a redundant path. In order to reduce the redundant path, a transformation
starts by removing arcs from transitions to the place. If all arcs are removed, then the
place can be removed from the PN. A place is redundant “when its marking is always
sufficient for allowing firings of transitions connected to it” [Ber86]. Figure 2.9 (b) shows
the petri net model after performing the reduction technique for removing the redundant
path.

Font: [BK02, p. 114]

Figure 2.9: Reduction of a PN with a redundant place
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Murata [Mur89] presented other simple reduction rules, in which the nets have been
reduced by applying fusion of places and transitions, and by the elimination of loops.
Figure 2.10 depicts six reduction operations.

(i) Fusion of Series Places, Figure 2.10 (a).

(ii) Fusion of Series Transitions, Figure 2.10 (b).

(iii) Fusion of Parallel Places, Figure 2.10 (c).

(iv) Fusion of Parallel Transitions, Figure 2.10 (d).

(v) Elimination of Self-Loop Places, Figure 2.10 (e).

(vi) Elimination of Self-Loop Transition, Figure 2.10 (f).

Font: [Mur89, p. 553]

Figure 2.10: Six transformations preserving properties.
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2.5 TIME EXTENSIONS

The original definition of Petri nets does not include any notion of time and their aims are
to model the logical behavior of systems by describing the causal relations between their
events. Many researches have been proposing different ways for incorporating timing in
Petri Nets, and the first ones related to them were presented by P.M Merlin et al. [MF76]
and J.D Noe et al. [NN73]. In Timed Petri nets (TPN), time may be associated to places,
transitions or tokens [vdAvHR00] such that:

� P laces : The time can be associated to places, in which the markings in the output
places only will be available to fire after a determinate amount of time.

� Token : The time can be added to the token, in which it have an information
indicating when the token will be available to fire a transition.

� Transitions : The time can be associated to transitions. In this case, the fire of a
transitions only happens after some delay correspondent to the time associated to
the transition.

In TPN, the time can be deterministic, stochastic or between intervals.

� Deterministic : In this case, a deterministic time is adopted to represent the events.

� Interval Computations: In this case, intervals are adopted in order to describe the
higher and shorter limits related to the time of each activity.

� Stochastic : This model adopts a probabilistic approach.

Since transitions represent activities that change the state (marking) of the net, it
seems natural to associate time to transitions. For this, there are two different firing
policies in TPN:

� Three-phase firing: a first instantaneous phase in which an enabled transition re-
moves tokens from its input places, then a timed phase in which the transitions
are working, and a final instantaneous phase in which tokens are deposited into the
output places. Such time information is called duration;

� Atomic firing: Tokens remain in input places during the whole transition delay;
after that period such tokens are consumed from input places and generated in
output places when the transition fires. The firing itself does not consume any
time.

In atomic firing, when a transition is able to fire, a timer associated to the transition
is started. Such timer decreases in a constant way, and the transition is fired when the
timer value goes to zero. There is an issue related to the other transitions timers and,
in order to solve such issue, the following approaches have been adopted to represent the
memory policies whenever a transition fires [vdAvHR00]:
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� Resampling : the timers of all transitions are discarded (restart mechanism). New
values of timers are reset for all enabled transitions at a new marking;

� Enabling memory: transitions that are still enabled in the new marking keeps the
value of the timer; transitions that are not enabled have their timers reset. The
enabling time of a transition is measured since the last instant of time it became
enabled;

� Age memory: the timer value is kept, even if the transition is not enabled in the
new marking. Whenever this transition becomes enabled, the counting is resumed
from the kept value.

2.6 COLOURED PETRI NETS

Among the Petri net extensions that have been proposed, it is important to stress Jensen’s
high-level model, the so called Coloured Petri net (CPN)[Jen95] [JKW07]. In this model,
a token may have complex data type as in programming languages; each place has the
correspondent data type, hence restricting the kind of tokens that it may receive; the
transitions process the token values and create new ones with different values; hierarchy
structure can be modeled with different abstraction levels, where each transition may
describe another net (called subnet), and so on. Indeed, CPN is a high-level model that
considers abstract data-types and hierarchy.

Likewise in PN, places are graphically represented by ellipses, transition by rectangles,
and arcs by direct arrows. Moreover, a Timed CPN has been adopted in this research.
The main difference between timed and non timed CPN models is that the tokens in a
timed CPN model, in addition to the token colour, can carry a second value called a time
stamp [JKW07].

CPN has some properties which turns such formalism a valuable language for the
design, specification and analysis of many different types of systems. Among these prop-
erties, it is possible to stress:

(i) well-defined semantics: CPNs have a well-defined semantics that turns them able
to represent complex systems;

(ii) hierarchical descriptions: it is possible to build a large and complex CPN by relating
smaller CPNs to each other, in a well-defined way. This hierarchical property is
similar to subroutines, procedures and modules of programming languages;

(iii) time concept: CPNs can be extended to cover the time concept;

(iv) interactive simulations. In CPN simulations, it is possible to fire a determinate
number of transitions and to see their result values instantaneously;

(v) inscriptions: CPNs allow one to associate inscriptions to CPN components such as
places, arcs, and transitions in order to improve their functionalities;



2.6 COLOURED PETRI NETS 24

(vi) reduction process: due to their precise semantics, it is possible to apply a reduction
process where a new simplified CPN model can be obtained preserving determinate
properties.

The formal definition of Coloured Petri nets is based on the following entity definitions.

Definition 2.6.1. (Multi-set) Multi-set is a function that describes the set of element

collections with identical colour (data type). Let N be the set of all non-negative integers.

The multi-set MS, defined over a non-empty set S, is a function m : S → N, where:

MS =
∑
s∈S

m(s)′s

SMS denotes the set of all multi-sets over S. The non-negative integers {m(s)|s ∈ S}
are the coefficients of the multi-set.

Considering a collection of tokens that represents the pets in a house, this token type
is “PET”. A state of the house related to the number of pets can be defined by: 2 tokens
representing “dog” value and 4 tokens representing “cat” value. This multi-set is:

MS =
∑
s∈S

m(s)′s = 2′dog + 4′cat.

Multi-sets consider a number of standard operations.

Definition 2.6.2. (Multi-set Operations) Let a set of multi-set {m, m1, m2}⊆ SMS

and n a non-negative integer. The following basic operations are defined among multi-

sets:

(i) m1 + m2 =
∑
s∈S

(m1(s) + m2(s))’s (addition)

(ii) n ∗ m =
∑
s∈S

(n * m(s))’s (scalar multiplication)

(iii) m1 �= m2 ⇒ ∃s ∈ S|m1(s) �= m2(s) (comparison �=)

(iv) m1 ≤ m2 ⇒ ∃s ∈ S|m1(s) ≤ m2(s) (comparison ≤)

(v) m1 ≥ m2 ⇒ ∃s ∈ S|m1(s) ≥ m2(s) (comparison ≥)
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(vi) |m| =
∑
s∈S

m(s) (size)

(vii) m2 - m1 =
∑
s∈S

(m2(s) - m1(s))’s, iff(if and only if) m2 ≥ m1 (subtraction)

For a better comprehension of the formal concepts related to CPN, it is also important
to define some primitive operators.

Definition 2.6.3. (Type operator) Let V , the set of variables; EXP , expressions and

T , model types. The function Type : V ∪ EXP → T denotes type operator, where

Type(exp) maps the variable or expression exp into a valid type.

Definition 2.6.4. (Operator of set of variables) Let V be the set of variables and

EXP expressions. The function V ar : EXP → V denotes the operator of set of vari-

ables, where V ar(exp) represents the set of variables in an exp expression.

The Formal definition of Coloured Petri nets is presented as follows.

Definition 2.6.5. (Coloured Petri Net) The non-hierarchical definition of Coloured

Petri Net [Jen94] is a nine-tuple:

CPN = (
∑

, P, T, A, N, C, G, E, I)

satisfying the following requirements:

(i)
∑

is a finite set of non-empty types, called colour sets;

(ii) P is a finite set of elements (Places) that represents local states;

(iii) T is a finite set of elements (Transitions) that depicts events and actions;

(iv) A is a finite set of arcs such that P ∩ T = P ∩ A = T ∩ A = Ø;

(v) N is a node function defined from A into P × T ∪ T × P ;
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(vi) C is a colour function defined from P into
∑

;

(vii) G is a guard function defined from T into expressions such that: ∀t ∈ T : [Type(G(t)) =

Bool ∧ Type(V ar(G(t))) ⊆ ∑
], where Bool ∈{true, false};

(viii) E is an arc function defined from A into expressions such that: ∀a ∈ A : [Type(E(a)) =

C(p(s))MS ∧ Type(V ar(E(a))) ⊆ ∑
], where p(a) is the place of N(a) and CMS de-

notes the set of all multi-sets over C;

(ix) I is an initialization function defined from P into closed expressions such that

∀p ∈ P : [Type(I(p)) = C(p(s))MS].

where:

Type(expr) denotes the type of an expression;

V ar(expr) denotes the set of variables in an expression;

C(p)MS denotes a multi-set over C(p).

After analyzing the formal definition of CPN, the reader should conclude that:

The set of types - item(i) - determines the data values, operations and functions that
can be adopted in the net expressions (i.e.: arc expressions, guards and initialization
expressions).

Places, transitions and arcs - item (ii), (iii), (iv) - are described by three sets P , T
and A which are finite and pairwise disjoint (P ∩ T = P ∩ A = T ∩ A = Ø).

The node function - item (v) - maps each arc into a pair where the first element is
the source node and the second the destination node. It is important to stress that both
elements must be of different kind (i.e.: place and transition).

The colour function C - item (vi) - maps each place, p, to a type C(p)∈ ∑
. This

means that each token on p must have a data value that belongs to C(p).

The guard function G - item (vii) - maps each transition, t, into a boolean expression,
where all variables have types that belong to S.

The arc expression function E - item (viii) - maps each arc, a, into an expression of
type C(p)MS. This means that each arc expression must evaluate to multi-sets over the
type of the adjacent place, p.

The initialization function I - item (ix) - maps each place, p, into a closed expression
which must be of type C(p)MS. A Closed expression is an expression without variables
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which can be evaluated in all bindings, and all evaluations give the same value.

The behavior of CPN models

For a better comprehension of concepts related to the behavior of CPN models, it is
important to introduce the following notation for all t ∈ T and for all pairs of nodes (x1,
x2)∈(P × T ∪ T × P ):

A(t) = {a ∈ A|N(a) ∈ (P × T ∪ T × P )}
V ar(t) = {v|v ∈ V ar(G(t)) ∨ ∃a|a ∈ A(t): v ∈ V ar(E(a))}
A(x1, x2) = {a ∈ A|N(a) = (x1, x2)}

E(x1, x2) =
∑

(a∈A(x1,x2))

E(a)

In CPNs, sometimes token values refer to token colours, in the same way data types
are referred as colour sets. The formal definition of token is depicted as follows.

Definition 2.6.6. (Token) Token represents a value (literal) that can be either primi-

tive or composite data types. A token element is a pair (p, c) where p ∈ P and c ∈ C(p).

TE denotes the set of all token elements.

Data values are assigned (bound) to variables present in the arc expressions on the
surrounding arcs of transitions in order to evaluate whether a transition may or may not
occur. The formal definition of binding element is presented as follows.

Definition 2.6.7. Binding. A binding element is a pair (t, b) where t ∈ T and b ∈ B(t),

where B(t) denotes the set of all bindings for t. A binding of a transition t is a function

b defined on V ar(t), such that:

(i) ∀v ∈ V ar(t): b(v) ∈ Type(v).

(ii) G(t) < b > denotes the evaluation of the guard expression G(t) in the binding b.

A state of a CPN is called a marking [KCJ98], and its definition is given as follows.
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Definition 2.6.8. Marking. It consists of a number of tokens positioned (distributed)

on the individual places. Each token carries a value (colour), which belongs to the type

of the place on which the token resides. The tokens present on a particular place are

called the marking of that place.

A marking is a multi-set over TE (the set of all token elements) while a step is a
non-empty and finite multi-set over BE (the set of all binding elements). The initial
marking M0 is the marking which is obtained by evaluating the initialization expressions.

It is possible to attach a boolean expression (with variables), called guard, to each
transition. A transition is enabled if each of its input places contains the multi-set spec-
ified by the input arc inscription and the guard evaluates to true. The formal definition
of enabling a transition is defined as follows.

Definition 2.6.9. Enabled Transitions. A step Y is enabled in a marking M if and

only if the following property is satisfied:

(i) ∀p ∈ P :
∑

(t,b)∈Y

E(p, t) < b >≤ M(p).

When a transition is enabled it may occur (fire). An occurrence of a transition removes
tokens from places connected to incoming arcs (input places), and adds tokens to places
connected to outgoing arcs (output places), thereby changing the marking (state) of
the CPN [KCJ98]. The number and colour of the tokens are determined by the arc
expressions, evaluated for the occurring bindings. The formal definition is presented as
follows.

Definition 2.6.10. Firing of an Enabled Transition. When a step Y is enabled in a

marking M1 it may occur, changing the marking M1 to another marking M2, defined by:

(i) ∀p ∈ P : M2(p) = (M1(p) −
∑

(t,b)∈Y

E(p, t) < b >) +
∑

(t,b)∈Y

E(t, p) < b >.

M2 is directly reachable from M1 (M1[Y 〉M2).

where:

The expression evaluation E(p, t) < b > computes the tokens which are removed

from p when t occurs with the binding b.
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The expression evaluation E(t, p) < b > computes the tokens which are added to

places connected to outgoing arcs with the binding b.

Reduction Rule

CPN can also be analyzed by means of reduction, where the main idea is to define
the desired properties to investigate, and then it is applied to a set of rules by which the
CPN can be simplified [Jen95] [Mur89]. A typical rule is depicted in Figure 2.11, where
two transitions T1 and T2 were replaced by one transition T3.

expMexp2

expMexp2

expR

expR

expNexp1

input (exp1,expN);
output (exp2,expM);
action
(1,1);

T2

input (expR);
output (exp2,expM);
action
(1,1);

T1
input (exp1,expN);
output (expR);
action
(1);

Pm'

INT

P2'

INT

Pn'

INTB

P1'

INT

Pm

INT

P2

INT

Ps

INT

Pn

INTB

P1

INT
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expNexp1

Figure 2.11: Reduction Rule.

2.6.1 CPN ML Language

In order to have a better understating about the Embedded Software Modeling (Chapter
5), it is important to introduce some concepts of the CPN ML Language. First of all, this
section describes some history overview of CPN ML Language. Afterwards, it presents
some reasons that justify the adoption of a Standard ML Language as the basis of CPN
ML. Subsequently, some examples of declarations and net inscriptions are given.

The CPN ML Language is an extension of a well-known functional programming
language, Standard ML (SML) [Har08], developed at Edinburgh University. Standard
ML is a type-safe programming language that provides a richly expressive and flexible
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module system for structuring large programs, including mechanisms for enforcing ab-
straction, imposing hierarchical structure, and building generic modules. Furthermore,
such language is portable across platforms and implementations because it has a precise
definition. Moreover, CPN Tools [cpn07], a free environment for CPN models, adopts
the CPN ML language for declarations and net inscriptions.

The Standard ML was chosen as the basis of CPN Tools’ language because its devel-
opment team found advantages in adopting an existing language:

(i) A general and more tested language can be adopted by this way. In addition, the
creation of a new programming language is a very slow and expensive process.

(ii) Instead of developing a new compiler from scratch, it was necessary only to port
the compiler to the relevant kind of operating systems and integrate it with CPN
Tools.

(iii) The considerable amount of documentation and tutorial material, which already
exists for Standard ML and for functional languages in general, can be reused.

(iv) Standard ML has types, functions, operations, variables and expressions in a similar
way as a typed functional language. Hence it is convenient to build upon such a
language.

(v) Standard ML has also a flexible and extendible syntax for allowing one to write the
declarations and net inscriptions in a way which is close to standard mathematics.

Standard ML has compilers for commercial use available, and with such language it
is possible to define mathematical functions as long as they are computable. Moreover,
with that language the user can declare arbitrarily complex functions and operations.
Standard ML also turns possible to perform a smooth integration between code segments
and the net inscriptions. A code segment is a sequential piece of code attached to a
transition that is executed each time such transition occurs, and it may update files or
do other forms of reporting.

The CPNs models encompass three groups: structural, declarations and inscriptions
[MLC96]. The declarations and inscriptions of CPNs models are performed through ex-
tensions of the Standard ML (as CPN ML). On the other hand, the structure of a CPN
model consists basically on a marked graph with places and transitions. In the following
lines, some declarations and inscriptions adopting CPN ML Language are presented.

Declarations

In CPNs, declarations are used to define color sets, functions, variables and constants.

Color set declarations: Two examples of color set declarations are depicted as follows:
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colset INTEGER = int;

colset Context = record jump:INTEGER*test:BOOL;

The first example shows the declaration of the color set (colset), INTEGER, that
considers integer values. The second color set definition shows a way to represent dif-
ferent types that are identified by a unique label, Context, in which jump represents an
INTEGER type and test represents a boolean type. In order to define such representa-
tion, the word record has been considered.

Variable declarations: A variable is an identifier whose value can be changed during
the execution of the model. The variable types must be one of the color sets previous
declared, and such variables are used to guard and arc expressions. The term binding
is commonly adopted in order to associate a value with a variable. There is another
kind of variable named reference that has as its scope the entire CPN. These reference
variables may be read and updated by code segments. The word var has been adopted to
declare variables and the word globref is the one adopted to declare reference variables.
Variable declarations and a reference variable are exemplified as follows, in which i,Ki,Ko
are variables of the type Context and nReplication is a reference variable.

var i, Ki, Ko: Context; (variable)

globref nReplication=10; (reference variable)

Constant declarations: In constant declarations, a value is bound to an identifier
which works as a constant variable. An example is listed as follows, in which the CI is
the identifier and val the word adopted to declare constant identifiers.

(* Conf Interval *)

val CI =0.95;

Function declarations: Function declarations are declared in CPN ML as follows:

(* Standard Deviation of a List *)

fun standardDeviation(l) = ( let val v = variance(l); in Math.pow(v,0.5) end );
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Inscriptions

Inscriptions are associated with CPN net components such as places, arcs, and tran-
sitions. Some inscriptions may or may not affect the behavior of a net. Depending on
the type of inscriptions, different syntactic requirements are needed.

Place Inscriptions: There are three inscriptions that may be associated to a place, in
which two are optional and one is required:

� Colour set inscription (required): determine the type (color) of all the tokens that
can be put in a place.

� Initial marking inscription (optional): specify the initial tokens for a place.

� Place name inscription (optional): identify the place, and it may contain any se-
quence of characters.

Figure 2.12 shows inscriptions associated to a place. In this figure, the name corre-
sponds to the place name inscription; the value is a constant associated to specify the
initial marking; and Context is the color set of the tokens that such place may receive.

Figure 2.12: Place inscriptions.

Arc Inscriptions: An arc inscription is a CPN ML expression that evaluates a multi-set
or a single element. It is important to state that the colour set of the arc expression must
match the colour set of the place attached to the arc. Figure 2.13 depicts an arc with the
inscription i.

Figure 2.13: Arc inscription.

Transition Inscriptions: There are four inscriptions that may be associated to transi-
tions and all of them are optional:
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� Transition name inscription: a label that identifies the transition, and it may con-
tain any sequence of characters.

� Guard inscription: a guard is a CPN ML boolean expression that may be evaluated
to true or false.

� Time inscription: a transition delay may be associated such that if current time is
10 and the time delay is “@ + 2”, then the time stamp of tokens sent to the output
places will be “12”. A missing time inscription is equivalent to a zero delay.

� Code segment inscription: Each transition may have an attached code segment
which contains ML code. Code segments are executed when their parent transition
occurs.

A function that describes the relation between transitions and code segment inscrip-
tions is not present in the formal definition of Coloured Petri net. However, such function
is important for a better understanding of the Chapter 5, in which the embedded software
modeling are depicted.

Definition 2.6.11. (Code segment inscription Function) Let T be a set of Tran-

sitions and CodSeg a set of code segments, in a Coloured Petri net, a function of code

association is defined by FCod: → CodSeg. It is important to state that may exist Ti

without FCod defined.

The code segments can be used to different purposes such as: (i) to apply algorithms
descriptions, (ii) to perform a stochastic simulation approach, (iii) to create protocol
interfaces among different engines. Although there are different applicabilities of code
segment inscriptions, their adoption may result in some limitations of the net analysis.
This may happen because their use can change the model variables. As a consequence,
the analysis by reachability tree is limited, since the CPN model behavior is not restrict to
the rules present in arcs and guard expressions anymore [HJS91]. However, the adoption
of code segment inscriptions are very helpful for approaches focused on the simulation by
providing practicability and flexibility on the descriptions.

Figure 2.14 depicts a net that has some inscriptions associated to the transition Trans,
in which it is possible to observe a guard expression that only enables the transition if
jump = 0. Moreover, the code segment inscription associated to it changes the jump
value.

2.6.2 Timed Coloured Petri net

This work adopted the Timed Coloured Petri net (TCPN) [Jen95], a formal computational
model, in order to assure timing constraints. The following subsections present concepts
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Figure 2.14: Transition inscriptions.

related to the formal model.

TCPN considers a global clock which represents the system model’s time. More
precisely, each token has a time stamp on it. The time stamp describes the earliest
model time at which the token can be removed by a binding element. The current state
of a net can be changed when an enabled transition fire. Then, the next enabled transition
should be generated when the global clock is greater than or equal to the token’s time
stamp.

In order to represent token’s time stamp, the operator “@” has been adopted in this
dissertation to add time stamps. Places with timed colour sets contain timed multi-sets
of values, and thus it is important to define a timed multi-set.

Definition 2.6.12. (Timed multi-set) A timed multi-set TM , over a non-empty set

of states S, is a function tm : S×R → N, where R is the set of time values (time stamps)

and N the non-negative integers. The time multi-set is defined by:

TM =
∑
s∈S

tm(s)′s@tmv[s]

where:

tm(s) is the number of appearances of the element s ∈ S in the timed multi-set.

The list tmv[s] = [rl, r2, ..., rtm(s)] is defined to contain the time values r ∈ R, in

which tm(s, r) �= 0.

STMS denotes the set of all timed multi-sets over S.

The non-negative integers {tm(s)|s ∈ S} are called the coefficients of the timed

multi-set.
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Definition 2.6.13. (Timed Coloured Petri nets) A timed non-hierarchical Coloured

Petri net is defined by a tuple TCPN = (CPN, R, ro), where CPN is a Coloured Petri

net, R is the set of time values (time stamps) and ro is the start time element of R.

A state is a pair (M, r) where M is a marking and r a time value. The initial state
is the pair (Mo, ro). The sets of all markings and states are denoted by M and S,
respectively.

It is possible to attach a boolean expression (with variables), called guard, to each
transition. Considering the time constraints, a transition at a time r2 is enabled in a state
(M1, rl) if the time r2 is greater than the time r1. Furthermore, the transition’s input
places must contain the multi-set specified by the input arc inscription and the guard is
evaluated to true. The formal definition of enabling a transition is defined as follows.

Definition 2.6.14. (Enabled Transition Set) A step Y is enabled in a state (M1, rl)

at time r2 iff (if and only if) the following properties are satisfied:

(i)
∑

(t,b)∈Y

E(p, t) < b > r2 ≤ M1(p), ∀p ∈ P ,

(ii) r1 ≤ r2,

(iii) r2 is the smallest element of R for which there exists a step satisfying (i) and (ii).

An occurrence of a transition removes tokens from places connected to incoming arcs
(input places), and adds tokens to places connected to outgoing arcs (output places),
thereby changing the marking (state) of the TCPN. The firing of an enabled transition
is similar to the CPN Firing rule (Definition 2.6.10), in which the number and colour of
the tokens are determined by the arc expressions, evaluated for the occurring bindings.

2.6.3 Hierarchical CPN

The basic idea of Hierarchical CPN (HCPN) [JKW07] [KCJ98] is to allow the modeler to
construct hierarchical structures, represented by high-level transitions, called substitution
transitions. This means that one can model a large CPN by relating smaller CPNs to
each other, in a well-defined way. At one level, it is possible to give a simple description
of the modeled activity without having to consider internal details about how it is carried
out. At another level, it is possible to specify the more detailed behavior. The model that
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is represented by the substitution transitions is named subpage, and the higher model,
which has substitution transitions, is the page. These pages are connected to each other
by input places and some output places called input and output socket places, respec-
tively. The following lines present the formal definitions of HCPN.

Definition 2.6.15. (Hierarchical Coloured Petri Net) The Hierarchical formal def-

inition of Coloured Petri Nets [Jen95] [NLHC03] is a tuple:

HCPN = (S, SN, SA, PN, PT, PA, FS, FT, PP )

where:

(i) S is a finite set of pages (subnets) such that:

� Each page s ∈ S is a non-hierarchical CPN:

(
∑

s, Ps, Ts, As, Ns, Cs, Gs, Es, Is).

� The sets of net elements are pairwise disjoint:

∀s1, s2 ∈ S : [s1 �= s2 ⇒ (Ps1 ∪ Ts1 ∪ As1) ∩ (Ps2 ∪ Ts2 ∪ As2) = ∅].

(ii) SN ⊆ T is a set of substitution nodes;

(iii) SA is a page assignment function. It is defined from SN into S such that:

� No page is a subpage of itself:

s0s1...sn ∈ S∗|n ∈ N+ ∧ s0 = sn ∧ ∀k ∈ 1...n : sk ∈ SA(SNsk−1
) = ∅;

(iv) PN ⊆ P is a set of port nodes;

(v) PT is a port type function. It is defined from PN into {in, out, i/o}.;

(vi) PA is a port assignment function. It is defined from SN into binary relation such

that:
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� Socket nodes are related to port nodes:

∀x ∈ SN : PA(x) ⊆ X(x) × PNSA(x);

� Related nodes have identical colour sets and equivalent initialization expres-

sions:

∀x ∈ SN : ∀(x1, x2) ∈ PA(x) : [C(x1) = C(x2) ∧ I(x1) = I(x2)];

(vii) FS ⊆ Ps is a finite set of fusion sets such that:

� Members of fusion set have identical colour sets and equivalent initialization

expressions:

∀fs ∈ FS : ∀p1, p2 ∈ fs : [C(p1) = C(p2) ∧ I(p1) = I(p2)];

(viii) FT is a fusion type function. It is defined from fusion sets such that:

� Each fusion set is of type: global, page or instance.

� Page and instance fusion sets belong to a single page:

∀fs ∈ FS : [FT (fs) �= global ⇒ ∃s ∈ S : fs ⊆ Ps]

(ix) PP ∈ SMS is a multi-set of prime pages, where prime pages is a multi-set over the

set of all pages.

An HCPN consists of a non-hierarchical set of CPNs, named Pages - item (i) of
Definition 2.6.15, that are connected by SA and PA assignment functions - item (iii)
and (vi). The SA function assigns transitions to pages considering that no one transition
assigns to itself page - item (iii). This transition represents the behavior of the connected
net, named subpage. The transitions that belongs to SA domain are named substitution
nodes (SN) or substitution transitions - item (ii). A substitution node is a net entity
(at superpage) that substitutes or replaces, a lower hierarchical net and, so, there can
also be substitution places. There is a well-defined interface between subpage and the
corresponding superpage. This interface relates socket nodes (at superpage) to port nodes
(at subpage). The PA function assigns places of a substitution transition (at superpage)
to places (at subpage) that it represents, where the places connected to the substitution
transitions are sockets and the places within the subpage are port nodes - item (vi). This
function is related to nodes that have identical colour sets and equivalent initialization
expressions. It is important to highlight that the PA function can assign a socket to many
ports, and a port can be assigned to many sockets.
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A set of places (or a set of transitions) can be unified (folded) into a single conceptual
node. These nodes may reside on the same page or different pages. A fusion is obtained
by defining a fusion set (FS) containing an arbitrary number of places or an arbitrary
number of transitions that can be present in different pages. These places have identical
colour and equivalent initialization expressions such that they belong to just one fusion
set - item (vii). There are three different kind of fusion sets: global fusion sets are allowed
to have members from many different pages, page fusion sets unifies all the places of a
page instance, and instance fusion sets only have members from a specific page instance
- item (viii). The prime pages - item (ix) - is a multi-set over the set of all pages and
they determine, together with the page assignment, how many instances the individual
pages have.

In addition, it is important to highlight that each non-hierarchical CPN is a a hierar-
chical CPN with a single page. Thus, in non-hierarchical CPN there are no substitution
transition, port and fusion nodes. Furthermore, the single page belongs to the multi-set
of prime pages with the coefficient one.

2.7 EMBEDDED SYSTEMS

The advances of embedded systems have been providing more and more human-computer
interaction, the so called ubiquitous computing. Embedded devices have been so inte-
grated into everyday objects and human activities such as in cars and in telecommunica-
tion equipments that it is difficult to note the embedded device within them. A system
is said to be embedded when it performs one or a few dedicated tasks, and its envi-
ronment interactions is continuous through sensors and actuators [Mar03]. The sensors
are responsible for collecting information about the embedded system environment and
the actuators controls such environment. Such kind of systems only stops working if it
is powered down. An embedded system is a special-purpose computer system that has
some hard project restrictions such as size, performance, cost, power and others.

Following the success of ubiquitous computing for office and control flow applications,
embedded systems are considered to be the most important application area of infor-
mation technology during the coming years. Due to this fact, the term named post-PC
era was created, in which the standard-PCs will not be anymore the dominant kind of
hardware.

Due to the computer hardware evolutions, embedded systems have been more com-
mon day after day. Moore’s law [Moo00] describes a long-term trend in the history of
computing hardware. Since the invention of the integrated circuit in 1958, the number of
transistors that can be placed inexpensively on an integrated circuit has increased expo-
nentially, doubling approximately every two years. Figure 2.15 shows the doubling of the
transistors counts in every two years. Furthermore, the processing power, measured in
millions of instructions per second (MIPS), has steadily risen because of such increased
transistor counts. Moore’s Law previews also the decreasing costs of hardware equip-
ments. As silicon-based technology gains in performance, it becomes less expensive to
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produce, more plentiful and powerful, and more seamlessly integrated embedded systems.

Figure 2.15: Moore’s law.

Embedded systems have to be dependable in the sense that some devices are respon-
sible for controlling safety-critical systems such as nuclear power plants, cars, trains and
airplanes.

In order to evaluate embedded system efficiency, the following metrics have been
adopted:

� Energy and Runtime efficiency: Embedded devices deal with restrict amount of
resources and in order to increase their battery life time, the energy consumption
should be reduced by the adoption of the smallest clock frequencies and supply
voltages that respect their time constraints.
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� Code− size : The code-size should be as small as possible for especially systems on
a chip (SoCs), in which the integrated memory should be used very efficiently.

� Weight : The low weight is an essential argument for buying mobile devices.

� Cost : Low cost is an extremely crucial issue on the market.

Another important characteristic related to embedded system is that their application
should be completely dedicated to the device. For an efficient system, an unused memory
should not be present. Moreover, the cost to fix a code is very high after the embedded
system been in a production phase (see the maintenance cost shown in Figure 1.2).
Furthermore, there are two kinds of time constraint. A time constraint is called hard if
not meeting that constraint should result in a catastrophe, and all others are soft.

Embedded systems are called hybrid if they include analog and digital parts within it.
The analog system adopts continuous signal values in continuous time, and digital ones
use discrete signal values in discrete time. This system are said to be reactive systems in
sense that it is always waiting for some input.

2.8 SUMMARY

This chapter described the main concepts needed for the understanding of this disserta-
tion. First of all, it was performed an overview of performance evaluation and energy
consumption, including models and measurement techniques. After that, the system
classification was presented. Next, an overview of Petri nets, a graphic and mathemat-
ical modeling tool for modeling and analyzing several kinds of systems (e.g.: parallel
and non-deterministic systems), were presented. Additionally, a Petri net extension was
presented, namely, Coloured Petri net.



CHAPTER 3

RELATED WORKS

This chapter shows a summary of the relevant related works. First of all, it
is performed a general overview of performance evaluation. After, the related
works have been divided into three main sections: (i) Hardware simulation-
related-works, in which the hardware behavior has been reproduced; (ii) Soft-
ware simulation-related-works, in which their focus is to simulate the software
control flow and its influence to the power and performance; and (iii) Hybrid
approach which combine some points related to both hardware and software
simulation techniques.

3.1 GENERAL OVERVIEW OF ENERGY CONSUMPTION AND PERFORMANCE

EVALUATION

Herzog [Her02] shows the importance of using Formal Methods (FM) to the Performance
Evaluation (PE) process. The main goal of such work is to reduce the mutual reserva-
tions between both areas, formal specification techniques and performance evaluation.
For them, FMs may find their way into a new and very attractive area of applications
and some fundamental problems of PE may be overcome. Thus, methodological steps
were proposed. Figure 3.1 shows a typical scenario in which the environment generates
requests, the so called workload, to the system, where:

Figure 3.1: The System with its Environment, Requirements and Constraints.

(i) The workload represents the sum of all needed and desired activities and services.

41
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(ii) The system consists of one or more components trying to satisfy these requests.

(iii) The system is considered optimized if the system fulfills all requirements concerning
Quality of Service (QoS) as well as all technical and economic constraints.

In addition, such approach presented an overview of performance evaluation method-
ology and Figure 3.2 depicts its steps. It is important to stress that such methodology can
also be applied to consider energy consumption evaluation. The first step shown by the
methodology present in Figure 3.2 is to identify the problem and to perform the analysis
requirements. In order to identify any problem and/or to perform requirement analy-
sis, some workload characterization and system parameters are needed. After that, two
totally different approaches are started, experiments monitoring a real system (measure-
ments) and modeling technique for workload/system behavior studies. Both are followed
by analysis steps adopting statistic, stochastic and simulation methods. Thus, the vali-
dation is started and, finally, system structures and operating modes are synthesized.

Figure 3.2: Performance Evaluation Methodology.

3.2 HARDWARE SIMULATION-RELATED-WORKS

Hardware components such as CPUs or memories provide structural resources, software
components provide pure functionality, and some components, such as I/O controllers,
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provide functionality bundled with resources. Thus, in this dissertation, it has been
considered as hardware all components related to it (e.g.: busses, I/O controllers).

In order to model the hardware operations through microcontroller descriptions, sim-
ulation tools have been developed by some approaches. In these simulation techniques,
energy consumption models have been built considering either mathematic models of
circuit (a lower level) or higher description level such as Register Transfer Level (RTL).
PowerMill [HZDS95] is an example of such transistor level tool that reproduces the cur-
rent and power behavior in VLSI circuits. In such tool, it is possible to simulate deep-
submicron CMOS (Complementary Metal-Oxide-Semiconductor) circuits, including so-
phisticated circuitries such as exclusive-or gates and sense-amplifiers. Another example
is the QuickPower [men08], a simulator that considers the logic abstraction level through
circuit simulations.

In addition, another tool named SimplePower [YVKI00][IKV01] was developed to pro-
vide the energy consumed in the memory system and on-chip buses using analytical energy
models. The PowerTimer toolset [BDB+03] is another simulator developed to be used
in early-stage microarchitecture-level power-performance analysis of microprocessors. In
such approach, energy functions in conjunction with any given cycle-accurate microar-
chitectural simulator were used. The energy functions model the power consumption
of primitive and hierarchically composed building blocks of structures such as pipeline
stage latches, queues, buffers and component read/write multiplexers, local clock buffers,
register files, and cache array macros. That methodology adopted analytical equations ob-
tained from empirical circuit-level simulation experiments in order to perform the energy
consumption estimates. A framework named Wattch [BTM00] was proposed for ana-
lyzing and optimizing microprocessor power dissipation at the architecture-level. This
approach is considered as a complement to existing lower-level tools, because it allows
architects to explore and cull the design space in early design phases.

SimplePower, Wattch and PowerTimer are engines that consider the abstraction ar-
chitectural level and adopt a RTL model of the desired architectural in order to estimate
the power consumption. Even good results have been obtained by the adoption of such
techniques, the low abstraction level adopted demanded an enormous computational ef-
fort restricting the applicability for real world applications. Thus, such methodologies
have been performed in small code applications. Another drawback of the low level
approaches is the need of detailed hardware descriptions.

Another work [HH08] adopted a modified version of the Sim-outorder simulator from
the SimpleScalar suite [ALE02] [Sim08] in order to investigate some techniques for im-
proving the performance of memory hierarchies for embedded systems. Sim-outorder is
an execution driven, cycle-accurate, out-of-order simulator. The adopted methodology
considers precise models for the memory hierarchy and for the memory bus, and four
different processors with different levels of instruction level parallelism and complexity.

A static performance evaluation methodology was proposed in [RJ03] to support early,
architecture-level design space exploration for component-based embedded systems. This
approach evaluates the system performance based on a scenario. For this, it focuses on
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an interactive definition of evaluation scenarios through incremental refinement of a func-
tional specification to identify control flow paths corresponding to typical case behaviors.
Thus, they considered that the energy consumption through instructions does not have
a considerable variation. Instead, to them, the energy consumption has a stronger rela-
tionship with the code control flow (e.g.: loops) than the specific characteristics of the
set of instructions.

Another work [BM08] adopted the SimpleScalar [BA97] architecture simulator in or-
der to extend the cache at the circuit level to allow power and performance trade-offs to
be managed. This research divided the power consumption into two components, active
power and leakage power. They defined active power as the power consumed by switch-
ing parts of the digital circuits, and the leakage power as the power consumed by the
transistors when they are off. The variation effects of power supply voltage, threshold
voltage and of channel length in the leakage power were performed. Their conclusions
were that the channel length impacts more in the leakage power consumption.

3.3 SOFTWARE SIMULATION-RELATED-WORKS

The energy consumption of a microprocessor is directly correspondent to the software
in execution. Thus, a lower energy consumption has become an essential challenge for
optimizing the embedded system applications. In general, the energy consumption of a
software is described considering the instruction set of the processor under study. The in-
struction can consume energy basically by two mechanisms: (i)during the instruction exe-
cution, a sequence of internal processor states is generated and the state transitions results
in the hardware energy consumption pattern, named Instruction Base Cost [LFTM97]; (ii)
due to the instruction operands, the instruction can perform register changes and mem-
ory access that implies in a dynamic energy consumption. Furthermore, some factors can
increase its base cost energy consumption through register transitions and memory ac-
cess. The register numbers, register values, immediate values of the instructions, operand
address and the operand values are examples of those factors [NKN02]. Although these
factors has some influence, a mean value in the energy consumption can be obtained to
each instruction.

Over the last years, many approaches have been developed to deal with the estimation
of software execution time and energy consumption in embedded systems. Tiware et al.
[TMW94] developed an instruction level simulation mechanism that quantifies the energy
cost of individual instruction. This approach divides the code in basic blocks, which define
a contiguous section with exactly one entry and exit points. Thus, it is possible to get
the energy cost of a program after multiplying each base cost block by the number of
times it was executed. The main limitation of this approach is that it will not work for
programs with larger execution times since the ammeter may not show a stable reading.

An approach for power-aware code exploration, through an analysis mechanism based
on Coloured Petri Net (CPN), is presented in [JNM+06]. In that approach, a methodol-
ogy for stochastic modeling of 8051 based microcontroller instruction set is demonstrated.
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The presented method allows setting probabilities on conditional instructions for repre-
senting complex application scenarios. The main drawback of that method is the model
complexity, and as a direct consequence, a higher runtime evaluation is required. Another
drawback was the adoption of a generic engine for the CPN models evaluation. These
restrictions does not allow to evaluate a real life complex application or even reasonable
size programs and, also, only Assembly codes were considered.

Another approach related to energy consumption estimation is based on functional de-
composition [LSJM01]. In that method, the power consumption of each functional block
is computed from a set of consumption rules. These rules are represented as mathematical
functions obtained from several measurements of different codes and configuration param-
eter values, which are extracted from the code. Thus, the energy consumption is obtained
by adding the consumption of all blocks. This work has been extended [SLJM04], so that
a tool to estimate the power and energy consumption related to C programs and assem-
bly code was proposed. This work does not provide means for structural and behavioral
property analysis and verification.

Another paper [KCNL08] presents an energy consumption modeling technique for
embedded systems based on a microcontroller, in which the number of cycles instead
of the number of executed instructions is considered and it computes the energy by a
polynomial expression. In order to obtain such expressions, the software tasks that run
on the embedded system were profiled, and their characteristics were analyzed. The
type of executed assembly instructions, as well as the number of accesses to the memory
and the analog-to-digital converter, is the required information for the derivation of the
proposed model. An appropriate instrumentation setup was developed for measuring
and modeling the energy consumption in the corresponding digital circuits. This work
adopted analytical models that may require so many simplifications and assumptions that
may turn the results not so accurate.

Muttreja et al. [MRRJ07] presented a methodology to speed up simulation-based
software-performance / energy estimation adopting macromodeling. However, this method-
ology is only applicable to data that follows the same distribution as the data used to
train the model. Thus, this restriction reduces the applicability of that methodology.

An adaptation of the instruction-level power estimation model to soft-core processors
implemented in FPGAs is presented in [dHAW+07]. In order to validate their method-
ology, the Nios II softcore processor was adopted. In such approach the inter-instruction
costs (cost correspondent to the transition from one kind of instruction to another) and
pipeline stalls were not modeled directly, instead of that, a correction factor was adopted.

3.4 HYBRID APPROACH

A framework that combines hybrid simulation, cache simulation and online trace-driven
replay techniques to accurately predict performance of programmable elements in em-
bedded environments was proposed in [GKK+08]. A simulator, called HySim, combines
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a target architecture specific ISS (Instruction Set Simulator) execution with native code
execution on the simulation host for achieving high simulation speed. For this, a simi-
lar methodology is adopted where an entire application is compiled through the target
compiler to produce a target specific binary (the input of their framework).

Another work [SBVR08] presents an hybrid method that solves performance issues
by combining the advantages of simulation-based and analytical approaches with the ob-
jective of gaining simulation runtime speed without remarkable loss of accuracy. The
methodology is based on the generation of SystemC code out of the original C code and
back-annotation of statically determined cycle information into the generated code. One
drawback of that methodology is the difficulty to find corresponding parts of the binary
code in the C source code if the compiler optimizes or changes the structure of the binary
code too much. Thus, such approach does not work well for some processors and/or
compilers.

3.5 SUMMARY

This chapter summarized the main works related with estimating performance and en-
ergy consumption of embedded system applications. In several works, tools have been
developed in order to model the hardware operations through microcontroller descrip-
tions. Although these techniques can provide accurate results, their computational costs
are too high which reduce their applicability in many situations. In contrast to these
hardware simulations, approaches that make use of software simulation techniques pro-
vide their results in a shorter runtime. Nevertheless, the majority of such approaches
adopts some methods (e.g.: analytical models) in which their results are less accurate
than the hardware ones. Moreover, the hybrid approach are quite new, and so, their
results need more refinements.



CHAPTER 4

METHODOLOGY

This chapter depicts the proposed methodology for building embedded criti-
cal software. Next, the proposed framework in order to estimate the energy
consumption and performance of embedded system applications is presented.
Afterwards, the characterization process that has been adopted to obtain the
energy consumption and execution time values of an ARM7-based microcon-
troller instruction set is demonstrated.

4.1 METHODOLOGY

This section briefly introduces the proposed Methodology for Embedded Critical Software
Construction (MEMBROS). Figure 4.1 depicts the core activities of MEMBROS method-
ology, which organizes the activities in three groups: (i) Requirements Validation; (ii) En-
ergy Consumption and Performance Evaluation; and (iii) Software Synthesis. Although
this dissertation focuses is related to the energy consumption and execution time esti-
mates, an overview of the whole methodology is important in order to show that this
dissertation subject is engaged with other works.

Initially, the activities regarding requirement validation are performed. After carrying
out the requirement analysis, the system requirements are modeled using a set of SysML
(Systems Modeling Language) diagrams (SDs)[Sys07] that represents the functionalities
of the embedded software to be developed. The SDs provide the designer an intuitive
language for modeling the requirements without knowing the details of the internal for-
malism, which is utilized in further activities for reasoning about quantitative/qualitative
properties. Since timing and energy constraints are of utmost importance in the systems
of interest, the SDs are annotated with timing and energy consumption information (e.g.:
initial estimates) using MARTE (Modeling and Analysis of Real-Time and Embedded
Systems) [MAR07]. Next, the annotated SDs are automatically mapped into time Petri
net (TPN) models in order to lay down a mathematical basis for analysis and verification
of properties (e.g.: absence of deadlock conditions between requirements). This activity
also concerns to obtain best and worst-case execution times and the respective energy
consumptions, in such a way that the requirements are also evaluated whether timing
and energy constraints can be met. More details in [CMC+08].

Afterwards, the embedded software development process is started taking into account
the results obtained in previous activities. Once a first source code release is available, the
designer analyzes the code in order to assign probability values to conditional and iterative
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Figure 4.1: Methodology activity diagram.

structures. It is important to state that with such values it is possible to simulate different
software scenarios just changing the probability instruction annotations. Furthermore,
the compiled code with probability annotations allows designers to evaluate in the context
of time and energy consumption, in such a way that these costs may be estimated before
the whole system (hardware prototype) is available. For that, the compiled code is
automatically translated into a Coloured Petri net (CPN) model [JKW07] in order to
provide a basis for the stochastic simulation of the embedded software. An architecture
characterization activity is also considered to permit the construction of a library of basic
CPN blocks [CMA+08b], which provides the foundation for the automatic generation
of CPN stochastic models (see Section 4.2). From the CPN model (generated by the
composition of basic blocks), a stochastic simulation of the compiled code is carried out
considering the characteristics of the target platform. If the simulation results are in
agreement with the requirements, the software synthesis is performed.

Software synthesis activities are concerned with the stringent constraints (e.g.: time
and energy), and, in the general sense, it is composed of two subgroups of activities:
(i) tasks’ handling; and (ii) code generation. Tasks’ handling is responsible for tasks’
scheduling, resource management, and inter-task communication, whereas code genera-
tion deals with the static generation of the final source code, which includes a customized
runtime support, namely, dispatcher. It is important to state that the concept of task
is similar to process, in the sense that it is a concurrent unit activated during system
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runtime. For the following activities, it is assumed that the embedded software has been
implemented as a set of concurrent hard real-time tasks.

Initially, the task timing information as well as the information regarding the hard-
ware energy consumption are computed through the energy consumption and perfor-
mance evaluation activities. Next, the designer defines the specification of the system
stringent constraints, which consists of a set of concurrent tasks with their respective
constraints, behavioral descriptions, information related to the hardware platform (e.g.:
voltage/frequency and energy consumption) as well as the energy constraint. Afterwards,
the specification is translated into an internal model able to represent concurrent activ-
ities, timing information, inter-task relations, such as precedence and mutual exclusion,
as well as energy constraints. The adopted internal model is a time Petri net extension
(TPNE), labeled with energy consumption values and code annotations. After gener-
ating the internal model (TPNE), the designer may firstly choose to perform property
analysis/verification or carry out the scheduling activity. This work adopts a pre-runtime
scheduling approach in order to find out a feasible schedule that satisfies timing, inter-
task and energy constraints. Next, the feasible schedule is adopted as an input to the
automatic code generation mechanism, such that a tailored code is obtained with the
respective runtime control, namely, dispatcher. Finally, the application is validated on a
Dynamic Voltage Scaling (DVS) platform in order to check the system behavior as well
as the respective constraints. Once the system is validated, it can be deployed to the
real environment. The basic goal of DVS is to adjust the processor’ operating voltage at
run-time to the minimum level in order to reduce the energy consumption considering
the application time constraints.

4.2 ENERGY CONSUMPTION AND PERFORMANCE EVALUATION FRAME-

WORK

The model evaluation concerns to execution time and energy consumption estimates.
This process aims to help designers to identify the application blocks that need to be
optimized and, moreover, it helps them to decide which code parts should be transformed
into hardware components.

The proposed framework takes into account Assembly and C codes (see Figure 4.2)
labeled with probabilities assigned to conditional instructions in order to specify the
system scenarios as well as parameters for the stop criteria. The assembly or C codes
are provided as an input to the assembler or compiler that generates two outputs: the
Binary Code (machine code) and the Listing file (file in which the probabilities and the
stop criteria parameters are captured). The listing file is an output file of compilers and it
is adopted to help designers in the debug process (e.g.: to identify the compilation issues).
After that, the Binary-CPN Compiler reads these two files (generated by the Assembler
or by the Compiler) and, also, the Basic CPN Models, and generates two CPN Models to
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be analyzed. The CPN-Optimized is the model used to estimate the energy consumption
and execution time and, the other model is adopted to validate the optimized one. These
CPN models are represented by the basic models and can be read by CPN Tools and/or
by the CPN Simulator in order to generate the estimate results.

The CPN Simulator is a tool that evaluates the proposed CPN models in order to
compute the energy consumption and execution time. This tool has been conceived as an
alternative to CPN Tools, since CPN Tools’ simulation mechanism is quite time consum-
ing when analyzing large models because it is a general purpose evaluation environment.
Moreover, an automatic CPN Generator receives the processor characterization tables in
order to create the Instruction-CPN Models for the ARM7 (and others) processors. The
execution times and the energy consumption values could be obtained from datasheets,
characterization processes, measuring and so on.

Figure 4.2: The proposed Framework.

4.2.1 Characterization Process

In order to obtain the energy consumption and execution time values of a microcontroller
instruction set, it may be necessary to adopt some measurement techniques in case such
values cannot be obtained from manuals and datasheets. It is essential to present pro-
cessor particularities to perform a characterization process. Hence, this section initiates
by introducing some points related to the adopted Philips LPC2106 microprocessor. Af-
terwards, the characterization scheme is detailed.

An ARM7-based microcontroller, Philips LPC2106 [man03], has been adopted due
to its widespread use in embedded systems as the hardware platform for conducting the
case study validation. LPC2106 is a 32-bit microprocessor based on Reduced Instruc-
tion Set Computer (RISC) principles. Furthermore, its instruction set and its related
decode mechanism are much simpler than those of microprogrammed based on Complex
Instruction Set Computers (CISC). As a consequence, high instruction throughput and
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impressive real-time interrupt response from a small and cost-effective processor core have
been performed.

Another important characteristic that should be mentioned about LPC2106 micro-
processor is the absence of internal cache memory [Fur00]. Instead, a Memory Accel-
erator Module (MAM) is available. The MAM corresponds to a technique, adopted by
LPC2100 family microprocessors, that attempts to have the next ARM instruction in its
local memory in time for the CPU to execute. Although this mechanism improves the mi-
croprocessor performance, it has not been considered throughout the scope of this work.
The proposed methodology has considered a general approach to evaluate the ARM7-
based microprocessors. Thus, the characterization process was performed with the MAM
mechanism turned off. However, it is possible to cover this particularity by extending
the proposed methodology in order to perform an evaluation before each instruction be
executed to reproduce the MAM technique approach.

Additionally, it is important to state that the energy consumption depends on the in-
struction parameters (register values). In other words, if the same instruction is executed
with different parameters, the energy consumption and execution time may have small
differences. Tiwari et al [TMW94] showed that good estimates can be obtained without
considering such issue, in which their experiment results demonstrated that the range of
those variation corresponds to less than 5%.

Figure 4.3 depicts a code example adopted to characterize the LPC2106 instruction
set, in which an oscilloscope synchronization marker has been adopted to the code analy-
sis. Ten thousands of instruction replications have been performed, as Figure 4.3 depicts
on lines 8 to 12, in order to have a precise characterization of an instruction. Further-
more, Figure 4.4 depicts such code on the oscilloscope (Agilent DSO03202A), in which
the signal voltages can be viewed as a two-dimensional graph. The wave shape of the
electrical signal shown in Figure 4.4 represents the execution of the code in analysis.

1
2 while(1){
3 int i;
4 IOSET = IOPIN | 0X00000080; /* oscilloscope synchronization marker */
5
6 /* code */
7 __asm{
8 mov r1, #0
9 mov r1, #0
10 ... (representing 9.996 mov r1, #0)
11 mov r1, #0
12 mov r1, #0
13 }
14 /* end of code */
15
16 IOCLR = (~IOPIN) | 0X00000080 /* oscilloscope synchronization marker */
17 for (i=0; i<5300; i++); /* delay */
18 }

Figure 4.3: A code example for measuring.

Characterization Scheme

A Characterization Scheme has been adopted in order to characterize such proces-
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Figure 4.4: The measurement performed on oscilloscope.

Figure 4.5: Hardware Platform with LPC2106 microprocessor.

sor, in which a hardware platform with the LPC2106 microcontroller (Figure 4.5) , an
oscilloscope and a desktop computer (PC) are connected as shown in Figure 4.6. Thus,
the PC runs AMALGHMA (Advanced Measurement Algorithms for Hardware Architec-
tures) [CTM08], a tool (Figure 4.7) developed to automate the measuring activities that
captures the information displayed by the oscilloscope. This characterization process is
similar to the ones adopted by [TMW94] and [RJ98]. Hence, the oscilloscope captures
the CPU drained current by measuring the voltage drop across a sense resistor, and the
AMALGHMA acquires the energy consumption and execution time through the oscillo-
scope. For this, the oscilloscope is connected to an I/O port pin of the target CPU, and
through it the code start and end times are indicated.

AMALGHMA adopts a set of statistical methods such as bootstrap [ET93] and para-
metric methods [Chu04] in order to cope with oscilloscope resolution and resistor error.
The results obtained through AMALGHMA to the LPC2106 microcontroller have been
validated considering LPC2106 datasheet as well as ARM7TDMI reference manual.
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Figure 4.6: The measurement process.

Figure 4.7: The AMALGHMA engine.

4.3 SUMMARY

This chapter described that the proposed methodology of this dissertation for estimating
energy consumption and execution time of embedded systems corresponds to one part
of the MEMBROS methodology. The MEMBROS methodology was divided into three
groups: (i) Requirements Validation; (ii) Energy Consumption and Performance Evalu-
ation; and (iii) Software Synthesis. The first group focuses on the activities regarding
requirement validation. The second one consists of this dissertation focuses and its ac-
tivities are related to the energy consumption and performance evaluation of embedded
softwares in early phases of the design. The Software Synthesis optimize the embedded
software by improving the schedule routine and by adopting a technique called DVS in
order to create the embedded code that can be deployed to the real environment.



CHAPTER 5

FORMAL MODEL

This chapter presents the proposed Coloured Petri net models, discrete event
models, that represent the ARM instruction set for estimating energy con-
sumption and execution time of embedded software. Afterwards, it depicts
the adopted reduction rules in order to simplify the proposed CPN models.

5.1 EMBEDDED SOFTWARE MODELING

The embedded software models should be as simple as possible in order to consider only
the important characteristics that affect the energy consumption and performance of such
applications. Thus, this work proposes a model representation that does not consider,
for example, register values. As a directly consequence, the model has been considering
just the code control flow instead of all hardware operations (it does not reproduce all
the compiler operations) in order to improve its runtime simulation.

The proposed approach considers each processor instruction like a transition, in which
values related to energy consumption and performance are labeled. Furthermore, the
adopted building process considers the code control flow, and so, a software structure is
obtained as a result, in which loops and procedures are also represented. Places repre-
sent the control flow states, a token in a CPN place represents the current state, and a
transition firing means an instruction (or a block of instructions) execution.

CPN models allow modeling embedded applications at different abstraction levels.
The proposed model is represented by a two-level CPN model. At the lower level, the
basic CPN models are present; the higher level concerns the composition of such basic
models.

The proposed methodology [CMA+08c], by this dissertation, is based on the instruc-
tion set of the microcontroller instead of considering the processor architecture as the
proposed CPN processor models presented in [BKY98] and [BKY00]. The main draw-
back of these works is the detailed hardware description that is not usually available for
designers. The proposed method considers only the energy consumption and execution
time related to the processor instruction set. Therefore, if this information is not avail-
able in datasheets, the designers can perform some measurement techniques in order to
obtain such values.

Figure 5.1 overviews the proposed methodology. The machine code is transformed
into a CPN model through the adopted compiler. Afterwards, the generated model is
provided as input to the simulator. Besides the model, the scenario of interest has to be
specified in order to start the evaluation process. As a result of the evaluation process,
the energy consumption and performance estimates are provided.

54
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Figure 5.1: Methodology task-flow.

Seven basic CPN instruction models [CMA+08a] [CMA+08b] have been conceived
to characterize the ARM7 processor instruction set. Each basic model considers the
values obtained through the measurement process described in the Section 4.2.1, and its
evaluation computes the energy consumption and execution time values. These individual
nets are represented in a XML format compatible with CPN Tools [cpn07].

In addition, it is important to stress that the evaluation of the proposed basic CPN
models consider the global variable globalT ime that computes the executed time. Thus,
instead of changing a token’s time stamp, the value of a global variable has been incre-
mented. Although this concept is slightly different from the formal definition of TCPN
(see Definition 2.6.2), it has been adopted in order to improve the CPN Tools simulation
runtime.

Definition 5.1.1. (Inst) Inst is the whole set of instructions of the target microcon-
troller.

Definition 5.1.2. (InstName) InstName is the instruction name of each microcon-
troller instruction.

5.1.1 CPN model for ordinary instructions

Ordinary instructions are those that do not change their control flow execution. Figure
5.2 depicts the CPN model for ordinary instructions. This model is composed by one
input place (S Input), one output place (S Output) and one transition (InsNamei)
named by the instruction name that it represents. Moreover, the Context is the colour
(type) of the places and V alue represents their initial markings. The formal definition of
the CPN model for these instructions is presented as follows.

Definition 5.1.3. (CPN model for ordinary instructions) Let OrdInst ∈ Inst.
The Coloured Petri net described by a tuple CPNMOrd = (

∑
, P, T, A, N, C, G, E, I),

defines the ordinary instruction model of Inst, where:

(i)
∑

= {Context},
(ii) P = {S Input, S Output},
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(iii) T = {InsNamei | FCod(InsNamei) = CodInstname},
(iv) A = {a0, a1},
(v) N(a0) = (S Input,InsName) and N(a1) = (InsName, S Output),

(vi) ∀Pk ∈ P, C(Pk) = Context,

(vii) G(InsNamei) = true,

(viii) E(a0)=Ki, E(a1)=Ko | Type(Ki) = Type(Ko) = Context,

(ix) I(S Input) =I(S Output) = not defined.

Figure 5.2: Ordinary model.

Figure 5.3 depicts an example of ordinary instruction model. This model assigns the
energy consumption (val energy) and execution time (val cy) through the function ad-
dData(energy,cy) as shown on Figure 5.3 (see the code segment inscriptions). This model
has two ports, one input type and one output type port.

Ko

input Ki;
output Ko;
action
let val cy=0.067; val energy=3.77; val inst=0; 
in
addData(energy,cy);
{jump=0}
end;

Context

S_Input

Ki

ADD1

Context

value

S_Output

Figure 5.3: An example of ordinary model.
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5.1.2 CPN model for conditional instructions

ARM7 instructions have a specific characteristic in the sense that all instructions may
or may not be conditional. Conditional instructions are those that evaluate the micro-
controller’s flags and whether the instruction is executed or not. If the instruction is not
executed, the instruction operation is not considered and the control flow continues on to
the next instruction. In this work, random variates are generated according to uniform
distribution within the interval [0,1] for representing conditional evaluation.

Figure 5.4 presents the conditional model. Definition 5.1.3 also represents this model
because of their differences are in the code segment inscriptions, where variables such as
prob and aval are present. Prob represents the probability of conditional instructions to
be executed and aval has been conceived to evaluate this probability. In order to obtain
the aval value, a conceived function (uniform(0.0, 1.0) <= prob) is evaluated as true if
the respective condition is satisfied, and as false otherwise. It is important to state that
this model computes different energy consumption and execution time values depending
on the Aval results.

Ko

Context

S_Input
value

Ki

Context

S_Output

ADDCond1

input Ki;
output Ko;
action
let val cy=0.017; val energy=1.2; val inst=0; 
val prob=0.4;
val aval=if (uniform(0.0,1.0)<=prob) then 1
          else 0;  
in
if (aval=1) then 
  addData(energy,cy)
else
  addData(1.2,0.017);
{jump=0}
end;

Figure 5.4: Conditional model.

5.1.3 Procedure calls model

The model defined for representing Procedure Calls is also represented by Definition 5.1.3.
Figure 5.5 shows an example of this model by representing the branch and link operation.
This model, besides using the function addData (already depicted in Section 5.1.1), con-
siders the function push. The function push stores (pushes) the current address position
into a stack, which is adopted by return from procedure calls model.
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Ko

Context

S_Input

Context

value

Ki

BL1

input Ki;
output Ko;
action
let val cy=0.05; val energy=3.61; val inst=0; in
addData(energy,cy);
push(inst+4);
{jump=0}
end;

S_Output

Figure 5.5: Branch and link model

5.1.4 CPN model for conditional branch instructions

The conditional model is shown in Figure 5.6, in which a branch is executed if the respec-
tive condition is satisfied. This model is composed by one input place (S Input), one
intermediate state (Inter State) and two output places (S Output1 and S Output2).
Each output place corresponds to a different code control flow execution.

Figure 5.6: Conditional branch model.

Definition 5.1.4. (CPN model for conditional branch) Let CondInst ∈ Inst. The
Coloured Petri net CPNMCond = (

∑
, P, T, A, N, C, G, E, I) defines the conditional in-

struction model of Inst, where:

(i)
∑

= {Context},
(ii) P = {S Input, Inter State, S Output1, S Output2}.
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(iii) T = {Jump, NotJump, InsNamei},
(iv) A = {ak | 0 ≤ k ≤ 5},
(v) N(a0) = (S Input,InsNamei), N(a1) = (InsNamei, Inter State),

N(a2) = (Inter State, Jump), N(a3) = (Inter State, NotJump),
N(a4) = (Jump,S Output1), N(a5) = (NotJump,S Output2),

(vi) ∀Pk ∈ P, C(Pk) = Context,

(vii) G(InsName) = true, G(Jump) = CheckJump(), G(NotJump) = not(CheckJump),
where CheckJump() is an operation that results on true or false.

(viii) E(a0)=Ki; ∀aj , aj �= a0 ∈ A, E(aj) = Ko, where Type(Ki) = Type(Ko) = Context,

(ix) I(S Input) = I(Inter State) = I(S Output1) = I(S Output2)= not defined.

The conditional statement is stochastically represented through the transitions Jump
and NotJump and their respective guard expressions that define which transition should
be fired (see Figure 5.7). Jump transition is fireable if the token value is equal to “1”
(one). Notjump transition can be fired if the token carries the value “0” (zero). The
reader should observe that these transitions are connected to two different output ports
that represent distinct program execution flows. It is also important to remark that prob
represents the probability of making a branch, and aval is considered for evaluating the
possibility of branching where its value determines which transition (Jump or NotJump)
should occur.

KoKo

KoKo

Ko

Ki

ContextContext

Inter_State

Context

Context

value

S_Output2

NotJumpJump

S_Output1

[(#jump Ko)=0][(#jump Ko)=1]

BCond1

S_Input

input Ki;
output Ko;
action
let val cy=0.201; val energy=12.2; val inst=4; 
val oper1=32;   
val prob=0.4;
val aval=if (uniform(0.0,1.0)<=prob) then 1
          else 0;  
in
if (aval=1) then
addData(energy,cy)
else
addData(3.8,0.067);
{jump=if (aval=1) then 1 else 0}
end;

Figure 5.7: Conditional branch model example
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5.1.5 CPN model for branching exchange instructions

Another basic model has been considered to represent the BX (branch exchange) instruc-
tion. In this model, the number of transitions, places, arcs and output ports depend on
the application code that is analyzed. This model can be adopted, for example, to per-
form procedure return (when it just performs the branch). Thus, if a procedure was called
more than once, then its model is connected to different places in order to reproduce their
different control flow. The definition of this CPN model is presented as follows.

Definition 5.1.5. (CPN model for branching exchange instructions) Let RetInst ∈
Inst. The Coloured Petri net that represents branching exchange instruction is defined
by the tuple CPNMRet = (

∑
, P, T, A, N, C, G, E, I), where:

(i)
∑

= {Context},
(ii) P = {S Input, Inter State}∪Po, Po = {S output1, S output2, ..., S outputn},

n ∈ N, where n represents the different control flow executions.

(iii) T = {InsNamei} ∪ Ti, Ti = {jump1, jump2, ..., jumpn}, n ∈ N, where n represents
the different control flow executions,

(iv) A = {ak | 0 ≤ k ≤ m, m ∈ N, where m = (n×2) + 2},
(v) N(a0) = (S Input,InsNamei), N(a1) = (InsNamei, Inter State),

N(a2) = (Inter State, jump1), ..., N(a2) = (Inter State, jumpn),
N(a3) = (jump1, S output1), ..., N(a4) = (jumpn, S outputn),

(vi) ∀Pk ∈ P, C(Pk) = Context,

(vii) G(InsNamei) = true,
G(jump1) = [(#jumpKo)=w1], ...,
G(jumpn) = [(#jumpKo)=w2], w ∈ N, where w represents different memory ad-
dress.

(viii) E(a0)=Ki; ∀aj , aj �= a0, aj ∈ A, E(aj) = Ko, where Type(Ki) = Type(Ko) =
Context,

(ix) I(S Input) = I(Inter State) = I(S output1) = ... = I(S outputn) = not defined.

Figure 5.8 depicts the CPN model for branching exchange instruction. This model
is composed by one input place (S Input), one intermediate state (Inter State) and
n output places, where n represents the different control flow executions. This model is
also composed by InsNamei transition, and n Jump transitions. Moreover, the Context
is the type of the places and V alue represents their initial markings.

Figure 5.9 presents an example of such model, in which there are three ports where
one is an input type port and all the others are output type ports. This structure has
been adopted, since this model represents a subnet of a hierarchical net that is linked
to different code control flow (places). It is important to state that only one of these
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Figure 5.8: Branching exchange instruction model.

transitions (Jump1 or Jump2) is able to “fire” at a time (the input port stores at most one
token and then the firing of one these transitions disables the other). Guard expressions
are assigned to those transitions, so that Jump1 transition firing represents a branch
to the address “32” and Jump2 to “0”. The desired return address is provided by the
variable pos.

Ko

Ki

Context

S_Input
value

Context

BX1

Inter_state

Jump2

Ko Ko

Jump1

Ko Ko

Context Context

[(#jump Ko)=0][(#jump Ko)=32]

input Ki;
output Ko;
action
let val cy=0.201; val energy=11.4; val inst=0; val oper1=1; 
val pos= if (List.length(!startPos)>0) then 
                  List.nth(!startPos,List.length(!startPos)-1) else 0; 
in
addData(energy,cy);
pop(!startPos);
{jump=pos}
end;

S_Output2S_Output1

Figure 5.9: Bx instruction example

That last basic model has also been adopted to represent the final instruction of
the code in analysis. In this context, during the net evaluation, “0” is assigned to the
variable pos meaning that this model is connected to the one that represents the stop
criteria evaluation process (see Section 5.1.8).
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5.1.6 CPN model for Store multiple instruction

In a program when a procedure call is performed, it should be necessary to store the
current state of the microprocessor, and as soon as the routine is ended that state will
be loaded. For this, there are ARM7 instructions that have a specific characteristic in
the sense that just one instruction may load or store different amount of values. This
can be done by the instructions LDM (Load Multiple) or STM (Store Multiple). Such
store instruction is able to store a non-empty subset of the general-purpose registers to
sequential memory locations. Definition 5.1.3 also represents this model.

Ko

Ki

Context

STM1

S_Input Context

value

S_Output

input Ki;
output Ko;
action
let val cy=0.01666; val energy=1.36; val inst=0; val oper1=1; in
addData(energy*Real.fromInt(oper1+1),cy*Real.fromInt(oper1+1));
{jump=0}
end;

Figure 5.10: Store multiple model.

Figure 5.10 shows the CPN model for Store multiple instruction. Such model has to
consider the number of registers that has been adopted to record the data information.
The variable oper1 informs the number of register considered. Thus, Figure 5.10 shows
that the energy consumption and execution time values depend on the number of registers
that has been handled.

5.1.7 CPN model for Load multiple instruction

The load multiple instruction, already introduced (see Section 5.1.6), is useful for block
loads, stack operations and procedure exit sequences. This model computes the energy
consumption and execution time in a similar way of the CPN model for STM instruction,
but in case R15 (PC) register value is changed, hence the energy consumption and
execution time values are different. In this case, the CPN model depicted by Figure 5.11
represents branches and it is similar to the CPN model for branching exchange instruction
(Section 5.1.5). The differences concerns only in the code segment inscriptions.

5.1.8 CPN model for the stop criteria process

The steady-state simulation stop criteria takes into account the specified error and a
confidence degree. Thus, the designer should define the confidence degree and maximal
error related to each metrics (energy and time). More details in Section 6.4.4.
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Ko

Ki

Context

S_Input
value

Context

LDM1

Inter_state

Jump2

Ko Ko

Jump1

Ko Ko

Context Context

[(#jump Ko)=8][(#jump Ko)=0]

input Ki;
output Ko;
action
let val cy=0.01666; val energy=1.36; val inst=0; val oper1=1; val oper2=0; 
val pos= if (List.length(!startPos)>0) then 
                  List.nth(!startPos,List.length(!startPos)-1) else 0; 
in
(* oper2=1 means there is r15 *)
if (oper2=0) then
addData(energy*Real.fromInt(oper1+2),cy*Real.fromInt(oper1+2))
else
addData(energy*Real.fromInt(oper1+4),cy*Real.fromInt(oper1+4));
pop(!startPos);
{jump=pos}
end;

S_Output2S_Output1

Figure 5.11: Load multiple model.

Figure 5.12 depicts the adopted CPN model for the stop criteria process, in which the
energy consumption and execution time of a complete run of the CPN model are com-
puted by the function addIterData(). Furthermore, the function chechEnd() evaluates
whether the simulation may or may not continue. In case the simulation is continued,
another function newIter() is performed to begin a new turn with the adopted statistic
variables reconfigured. Otherwise, the simulation is finished and the mean time, time
standard deviation, time error, mean energy, energy standard deviation and energy error
are recorded into a file by the function writeF ile().

Figure 5.12: CPN model for the stop criteria process
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5.2 REDUCTION RULES

In this dissertation, the CPN reduction rules have been adopted in order to transform
a CPN model into an equivalent simplified model, in which all important characteristics
for estimating the energy consumption and execution time are preserved. The adopted
process has three basic rules: (i) any place to be reduced cannot have more than one
input arc; (ii) candidate transitions for merging cannot have more than one output arc;
(iii) candidate transitions to be reduced cannot have functions assigned to them (such as
push() and pop()), in other words, candidate transitions cannot represent a procedure call
model or return of procedure calls. Thus, if all these rules are satisfied, these elements
will be clustered.

Figure 5.13 (a) depicts a CPN model, and Figure 5.13 (b) represents a snapshot of
the CPN model after being provided the reduction process. It is important to state
that the energy consumption and execution time values associated to those three transi-
tions (Inst 0 MOV 1R1, #1, Inst 1 MOV 1R1, #1, Inst 2 MOV 1R1, #1) were summa-
rized (clustered) into just one transition (BLOCK ID7209). Thus, when the transition
BLOCK ID7209 occurs, the energy consumption and execution time related to those
three transitions are computed.

Figure 5.13: (a)CPN model, (b)CPN model after reduction process.
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5.3 SUMMARY

This chapter detailed each basic Coloured Petri net model that has been conceived to
characterize the ARM7 processor instruction set. The basic models have been divided
into seven groups: (i) CPN model for ordinary instructions that consist of those instruc-
tions that do not change their control flow execution; (ii) CPN model for conditional
instructions, in which a stochastic method has been adopted to evaluate whether the in-
struction is executed or not; (iii) Procedure calls model, adopted to represent procedure
calls; (iv) CPN model for conditional branch instructions, in which a stochastic method
evaluates whether a branch is executed or not; (v) CPN model for branching exchange in-
struction, adopted to consider the BX (branch exchange) instruction; (vi) CPN model for
store multiple instruction, conceived to represent STM (Store Multiple) instruction; (vii)
CPN model for load multiple instruction, conceived to represent LDM (Load Multiple)
instruction. Furthermore, this chapter also provided the CPN model for evaluating the
stop criteria process. Lastly, this chapter showed the adopted reduction rules conceived
to transform a CPN model into an equivalent simplified model, in which all important
characteristics for estimating the energy consumption and execution time are preserved.



CHAPTER 6

THE SIMULATION ENVIRONMENT

This chapter presents the proposed simulation environment, named, ALU-
PAS, for providing, in early design phases, a mechanism that assists design
decisions on energy consumption and performance concerning embedded ap-
plications. First of all, an overview of ALUPAS is presented, and, the adopted
simulation process is detailed.

6.1 ALUPAS

A Unified environment for Low Power Application Simulation (ALUPAS) [CM08] has
been developed to combine the proposed framework functionalities (Section 4.2) into an
integrated environment in order to cope with the complexities related to non-functional
requirements (e.g.: energy consumption and execution time estimates). This tool provides
a graphic interface, in which the designer does not need to interact directly with the
internal formalism (CPN).

The ALUPAS is composed of an Assembler, C Compiler, a Binary CPN Compiler, a
CPN Simulator and a Graphical User Interface (GUI). For a better understanding, the
following sections describe each component.

6.2 ASSEMBLER AND C COMPILER

An assembly language is a low-level language for programming computers defined by
the hardware manufacturer. Thus, this language implements a symbolic representation
of the numeric machine codes and other constants needed to program a particular CPU
architecture. Assembler is a software component that translates programs implemented in
assembly (ASM) language into the machine language (binary code) of the target platform.
In order to perform this task, the assembler creates an object code by translating assembly
instruction mnemonics (instruction abbreviations) into opcodes (operation codes) as well
as resolving symbolic names for memory locations. In contrast to Assembler, a compiler
translates a high-level language, such as C, into assembly language first and then into
machine language.

This work adopts the Keil’s ARM Assembler and Keil’s C Compiler [kei08] in order
to generate the binary code. The Assembler and C compiler options were set up to also
generate the listing (LST) file (see Figure 6.1) from which probabilities and the stop
criteria parameters are captured.

66



6.3 BINARY CPN COMPILER 67

Figure 6.1: Assembler structure.

Annotations

The code annotations have been conceived in order to set up stop criteria parameters
and probability values of the conditional statements. The stop criteria annotations have
to be set on the first code line following the specification below.

;<confidence interval| desired energy error| desired time error| batch size| max number
of replication>

The reader should note that stop criteria parameters deal with confidence interval,
desired energy consumption and time errors, batch size and maximum number of replica-
tions on the simulation. See Section 6.4.4 for more information about the adopted stop
criteria process. The designer should put annotations to conditional instructions as the
following specification depicts.

conditional statements ;<@probabilistic value@>

The designer may used the Equation �.� in order to obtain the probabilistic value of
conditional statements such as a loop.

p = 1 − (1/N) (�.�)

where: N ∈ N, and represents the sample number.

6.3 BINARY CPN COMPILER

This dissertation proposes a Binary-CPN compiler which automatically translates an em-
bedded software, implemented in C language or ASM, into a CPN model. This compiler
reads the two files (machine code and listing file) and, also, the Basic CPN Models, in
order to generate a CPN Model to be analyzed. Figure 6.2 depicts the binary-CPN
compiler basic structure.

Figure 6.3 shows the binary-CPN compiler structure in more details. The parser
processes the compiled code in order to generate an internal representation of each code
instruction. Next, a XML parser interprets the listing file in order to create a XML file
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Figure 6.2: Basic Binary CPN Compiler structure.

(prob-XML) containing the probabilistic values of each conditional instruction. After-
wards, a Model Factory creates the final formal model (CPN) and the Sim file through
the basic-CPN models and prob-XML file. This Sim file consists of a XML representing
the formal model, and it is adopted as an input to the CPN Simulator. Finally, a reduc-
tion process is performed through some rules to transform the evaluation models (CPN
model and Sim File) into equivalent ones. It is important to state that all characteristics
regarding to energy consumption and execution time are preserved. An overview of the
proposed implementation is present in Appendix C, in which the binary-CPN compiler
class diagram is detailed.

Figure 6.3: Detailed Binary-CPN Compiler structure.

6.4 CPN SIMULATOR

CPN Simulator is a tool developed to evaluate the proposed CPN models. This tool has
been conceived as an alternative to CPN Tools [VLM+03], since the respective simulation
mechanism consumes a significant amount of time when analyzing large models. Figure
6.4 depicts the basic CPN Simulator structure which considers a XML model specifi-
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cation (Sim file) to estimate the energy consumption and execution time of embedded
applications.

Figure 6.4: Basic CPN Simulator structure.

Figure 6.5 shows the CPN Simulator structure in more details. The parser processes
the Sim file in order to create an internal element representation to transitions, places,
arcs and tokens. This parser also identifies the stop criteria parameters such as confidence
interval, desired energy and time errors. Afterwards, the proposed Net Factory has been
considered to connect the created internal elements in order to generate the internal
model to be evaluated. This model has been simulated through the simulator driver, in
which statistical methods related to the execution time an energy consumption estimates
are considered. The simulation continues according to the stop criteria evaluation (see
Section 6.4.4. An overview of the proposed implementation is present in Appendix D, in
which the CPN Simulator class diagram is detailed.

Figure 6.5: CPN Simulator structure.

6.4.1 Sim file

The Sim file considers each Coloured Petri net structures (e.g.: places) and the stop
criteria parameters (e.g.: confidence interval) through XML specification. For a better
visualization, the following lines present the XML model specification adopted by CPN
Simulator.
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Place

Place specifications have an internal identification (id) and the place name.

< Place id=“identification” name=“label”>

Token

Token specifications have a token color tag (TokenColor) and placeID that identifies
the token’s place.

<tokens><TokenColor placeID=“identification”/></tokens>

Arcs

Place-transition (input) arcs have four tags: fromID, identifies the place; toID,
identifies the transition; id, arc identification; and name, arc name.

< InputArc fromID=“PlaceIdentification” id=“identification” name=“arcName” toID=
“TransitionIdentification”>

Transition-place (output) arcs have four tags: fromID, identifies the transition;
toID, identifies the place; id, arc identification; and name, arc name.

< OutputArc fromID=“TransitionIdentification” id=“identification” name=“arcName”
toID= “PlaceIdentification”>

Transitions

Ordinary transitions are adopted in order to represent the ordinary models (see Sec-
tion 5.1.1). The execution time and energy consumption values are associated to these
transitions.

< OrdinaryTransition cy=“TimeValue” energyCost=“EnergyValue” id=“identification”
name=“label”>

Conditional transitions are adopted to represent the conditional model (see Section
5.1.2). In addiction to the time and energy values, a probability value is associated to
these transitions.

< ConditionalTransition cy=“TimeValue” energyCost=“EnergyValue” id=“identification”
name=“label” probability=“value”>

Stop Criteria parameters

The desired execution time (ErrorMaxT ime) and energy consumption (ErrorMaxEner)
errors and the confidence interval (IC) are set up by the following XML.
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< configuration ErrorMaxEner=“value” ErrorMaxTime=“value” IC=“confidence
interval”>

6.4.2 Simulation Process

The simulation starts by reading the Sim file, initializing statistical counters (variables
used for storing statistical information about system performance and energy consump-
tion) and setting the stop criteria parameters (confidence interval, desired energy con-
sumption and execution time errors). Next, the simulation clock is set to “0” (variable
indicating the current value of simulated time) and the event list is created (list that
contains the enabled transitions).

Figure 6.6: Simulation diagram.

Afterwards, the simulation process get into the loop that is present on the proposed
algorithm (see Appendix B). The simulation loop corresponds to the evaluation of the
proposed CPN model until the estimate results take into account the specified confidence
degree. The loop is started and the event list is updated by a method that adds the
enabled transitions and removes disabled ones. A transition with the smallest time asso-
ciated is chosen from the event list to be fired. It is important to recover that a transition
fire means that an event (instruction or block of instructions) was executed.

Always after performing an event activity (a transition fires), the simulation clock,
statistical counters and the system state are updated in order to represent the new state
of the CPN model evaluation. Moreover, after all transition fires, it should be evaluate
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if it is the end of the code or not. In case it is the code finish, a method is conceived
in order to determine whether the simulation should be finished or not according to the
stop criteria evaluation (Section 6.4.4). After finishing the simulation, the estimate re-
sults (e.g.: energy consumption and execution time values) are showed. Figure 6.6 shows
the simulation diagram of the adopted simulation process.

6.4.3 Simulation Algorithm Variables

In order to perform the adopted simulation algorithm (see Appendix B) considering the
CPN Simulator implementation (see Appendix D), some variables have been used to
provide the estimate metrics. These variables can be classified into: (i) input variables,
adopted by the stop criteria evaluation; (ii) auxiliary variables, compute the number of
iterations and replications simulated; (iii) counter variables for the metrics, compute the
desired metrics (energy consumption and execution time values); (iv) auxiliary lists for
the metrics, adopted to contain the simulation results in order to perform the statistical
calculation; (v) event lists, lists that contain the events that may or may not happen.
The following lines depicts this classification.

Input Variables

(i) nIterations : determines the number of iterations of each replication;

(ii) iConf : adopted confidence degree;

(iii) desiredT ime : desired execution time precision;

(iv) desiredEnergy : desired energy consumption precision;

(v) nMinReplications : determines the minimum number of replications;

(vi) nMaxReplications : determines the maximum number of replications.

Auxiliary Variables

(i) iteration : counter that computes the number of iteration;

(ii) currentReplication : counter that computes the number of replication.

Counter Variables for the Metrics

(i) currentT ime: counter for computing the executed time of the current iteration;
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(ii) currentCost : counter for computing the energy consumption value of the current
iteration.

Auxiliary Lists for the Metrics

(i) iT ime : List that contains the execution time values of each iteration;

(ii) iCost : List that contains the mean energy consumption values of each iteration;

(iii) costAnalysis: List that contains the mean energy consumption results of each
replication (the mean values after performed nIterations);

(iv) timeAnalysis: List that contains the mean execution time results of each replica-
tion.

Event Lists

(i) eventList : List that contains the enabled transitions;

(ii) readyTrasitions: List that contains the transitions ready to fire.

It is important to highlight that a simulation can be stopped by the stop criteria
evaluation (see Section 6.4.4) or by overcoming the maximum number of replications.
Considering the stop criteria evaluation, the simulation runtime depends directly on the
desired accuracy - input variables (iii) and (iv) - and the confidence degree - input variable
(ii) - that are configured by the designer. On the other hand, the simulation can be
finished when the currentReplication - auxiliary variable (ii) - overcomes the set up
value for the maximum number of replications - input variable (vi).

CurrentT ime and currentCost - counter variables (i) and (ii) - represent counters
for computing the executed time and energy consumption of the current iterations. The
iteration results are stored into lists - auxiliary lists (i) and (ii) - that contain the execution
time values and energy consumption of each iteration. After performing nIterations (a
replication) - input variable (i), the mean value of iT ime and iCost lists are computed
and stored into the timeAnalysis and costAnalysis - auxiliary lists (iii) and (iv). When
the minimum number of replications is executed - input variable (v), it is calculated
the absolute precision for both energy and time samples. These values are compared
with the desired precisions (variables desiredT ime and desiredEnergy). In case the
computed results are smaller than the desired ones, the simulation is finished. Otherwise,
the simulation continues by calculating the number of replication needed.

In addition, a list - event list (i) - that contains the next events (enabled transitions) is
also adopted. This list should be updated each time that an event happens. Considering
the possibility of two events be enabled at the same time, another list is used - event list
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(ii). This list takes into account the timing constrains of the events, in which the event
(transition) with the smallest time is chosen. Considering the case that two transitions
have the same timing constraints, one transition is selected randomly.

6.4.4 Stop Criteria Evaluation

A stop criteria evaluation is adopted in order to provide simulation results taking into
account specified confidence degree. As a narrow confidence interval has been considered,
the simulation process has to be executed several times (runs) to provide the estimates
results [Chu04]. The number of runs depends on (among other factors) the specified
confidence degree. The initial number of replication runs adopted is specified by the
analyzer.

Stop Criteria considers: Absolute Precisions for energy consumption and execution
time (the designer informs the desired precisions), means and standard deviations. The
Absolute Precision, calculated by Equation �.�, in which the t critical value is calculated
for 1 − α/2 confidence degree and n − 1 degrees of freedom; s is the standard deviation
of replication and n is the number of replications in the example.

AbsolutePrecision = t1−α/2,n−1 × s√
n

(�.�)

Afterwards, the desired precisions related to both energy consumption and execution
time are compared with the current results. The simulation is finished if these calculated
values are smaller than the desired precisions specified. Otherwise, the simulation pro-
ceeds by calculating the required number of new simulation runs (replications) through
Equation �.� considering the desired precision specified. There are two replication values,
one for energy consumption and other for execution time. Figure 6.7 depicts the adopted
stop criteria evaluation process.

i =

[
t1−α/2,n−1 × s

DesiredPrecision

]2

(�.�)

Exemplifying

For a better understanding, an example has been considered to demonstrate the stop
criteria evaluation process. First of all, it is determined both desired precisions values
for energy consumption and execution time which were 0,5μJ and 1.0μs, respectively.
The considered confidence interval was 95%. Table 6.1 shows the simulation results. It is
important to stress that each replication number considered 40 runs and, so, each value
is a mean value.

Afterwards, the desired precisions related to both energy consumption and execution
time are compared with the current simulation results (see Table 6.2). The reader should
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Figure 6.7: Stop criteria diagram.

observe that both calculated absolute precisions for energy and time were higher than
the desired values, where the energy result was 4,011μJ (desired 0,5μJ) and the time
computed was 2,147μs (desired 1,0μs). Thus, the simulation proceeded by calculating
the required number of new replication runs (i) through Equation �.�. The number of
more replication needed for the time metric was 46 and for energy was 643. Table 6.2
also shows the simulation summary results considering 653 simulations, in which it is
possible to remark that the computed absolute precisions were smaller than the desired.
As a result, the simulation is finished, where the mean time was 24,049μs and the mean
energy consumption value was 46,580μJ .

6.4.5 Enabling and Firing rules

Although the proposed CPN models have not considered parallelism, the CPN Simula-
tor can evaluate concurrent systems. CPN simulator adopts the atomic firing rule and
considers enabling memory method (see Section 2.5). In order to perform this task, a
timer measuring the execution time is adopted, and all transitions have a time associated.
The firing rule conceived that transition with the smallest time is fired first. Considering
the case that two transitions have the same timing constraints, one transition is selected
randomly.

A transition t is said to be enabled, if each input places p of t contains the multi-set
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Table 6.1: The simulation results.
Replication Number Mean Time (μs) Mean Energy (μJ)

1 21,125 41,6455

2 21,55 41,9305

3 25,7 49,92575

4 29,9 58,1395

5 22,875 44,36325

6 22,425 42,99325

7 26,45 51,33025

8 25,775 49,8

9 23,325 46,5175

10 28,675 54,68025

Table 6.2: Comparison: 10 replications versus 653 replications

10 replications 653 replications

Case Study Time(μs) Energy(μJ) Time(μs) Energy(μJ)

Mean Value 24,78 48,133 24,049 46,580

Standard Deviation 3,002 5,607 1,999 3,846

AbsolutePrecision 2,147 4,011 0,153 0,295

specified by the input arc inscription, the guard expression is evaluated to true and the
timing constraints are considered. A step Y is enabled in a state (M1, rl) at time r2 iff
(if and only if) the following properties are satisfied (see Section 2.6.2 for more details):

(i)
∑

(t,b)∈Y

E(p, t) < b > r2 ≤ M1(p), ∀p ∈ P

(ii) r1 ≤ r2

(iii) r2 is the smallest element of R for which there exists a step satisfying (i) and (ii).

An occurrence of a transition removes tokens from places connected to incoming arcs
(input places), and adds tokens to places connected to outgoing arcs (output places),
thereby changing the marking (state) of the TCPN. The number and colour of the tokens
are determined by the arc expressions, evaluated for the occurring bindings. The formal
definition is presented as follows.
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When a step Y is enabled in a marking M1 it may occur, changing the marking M1 to
another marking M2, defined by:

(i) M2(p) = (M1(p) −
∑

(t,b)∈Y

E(p, t) < b >) +
∑

(t,b)∈Y

E(t, p) < b >, ∀p ∈ P .

where:

The expression evaluation E(p, t) < b > computes the tokens which are removed
from p when t occurs with the binding b.

The expression evaluation E(t, p) < b > computes the tokens which are added to
places connected to outgoing arcs with the binding b.

For a better comprehension of concepts related to the adopted enabling and firing
rules, a Petri net PN = (P = {p0, p1, p2, p3, p4, p5}, T = {t0, t1, t2, t3, t4}, F = {(p0, t0),
(t0, p1), (t0, p2), (p1, t1), (p2, t2), (t1, p3), (t2, p4), (p3, t3), (t3, p5), (t2, p4), (p4, t5)}, W =
{(p0, t0, 1), (t0, p1, 1), (t0, p2, 1), (p1, t1, 1), (p2, t2, 1), (t1, p3, 1), (t2, p4, 1), (p3, t3, 1), (t3,
p5, 1), (t2, p4, 1), (p4, t5, 1)}, m0 = |1, 0, 0, 0, 0, 0|) is depicted in Figure 6.8. Conceiving
the time associated to the transition t0 = 0, t1 = 2, t2 = 1, t3 = 3 and t4 = 2. Since
the initial marking only enables the firing of t0, t0 is fired. Thus, the marking changed
to m1 = |0, 1, 0, 0, 0, 0| and the transitions t1 and t2 are enabled. At this moment, the
transitions t2 is fired due to its execution time be smaller. Afterwards, transitions t1 and
t4 are enabled to fire, and t1 occurred. The reader should bear in mind that the execution
time value increased just one (“1”) time unit instead of two (“2” - time associated to t1).
This happened due to the adopted enabling memory method. Table 6.3 shows the firing
results of the concurrent example depicted in Figure 6.8.

Figure 6.8: Concurrent example.
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Table 6.3: Firing rule results of Figure 6.8.

enabled fired execution time

t0 t0 0

t1, t2 t2 1

t1, t4 t1 2

t3, t4 t4 3

t3 t3 5

6.5 GRAPHICAL USER INTERFACE

The ALUPAS’ Graphical User Interface (GUI) provides a mechanism in which the de-
signer does not interact directly with the internal formalism (CPN). Figure 6.9 depicts
the ALUPAS’ input interface. A simulation process starts when the designer creates
a new project and puts the code to be analyzed. Afterwards, the designer inserts the
probabilistic values on conditional instructions and sets up the stop criteria evaluation
parameters (e.g.: confidence intervals, desired energy consumption and execution time
errors). After a successful compilation process, a CPN model is created to be evaluated
(simulated) in order to obtain the energy consumption and execution time estimates.

Figure 6.9: ALUPAS’ input interface.
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Figure 6.10: ALUPAS’ output interface.

ALUPAS can evaluate different control flow scenarios, where the designer just changes
the probabilistic annotation values of the conditional instructions. The estimate results
are stored and can be compared to other simulation results. Figure 6.10 shows the ALU-
PAS’ output interface. The Simulation Results frame depicts the estimated metric results
(mean energy consumption and execution time values, and their respective standard de-
viations and errors). After performing the simulation, it is important to highlight that
graphic representations (histogram and box plot) can be plotted. The reader should ob-
serve that different simulation results can be plotted into the same plot area (see Figure
6.10). This fact helps the designer to compare different simulation scenarios.

6.5.1 Component Integration

ALUPAS has been developed to combine the proposed framework functionalities (Section
4.2) into a unified environment with a GUI (see Figure 6.11). The reader should have
in mind that the designer just interacts with the GUI. However, trained designers can
view and edit the CPN model that represents the code behavior. Furthermore, the file
with all simulation results is available from which the designer can consider to perform
other statistical calculations. It is important to highlight that the component integration
is quite similar to the proposed framework and, so, it has not been not described in details.
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Figure 6.11: Component Integration.

6.6 SUMMARY

This chapter presented the simulation environment, named, ALUPAS, that provides, in
early design phases, a mechanism that assists design decisions on energy consumption
and performance concerning embedded applications. Thus, this chapter detailed the
ALUPAS’ components. The Binary CPN Compiler and CPN Simulator components are
the most important. The Binary CPN Compiler automatically translates an embedded
software, implemented in C language or Assembly, into a CPN model, whereas the CPN
Simulator is a tool developed to evaluate the proposed CPN models.



CHAPTER 7

CASE STUDIES

In order to illustrate the practical usability of the proposed methodology, this
chapter presents five experimental results in details. All experiments were per-
formed on an AMD Turion 64X2 1.6GHz, 2Gb RAM, and OS WinXP. The
first one exemplifies the proposed methodology by a small code application
which was adopted for explaining the process to estimate both energy con-
sumption and execution time of embedded softwares. The second experiment
is performed in order to illustrate a runtime comparison between the CPN
Simulator, specific engine to evaluate CPN models, and CPN Tools. Experi-
ments adopting a binary search algorithm are considered, in the third study
case, to depict that different scenarios can be created by changing the prob-
abilistic annotations for the conditional code instructions. The fourth exper-
iment, the BCNT algorithm, is considered to evaluate the proposed method-
ology and to illustrate in details the proposed optimized CPN model (model
after reduction process). The last experiment, the pulse-oximeter case study,
is conducted in order to apply the proposed methodology in a real-world case.

7.1 EXAMPLE ONE

This example has been conducted in order to exemplify the proposed methodology. Figure
7.1 depicts a small application code, where the values for the stop criteria evaluation
are depicted on the first code line. Note that the confidence degree is set to 95%, the
specified precision for energy consumption is 200ηJ, and 20μs is the specified precision
for the execution time. The number of runs of each replications is set to 40 times, and
the maximum number of replications is 10.000 states (if the simulation is finished by this
condition, there is no guarantee that the confidence degree is gotten). It is important to
highlight that these values are chosen by the designer from a previous acknowledgement
about the code under analysis.

The registers’ values have not been considered in the model, and instead of comparing
them, a probabilistic approach is adopted. In this example, there is a loop (lines 16-
20) that is executed 10 times, so, the probability is performed using the equation p =
1 − (1/N). In this case, p = 1 - 1/10 = 0,9 (probability of the conditional instruction
blt loop). The probability has been adopted to set prob variable (see Figure 5.7) in the
conditional CPN model.

81
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1 ;<$0.95|200.0|20.0|40|10000$>
2 AREA ARMex, CODE, READONLY
3 ENTRY
4 main bl proc
5 bx r14
6
7 proc stmdb r13!,{r14}
8 bl for
9 bl for
10 mov r1,#0
11 mov r2,#0
12 add r1,r1,#1
13 add r2,r2,#2
14 ldmia r13!,{r15}
15
16 for mov r4,#1
17 b test
18 loop add r4,r4,#1
19 test cmp r4,#0xa
20 blt loop ;<@0.9@>
21 bx r14
22 END

Figure 7.1: Annoted Assembly Code

7.1.1 Simulation Results.

The code depicted in Figure 7.1 was simulated in three different ways: (i) using CPN
Tools with the CPN model, (ii) using CPN Tools with the optimized CPN Model, (iii) and
adopting the proposed CPN Simulator with the optimized CPN Model. The simulation
results using CPN Tools considering both CPN model and optimized model are identical.
Thus, the proposed CPN Simulator has been considering only the optimized model.

Table 7.1 presents both CPN Tools and CPN Simulator simulation results. The reader
should observe that we are considering standard deviation and errors for both metrics
(energy consumption and execution time). The time standard deviation obtained when
CPN Tools was considered was 0, 19μs. The confidence degree adopted was 95% (see
header annotation on Figure 7.1), so that the execution time value (2, 23μs) should be
within [2, 10μs; 2, 37μs].

Table 7.1: Simulation Results of the code on Figure 7.1.

CPN Tools CPN Simulator

Mean Time: 2,2320 μs Mean Time: 2,2279 μs

Time SD: 0,1905 μs Time SD: 0,1444 μs

Time Error: 0,1363 μs Time Error: 0,1033 μs

Mean Energy: 167,4008 ηJ Mean Energy: 167,2632 ηJ

Energy SD: 14,1533 ηJ Energy SD: 10,7243 ηJ

Energy Error 10,1240 ηJ Energy Error: 7,6717 ηJ

Table 7.2 compares the simulation results obtained through CPN tools (considering
the non-optimized model) and the proposed CPN simulator in order to show that these
results are very close. The simulation results provided by the CPN Simulator are similar
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to those obtained by the CPN Tools, since the differences are smaller than 2%. Table
7.2 also compares the simulation runtime of both environments CPN Tools and CPN
Simulator. The CPN Tools spent 22s, meanwhile the CPN Simulator spent less than 1s.
Thus, this simple example showed that the simulation runtime of CPN Simulator were
much faster then the CPN Tools.

Table 7.2: Comparison between simulation results.

CPN Tools CPN Simulator

CPN Model CPN Optimized

Execution Time 2,2320 μs 2,2279 μs

Energy Consumption 167,4008 ηJ 167,2632 ηJ

Runtime 22 s 172 ms

7.2 EXAMPLE TWO

This experiment has been adopted aiming to show the importance of both CPN reduction
process and CPN Simulator. It consists of codes with instructions that only use the
ordinary model (see Figure 5.3). Thus, these codes do not perform branches in the code
control flow and the examples were performed with 10, 20, 30, 40, 50, 100, 200, 400
instructions in order to perform the runtime comparison between CPN Tools and CPN
Simulator.

Table 7.3 shows a runtime comparison of those simulation models in which different
numbers of instructions were taken into account. It is worth stressing that the runtime
simulation on CPN tools is quite time consuming when analyzing large models.

Table 7.3: Comparison of the runtime simulation.
CPN Model CPN Tools /

N Inst. CPN Tools CPN Simulator CPN Simulator

10 17s 187ms 91

20 21s 219ms 96

30 30s 234ms 128

40 41s 281ms 146

50 56s 297ms 189

100 1min 51s 515ms 216

200 5min 6s 1s 219ms 251

400 17min 25s 3s 438ms 304
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Table 7.3 also presents the CPN Simulator runtime which is at least 91 times shorter
than the respective time on CPN Tools environment. The column named CPN Tools /
CPN Simulator shows the ratio between CPN Simulator runtime and CPN Tools runtime.
The CPN Simulator has performed much faster simulations than CPN tools. However, it
is also important to mention that CPN Simulator performs even better for larger models.
For a 20-instruction application, the CPN Simulator was 96 times faster than CPN Tools;
and for a 200-instruction application, the CPN Simulator was 251 times faster.

Figure 7.2 depicts the simulation time comparison between CPN Tools and CPN
Simulator. The CPN Simulator was much faster than CPN Tools. A possible explanation
for the runtime in CPN Tools has not been good enough to evaluate the conceived models
(huge models) is the fact that CPN Tools is a generic environment to create, edit and
simulate CPN models. Thus, such environment needs to perform a syntax analysis process
before being able to simulate. Furthermore, as CPN Simulator is a specific tailored
environment for simulating the conceived CPN models, it does not spend time checking
models’ syntax. Nevertheless, it is important to stress that the obtained models are
syntactically correct and their semantics represent the programs’ control flow.

Figure 7.2: CPN Tools versus CPN Simulator runtime.

In this example, the adopted reduction process clustered all the instructions when it
is considered the optimized CPN model. The CPN tools runtime and CPN Simulator
runtime were 6s and 187ms, respectively for all of these experiment examples. Thus, the
simulation runtime with optimized CPN model (6s) for the 400-instruction application
was 174 times faster than the simulation with non optimized CPN model (17min 25s).

7.3 BINARY SEARCH ALGORITHM

A binary search algorithm is a technique for finding a particular value in a sorted list (ar-
ray) of values. This method starts by selecting the middle element of an array, comparing
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its value to the target value, and determining if the selected value is greater than, less
than, or equal to the target value. The selected element (by guessing its index) whose
value turns out to be higher becomes the new upper bound of the array, and if its value
is lower, it becomes the new lower bound. This technique continues iteratively and such
algorithm reduces the search by a factor of two each time.

1 ;<$0.95|0.1|0.1>
2 AREA ARMex, CODE, READONLY
3 ENTRY
4 main MOV r0,#0
5 MOV r1,#0xfe
6 MVN r3,#0
7 B loop
8
9 begin ADD r12,r0,r1
10 ASR r2,r12,#1
11 LDR r12,|L1.4084|
12 LDR r12,[r12,r2,LSL #3]
13 CMP r12,#0x12c
14 BNE notfound ;<@1.0@>
15 LDR r12,|L1.4084|
16 ADD r12,r12,r2,LSL #3
17 LDR r13,[r12,#4]
18 B end
19
20 notfound LDR r12,|L1.4084|
21 LDR r12,[r12,r2,LSL #3]
22 CMP r12,#0x12c
23 BGE inf ;<@0.0>
24 ADD r0,r2,#1
25 B loop
26
27 inf SUB r1,r2,#1
28
29 loop CMP r0,r1
30 BLE begin ;<@0.88@>
31
32 end MOV r0,r0
33 BX lr

Figure 7.3: Binary Search Code in Assembly.

In this example, an array with 255 elements was considered. Figure 7.3 depicts this
algorithm in assembly language and Figure 7.4 shows the same algorithm in C. It is
possible to observe that the code behavior depends on the searched element (key) and the
elements present on the array. In order to represent such behavior, the conditional branch
instructions present in Figure 7.3 in the lines 14, 23 and 30 received code annotations
representing their probability for branching. During the code execution, the instructions
on line 14 and 30 are the ones that determine the number of iterations on the code. The
instruction present on line 23 defines the next array bound (lower or higher).

The code was evaluated in three different scenarios: Best Case Execution Time
(BCET), Typical Case Execution Time (TCET) and Worst Case Execution Time (WCET).
For each scenario, different probabilistic values were associated to the conditional instruc-
tions in order to reproduce their respective behavior.

The worst case occurs when the binary search algorithm looks for a non-present el-
ement on the array. In this case, the iteration number is 8 (log2(255)). On the other
hand, in the best case scenario, the searched element is found in the first iteration (in the
middle of the array). Nevertheless, the probability of finding an element on an i iteration

is 2i−1

255
, considering a typical case, then the mean iteration number in order to find an

element is
∑8

i=1 i · 2i−1

255
∼= 7.
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1 #DEFINE TARGET 300
2
3 struct DATA {
4 int key;
5 int value;
6 };
7
8 struct DATA data[255];
9
10 int binary_search()
11 {
12 int fvalue, mid, up, low;
13 low = 0;
14 up = 254;
15 fvalue = -1 /* all data are positive */ ;
16 while (low <= up) { ;<@0.88@>
17 mid = (low + up) >> 1;
18 if (data[mid].key == TARGET) { //<@1.0@>/* found */
19 fvalue = data[mid].value;
20 break;
21 } else
22 if (data[mid].key < TARGET) { //<@0.0@> /* not found */
23 low = mid + 1;
24 } else {
25 up = mid - 1;
26 }
27 }
28 return fvalue;
29 }

Figure 7.4: Binary Search Code in C.

The instruction in line 30 of Figure 7.3 is responsible for the conditional behavior
(while) related in the Figure 7.4. As a consequence, in the worst case, such conditional
instruction should be evaluated as true 8 times, so its probability is p = 8

9
. Likewise, the

probability of the instruction present in line 14 is “1” in order to represent a non-present
element searched on-the-array. The reader should note that this conditional statement
is represented in line 18 of the C code as Figure 7.4 depicts. Such value may seem odd,
but the reader should bear in mind that it reproduces the probability for not finding an
element on the array, hence its value should be true (“1”) considering the instruction
that makes a branch instead of getting inside the code. In addition, the probability set
on the other conditional instruction (line 14 of Figure 7.3) was set up to perform the
worst case scenario. Thus, both figures (Figure 7.3 and Figure 7.4) depict the annoted
code in order to represent the worst case scenario of the binary search algorithm.

In order to evaluate the best case, the instructions present in lines 14 and 30 should
have their probabilities set to “0” and “1”, respectively. It is important to state that the
probability related to the other conditional instruction (present in line 23) is not relevant
because the code execution, in this case, does not reach this point.

In order to evaluate the typical case scenario, the mean iteration number (7) previously
calculated was considered. Hence, the probabilities related to instructions present in lines
14, 23 and 30 were 6

7
(meaning that in the 7th try, the element is found), “1” and “0,5”,

respectively.
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7.3.1 Results

Table 7.4 shows the results for the typical, the best and the worst scenarios of a binary
search algorithm. The lowest energy consumption and execution time values occurred
in the best case. On the other hand, the highest consumption and execution time were
performed by the worst scenario. The typical scenario results were between the best
and worst case. Moreover, the estimated results are quite close to the measured ones
performed on the hardware platform. For example, the estimated execution time value
for the worst case was 15,3μs and the measured one was 15,2μs. Figures 7.5 and 7.6
depict the respective results.

Figure 7.5: Binary search results of execution time.

Figure 7.6: Binary search results of energy consumption.

After the results had been compared (validated) with the hardware platform for an
array with 255 elements, another experiments were performed taking into account other
arrays with different lengths for estimating the worst and best cases. As it was already
explained, the conditional instruction present on line 30 is the one responsible to deter-
mine the list length, so that its probability were p = 4

5
(for 15 elements), p = 5

6
(for 31

elements), p = 6
7

(for 63 elements) and so on until p = 10
11

(for 1023 elements). Figure 7.7
shows the results considering execution time worst case and Figure 7.8 depicts the results
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Table 7.4: Binary Search results summary
Estimated Hardware

Case Study Time(μs) Energy(μJ) Time(μs) Energy(μJ)

1. Binary Search(BCET) 2,1 0,12 2,3 0,13

2. Binary Search(WCET) 15,3 0,87 15,2 0,87

3. Binary Search(TCET) 11,7 0,69 12,1 0,69

related to energy consumption worst case. As the reader may observe, the results of
both energy consumption and execution time worst case increase when the binary search
algorithm is performed in higher arrays.

Figure 7.7: Binary search results of execution time.

Figure 7.8: Binary search results of energy consumption.

7.4 BCNT ALGORITHM

The BCNT Algorithm was proposed by Motorola as an integrated part of Power Stone
Benchmark. The BCNT adopts a series of operations between two arrays, explores the
memory space manipulation, and it also adopts bitwise operations. Figure 7.9 depicts the
optimized CPN model for the BCNT algorithm, in which it is possible to represent a set
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of instructions by only one transition (reductions). The BLOCKID transition represents
these clustered instructions.

Figure 7.9: The CPN model for BCNT Algorithm.

Table 7.5 depicts a comparative study between the estimated values and measurements
conducted on hardware platform according to the methodology described in [TM08]. The
execution time measured on hardware was 96,39 μs and the energy consumption was 5,73
μJ . The estimated time error was 2,27% and the energy error 4,23%.

7.5 PULSE-OXIMETER

This case study is considered in order to apply the proposed methodology for estimating
the energy consumption and execution time of a real embedded system application. Pulse-
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Table 7.5: BCNT results summary.

Time (μs) Energy (μJ)

Estimated 94,25 5,50

Measured 96,39 5,73

Error 2,27% 4,23%

oximeter is a widely-used biomedical device and a portable one is battery operated,
therefore its battery-life time is of great importance. This electronic device is responsible
for non-invasively measurements of the blood oxygen saturation and has been widely used
in Center Care Units (CCU).

The architecture of the adopted pulse-oximeter device can be seen in Figure 7.10.
Such architecture consists of a micro-controller unit, a spectrophotometric sensor (which
is compounded by a infrared led, a red led, and a photo-diode), a digital/analog interface,
a led driver, a converter, a pre-amplifier, a demultiplex, a demodulator, a selector sig-
nal/test, two filters, a programmable amplifier, an interface, an attenuator, and a selector
control.

Figure 7.10: Pulse-Oximeter Architecture.

The micro-controller controls the synchronization and amplitude of the led driver,
which dispatches non-simultaneous stream pulses to the infrared and red leds (see Figure
7.11). Both leds generate, respectively, infrared and red radiation pulses through the
finger of a patient. A photo-diode detects the radiations level. The micro-controller
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calculates the related oxygen saturation level based on data received, and shows the
result on a display.

Figure 7.11: Pulse-oximeter.

The pulse-oximeter code was divided into three processes: (i) excitation which is re-
sponsible for dispatching stream pulses to the leds in order to generate radiation pulses;
(ii) acquisition, which deals with the data captured from the radiations on the patient’s
finger; and (iii) control which is responsible to perform the calculation of oxygen satura-
tion level. For each process, a CPN model was built in order to estimate the respective
energy consumption and execution time. Table 7.6 presents a comparative study between
the estimated values and measurements conducted on the hardware platform according
to the methodology described in [CM08].

Table 7.6: Pulse-oximeter result summary

Estimated Hardware Error

Case Study Time(μs) Energy(μJ) Time(μs) Energy(μJ) Time(%) Energy(%)

1. Excitation 38,48 2,20 38,88 2,25 1,04 2,20

2. Acquisition 86,61 5,16 91,18 5,55 5,28 7,66

3. Control 12410,78 722,54 12745,99 779,46 2,70 7,88

Furthermore, Table 7.7 presents a runtime comparison of CPN Tools versus CPN Sim-
ulator, and Figure 7.12 also depicts this comparison through a graphic representation. In
this graphic, there are three lines representing the simulations: (i) CPN Tools adopting
CPN Model as input; (ii) CPN Tools with the CPN Optimized model as input; and (iii)
CPN Simulator evaluating the CPN Optimized model. The reader should observe that
the first line increases much faster than the others, hence, one may observe that the CPN
Simulator has provided results at good accuracy in a much faster runtime than CPN
Tools does.
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Table 7.7: CPN Tools runtime x CPN Simulator runtime.
CPN Tools CPN Simulator

CPN Model CPN Opt CPN Opt

Excitation 203s 150s 22s

Acquisition 1540s 729s 71s

Control 4203s 1325s 151s

Figure 7.12: Runtime Comparison.

Nevertheless, in order to validate the estimated values taking into account a statistical
method, the Two-Sample T-Test was conducted. Such test compares the effectiveness
of these estimated values with the measurement conducted on the hardware platform
by determining whether or not there is evidence that highlights difference between the
results. Thus, this approach has been adopted to determine whether the estimate values
compared with the hardware measurements have or have not a statistically significant
differences. For more details about how to perform such test, see Appendix A.

Excitation:

Table 7.8 depicts the execution time data for the difference T-test of excitation process.
After performing this test, with 95% of confidence interval, the difference between the
execution times measured and simulated is (-0,293; 0,313). As the reader may observe,
zero (0) belongs to the interval, thus no difference was detected to highlight distinction
between the two sets of data (obtained by measurement and through simulation). Besides,
the p-value (0,948) is far greater than commonly chosen α-levels, hence this value might
be observed as the “power” of the assertion presented.
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Table 7.8: Excitation - comparison of execution time.

Sample Size Mean Standard Deviation

Simulator 416 38,89 3,14

Hardware 1000 38,88 0,007

Table 7.9: Excitation - comparison of energy consumption.

Sample Size Mean Standard Deviation

Simulator 416 2,29 0,18

Hardware 1000 2,25 0,06E-5

Table 7.9 depicts the energy consumption data for performing the difference T-test
considering 95% of confidence interval degree. The confidence interval calculated is
(0,02265; 0,05735). As the interval does not include zero, it does not suggest that they
are equal. Instead, there are evidences to assert that the difference between those data
sets is 0,05735 with 95% of confidence. In other words, the difference is 2,5% with a
confidence interval of 95%.

Acquisition:

Table 7.10 depicts the execution time data for the difference T-test of acquisition pro-
cess. After performing this test, with 95% of confidence interval, between the execution
times measured and simulated is (-4,804; -4,336). As the reader may observe, zero (0)
does not belong to the interval, it does not suggest that they are equal.

Similarly, Table 7.11 depicts the energy consumption data for the difference T-test
of acquisition process. After performing this test, with 95% of confidence interval, the
difference between energy consumption values estimated and measured is (-0,40389; -
0,37611). As the interval does not include zero, it does not suggest that they are equal.
Nevertheless, there are evidences to assert with 95% of confidence that the difference
between those execution time data sets is 5,5%, and 7,8% for the energy consumption
data sets.

Control:

Table 7.12 depicts the execution time data for the difference T-test of control process.
After performing this test, with 95% of confidence interval, the difference between exe-
cution times simulated and measured is (-689; 19). As the reader may observe, zero (0)
belongs to the interval, thus no difference was detected to highlight distinction between
the two sets of data (obtained by measurement and through simulation). Besides, the
p-value (0,063) is greater than commonly chosen α-levels, hence there is no difference
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Table 7.10: Acquisition - comparison of execution time.

Sample Size Mean Standard Deviation

Simulator 2225 86,61 5,62

Hardware 1000 91,18 3E-7

Table 7.11: Acquisition - comparison of energy consumption.

Sample Size Mean Standard Deviation

Simulator 2255 5,16 0,334

Hardware 1000 5,55 0,7E-5

between estimated and measured values.

Table 7.13 depicts the energy consumption data for performing difference T-test con-
sidering 95% of confidence interval degree. The confidence interval calculated is (-91,0;
-50,6). As the interval does not include zero, it does not suggest that they are equal.
Instead, there are evidences to assert that the difference between those data sets is 11%
with 95% of confidence.

7.6 SUMMARY

This chapter presented five experiments adopted to evaluate the proposed methodology,
and also, to demonstrate the importance of the CPN reduction process as well as to justify
the development of the specific simulation tool, named, CPN Simulator. The first one
exemplified the proposed methodology by a small code application which was adopted
for explaining the process to estimate both energy consumption and execution time of
embedded softwares.

The second experiment was performed in order to illustrate a runtime comparison
between the CPN Simulator, specific engine to evaluate CPN models, and CPN Tools. It
demonstrated that the CPN Simulator runtime was 304 times faster, in some cases, than
CPN Tools environment. Moreover, this case study also depicted the runtime evaluation
adopting the reduction process that was, in some cases, 174 times faster than simulations
adopting the non optimized CPN model.

Experiments adopting a binary search algorithm were considered in the third study
case. These experiments were performed in order to depict that different scenarios can be
created by changing the probabilistic annotations for the conditional code instructions.

The fourth experiment, the BCNT algorithm, is an integrated part of Motorola’s
Power Stone Benchmark. It was considered to evaluate the proposed framework and to
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Table 7.12: Control - comparison of execution time.

Sample Size Mean Standard Deviation

Simulator 92 12411 1708

Hardware 1000 12746 1,1E-6

Table 7.13: Control - comparison of energy consumption.

Sample Size Mean Standard Deviation

Simulator 92 708,6 97,5

Hardware 1000 779,4 0,5E-5

illustrate in details the proposed optimized CPN model (model after reduction process).

The last experiment, the pulse-oximeter case study, was conducted in order to apply
the proposed methodology in a real-world case. This equipment is an electro-medical
device responsible for measuring the oxygen saturation in the blood system using a non-
invasive method.

It is also important to highlight that the energy consumption and execution time
estimates obtained from the proposed model evaluation are 93% close to the respec-
tive measures obtained from the real hardware platform. Moreover, the CPN Simulator
runtime provided accurate results with much smaller computation effort. Finally, the
reduction process has provided meaningful results.



CHAPTER 8

CONCLUSIONS

Over the last years, the time-to-market has always been demanding high complexity
embedded systems in even shorter times. Furthermore, since software implementations
have some advantages than hardware, due to flexibility and lower cost, nowadays, 80%
of a embedded system development is related to software. Due to this fact, the design of
embedded software has significantly increased its complexity. Moreover, little attention
has been given to execution time and energy consumption constraints, which are issues
that must be concerned, since several applications demand safety properties.

In this context, this dissertation presented an approach based on Coloured Petri nets
for estimating both embedded software execution time and energy consumption. The
presented work proposes a methodology which reproduces the code control flow through
the composing of the proposed set of basic CPN models that represents the behavior of the
instruction set microcontroller. The desired estimate metrics are obtained by simulating
the CPN model.

CPN models can also be analyzed by means of reduction, where the main idea is to
define the desired properties to investigate and, then, to apply a set of reduction rules
by which the model is simplified. Thus, this work proposes a set of CPN reduction
rules in order to transform a CPN model into an equivalent simplified model, in which
all important characteristics for estimating energy consumption and execution time are
preserved. The runtime evaluation adopting this reduction process was, in some cases,
174 times faster than simulations adopting the non-optimized CPN model.

In addition, this work aims to provide, in the design phase, a methodology that
helps the designer by informing the energy consumption and the performance of either
Assembly codes or C programs. In order to accomplish this, a set CPN models have been
proposed to reproduce each instruction behavior of an ARM7-based microcontroller. It
is important to state that the concept of the proposed methodology can be applied to
other families of processors.

This work also provides a simulation infrastructure of integrated tools that allows the
automatic translation of a compiled code into a CPN Model, such that non-specialized
users do not need to interact directly with the Petri net formalism. Hence, ALUPAS,
a unified environment for estimating energy consumption and execution time, has been
developed in order to provide such functionalities in which system design complexity
is considerably reduced and inconsistencies related to non-functional requirements are
detected earlier without great difficulty.

96
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ALUPAS adopts a stochastic discreet event simulation, in which complex systems
and different control flow scenarios can be easily evaluated. In order to represent these
scenarios, the designer just changes the probabilistic annotation values associated to the
conditional instructions. The estimate results are stored and can be compared with other
simulation results. Furthermore, being able to estimate the performance and energy
consumption of a system is important because if such requirements are not satisfied, the
system designers can make changes in a very early stage of the design, thereby saving
both time and money. Hence, ALUPAS can provide important insights to the designer
about the battery lifetime as well as parts of the application that needs optimization.

ALUPAS is composed of some components such as Binary CPN Compiler, that auto-
matically generates a CPN model through a compiled code and the proposed basic CPN
models, and the CPN Simulator, a tool developed to evaluate the proposed CPN models
since the runtime simulation on CPN tools is quite time consuming when analyzing large
models. Although the proposed methodology does not consider parallel tasks, the CPN
Simulator was developed in such way that turns it able to evaluate this kind of system.
Thus, in future works, this tool can also be adopted to simulate parallel systems.

It is worth mentioning that the estimated values obtained via simulation on CPN Tools
and the simulation through CPN Simulator are quite close. However, the simulation on
CPN Simulator was 300 times faster, in some cases, than simulations on CPN Tools when
considering the optimized CPN Model. For sake of fairness, the reader should also bear
in mind that CPN Tools is a general purpose environment, and it provides many other
functionalities than the CPN Simulator does.

The presented case studies clearly show that the proposed methodology and the frame-
work have provided meaningful results with small errors using a real-world device of center
care units, called pulse-oximeter, and other customized examples. The estimates obtained
from the model are 93% close to the respective measures obtained from the real hardware
platform. It is also important to highlight that pieces of codes that are either energy or
timing consuming were also identified. Moreover, the simulations provide accurate results
with much smaller computational effort than measurements on the hardware platform.

8.1 CONTRIBUTIONS

The main contribution of this dissertation is the proposed methodology for estimating
energy consumption and execution time of embedded systems in early design phases. This
work extends the approach proposed by Oliveira [OJ06] by simplifying such methodology
considering other microcontroller (ARM7-based instead of 8051) and dealing with C
programs. Furthermore, a simulation tool was developed in order to improve the runtime
evaluation of the proposed CPN models. Specific contributions are depicted as follows:

� Framework. A framework that considers the proposed methodology is proposed
for supporting design decisions on energy consumption and performance of embed-
ded applications in early design phases;
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� Modeling. The proposed methodology automatically translates the embedded
code by the proposed binary-CPN Compiler into a Coloured Petri net, a formal
behavioral model that allows the software execution analysis. The modeling phase
is based on composition of basic blocks that represents each relevant behavior of
the ARM7-based instruction set microcontroller.

� Simulating. A stochastic evaluation approach through discreet event simulation is
proposed for output data analysis. A new simulating tool was developed to simulate
the specific CPN models in a much faster simulation runtime than the other generic
engines available for CPN simulation.

8.2 FUTURE WORKS

It is important to stress that the proposed methodology is not restrict to ARM7 based
microprocessors. Thus, as future directions, we plan to extend the proposed methodology
to study other processor families. The proposed CPN Generator is a tool developed in
order to help the designer to extend the proposed methodology to other processor families
by the automatic creation of the basic CPN models. Moreover, the proposed methodology
can be extended to cover pipeline, which is a technique adopted by processors to allow
overlapping execution of multiple instructions at the same time.

Similarly, another extension can be to consider not only simple task operations, but
also to estimate the energy consumption and execution time of multi-processors, in which
the Coloured Petri Net has a precise formal semantic that can easily represent parallel
systems. Moreover, the CPN Simulator tool was developed considering this future work
and it is able to evaluate parallel and concurrent systems.

Another possible future work is related to estimate energy consumption and execution
time to more complex and large systems such as data centers. Again, the formal semantic
provided by the adoption of Petri net can support this more complex kind of system.
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APPENDIX A

A VALIDATION PROCESS

Metrics estimations are subject to accuracy and precision errors among others. Con-
fidence intervals have been widely adopted to quantify the precision of the simulation
estimates. Since there is noise in any measurement, it is necessary to adopt a technique
for determining whether random fluctuations in the measurements are actually significant
or not.

In order to validate the simulation results, an approach has been adopted to determine
whether the estimates values compared with the hardware measurements have or have
not a statistically significant differences. One of the simplest approach for comparing
alternative evaluation is to determine whether the confidence intervals for the two data
sets of measurements being compared overlap [Mea00]. If they do, then there is no
evidence to state that there is a significant difference between them at the specified
confidence degree. If they do not overlap, however, it is possible to conclude that those
data sets are significantly different.

It is important to state that when the confidence intervals do not overlap, it is not
possible to say with complete assurance that there actually is a real difference between
the alternatives. It is only possible to say that there is no reason to believe that there
is not a difference. There is still the probability, however, that the differences observed
were simply due to the random fluctuations of the alternatives.

A.1 NONCORRESPONDING MEASUREMENTS

The measurements are noncorresponding or unpaired when there is not a corresponding
number of the measurements made to compare two different systems. In this context, as
there is no correspondence or pairing between the measurements, it is necessary to adopt
an approach that computes the means x1 and x2, and the standard deviations, s1 and
s2, for each set of measurements separately. Then it is computed the difference of the
means, x = x1 − x2.

Next, it is computed the standard deviation of that difference of mean values through
Equation A.�. This equation is the sum of the standard deviations of each set of mea-
surements, fittingly weighted by the total number of measurements in each set.
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Sx =

√
s1

2

n1

+
s2

2

n2

(A.�)

In order to find the confidence interval (c1, c2) for the difference of the means, Equa-
tion A.� and A.� are performed. At the confidence level chosen, there is no significant
difference between the two sets of measurements if the resulting confidence interval in-
cludes “0”. On the other side, if the confidence interval (c1, c2) does not includes “0”,
there will still the probability that the differences observed were due simply to random
fluctuations in the both measurements. Although this type of ambiguous conclusion is
often not very satisfying, it is unfortunately the best that can be done given the statistical
nature of such measurements.

c1 = x − Z1−α/2,ndf
Sx (A.�)

c2 = x + Z1−α/2,ndf
Sx (A.�)

When at least 30 measurements have been made for each system (both n1 ≥ 30 and
n2 ≥ 30), the number of degrees of freedom in the t distribution is performed through
the Equation A.�. On the other hand, either n1 ≤ 30 or n2 ≤ 30 the number of degrees
of freedom in this case is computed by Equation A.�.

ndf = n1 + n2 − 2 (A.�)
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APPENDIX B

THE SIMULATION ALGORITHM

A simulation algorithm has been adopted in order to perform both energy consump-
tion and execution time estimates. Figure B.1 depicts this algorithm, in which the reader
should observe that the simulation can be finished by the stop criteria evaluation (see Sec-
tion 6.4.4) or by overcoming the maximum number of replications. In case the simulation
is finished through overcoming the adopted value for maximum number of replications,
there is no guarantee that the desired confidence degree is obtained.

Algorithm Simulation
Input nMaxReplication, nMinReplication, iterations: non-negative integers;

desiredEnergy, desiredT ime, iConf : non-negative reals;
Output energyConsumption, executiontime : non-negative reals;
1 initialize statistical counters and lists;
2 repeat
3 update eventList;
4 {fire enabled transition with shorter time}
5 fire readyTransition;
6 currenT ime← transition.T ime;
7 currentCost← transition.Cost;
8 if codeF inished then
9 iT ime← currentT ime;

10 iCost← currentCost;
11 inc iteration;
12 currenT ime← 0.0;
13 currentCost← 0.0;
14 {completed one replication}
15 if iteration = nIterations then
16 timeAnalysis.add← mean(iT ime);
17 costAnalysis.add← mean(iCost);
18 inc currentReplication;
19 {finished the simulation of initial replications}
20 if currentReplication >= nMinReplications then
21 {compute absolutePrecision for iT ime and iCost(Equation �.�)}
22 if absT ime <= desiredT ime and absEnergy <= desiredEnergy

then
23 {stop the simulation}
24 return (mean(timeAnalysis), mean(costAnalysis));
25 else
26 {compute i replication needed(Equation �.�)}
27 nMinRepications← i;
28 {restart the statistical counters}
29 iteration← 0;
30 iCost← null;
31 iT ime← null;
32 until currentReplication <= NMaxReplication

Figure B.1: Simulation Algorithm

The simulation algorithm receives as input a confidence degree, the desired precisions
for both energy consumption and execution time, the number of iterations, the maxi-
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mum and minimum number of replications. Moreover, the output of this algorithm are
the energy consumption and execution time estimates which their respective standard
deviation and errors.

The simulation algorithm starts by initializing: (i) statistical counters, variables used
for storing statistical information about system performance and energy consumption,
(ii) auxiliary lists for the metrics, adopted to contain the simulation results in order to
perform the statistical calculation, and (iii) event lists, lists that contain the events that
may or may not happen.

Afterwards, a loop is started by the event list being updated - line 3. The next event
(transition) occurs - line 4. Thus, statistical counters - lines 6 and 7 - are updated.
Considering that the transition fired represents the last code instruction, the current
iteration results are stored into lists - lines 9 and 10 - that contain the execution time
values and energy consumption of each iteration. Next, it is incremented the number of
simulated iterations and current statistical counters are reset - lines 11 - 13. In case the
number of iterations executed corresponds to the replication number, the mean values
of the lists that contain the replication results are stored into the replication lists - lines
16 and 17. Next, it is incremented the number of replications executed - line 18. When
the minimum number of replications is executed, it is calculated the absolute precision
for both energy and time samples - lines 20 and 21. These values are compared with
the desired precisions (variables desiredT ime and desiredEnergy) - line 22. In case
the computed results are smaller than the desired ones, the simulation is finished - line
24. Otherwise, the simulation continues by calculating the number of replication needed
- line 27. Lines 29 - 31 restart the iteration variables. Finally, line 32 is responsible
for finishing the simulation in case the number of replications overcomes the maximum
number previous configured.



APPENDIX C

BINARY-CPN COMPILER CLASS DIAGRAM

Figure C.1 overviews the binary-CPN Compiler class diagram implementation. The
XMLParser class generates the XMLProb file, in which the probabilistic values of
conditional instructions are present. Afterwards, the parserARM7 class identifies each
instruction code to create an internal representation. Next, the instructionReaderARM7
class utilizes the factoryARM7 class to read each internal instruction representation and
to create different instructions types. Afterwards, the instructionReaderARM7 class
considers the modelFactory class in order to construct the CPN model that represents
the code behavior. It is important to highlight that an internal instruction representa-
tion is created to cope with the needed information for the simGenerator class. The
parserARM7 has also a method that performs reduction rules into the created evalua-
tion models. Finally, simGenerator class creates a XML file (Sim file), compatible with
CPN Simulator, that represents the code control flow.

Figure C.1: Binary-CPN Compiler class diagram.
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APPENDIX D

CPN SIMULATOR CLASS DIAGRAM

Considering the implementation of the CPN Simulator, Figure D.1 depicts its class di-
agram. SimParser class creates an internal element representation to transitions, places,
arcs and tokens considering the Sim file information. This class also sets the stop criteria
parameters, such as confidence interval, desired energy and time errors. Afterwards, Net
class connects the created elements in order to generate the net. Driver class evaluates
this net. The analysis class is adopted to compute statistical methods related to the
execution time an energy consumption estimates. The simulation continues according to
the stop criteria evaluation (see Section 6.4.4).

Figure D.1: CPN Simulator class diagram.
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