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The high integration density of current nanometer technologies allows the implementation of complex 
floating-point applications in a single FPGA. In this work the intrinsic complexity of floating-point oper­
ators is addressed targeting configurable devices and making design decisions providing the most suit­
able performance-standard compliance trade-offs. A set of floating-point libraries composed of adder/ 
subtracter, multiplier, divisor, square root, exponential, logarithm and power function are presented. 
Each library has been designed taking into account special characteristics of current FPGAs, and with this 
purpose we have adapted the IEEE floating-point standard (software-oriented) to a custom FPGA-ori-
ented format. Extended experimental results validate the design decisions made and prove the usefulness 
of reducing the format complexity. 

1. Introduction 

Current deep sub-micron technologies allow manufacturing of 
FPGAs with extraordinary logic density and speed. The initial chal­
lenges related to FPGAs programmability and large interconnection 
capacitances (poor performance, low logic density and high power 
dissipation) have been overcome while providing attractive low 
cost and flexibility [1]. 

Subsequently, use of FPGAs in the implementation of complex 
applications is increasingly common but relatively new when deal­
ing with floating-point applications ranging from scientific com­
puting to financial or physics simulations [2-4]. This is a field of 
increasing research activity due to the performance and efficiency 
that FPGAs can achieve. The peak FPGA floating-point performance 
is growing significantly faster than the CPU counterpart [5] while 
their energy efficiency outperforms CPUs or CPUs [6]. Additionally, 
FPGA flexibility and inherent fine-grain parallelism make them 
ideal candidates for hardware acceleration improving CPUs capa­
bilities for a particular set of problems with complex datapaths 
or control and data inter-dependencies [7]. FPGAs flexibility also 
allows the use of tailored precision, what can significantly improve 
certain applications. Furthermore, new FPGA architectures have 
embedded resources which can simplify the implementation of 
floating-point operators. 

However, the large and deeply pipelined floating-point units 
require careful design to take advantage of the specific FPGA 
features. Designing this kind of application from scratch is almost 

impossible or makes the design cycle extremely long. Thus, the 
availability of complete and fully characterized floating-point 
libraries targeting FPGAs has become a must. 

The IEEE standard for binary floating-point arithmetic was con­
ceived to be implemented through custom VLSI units developed for 
microprocessors. However, if the target hardware is an FPGA, the 
internal architecture of these operators must be highly optimized 
to take advantage of the FPGA architecture [8]. Furthermore, 
implementations with slight deviations from the standard could 
be of great interest, since many applications can afore some accu­
racy reduction [3,9], given the important savings that can be 
achieved: reduced hardware resources and increased performance. 

Several approaches have addressed the hardware implementa­
tion of a set of floating-point operators [10-12], but none of them 
includes the wide and general analysis carried out here. Some 
works only include the basic operators (adder/subtracter, multi­
plier, divider and square root) [10]. Other works focus on the 
implementation of particular floating-point operator implementa­
tions [11-13]. Regarding advanced operators (exponential, loga­
rithm and power functions) few works can be found, standing 
out [14-16], with implementations of the exponential and loga­
rithm functions. 

In [8], the potential of FPGAs for floating-point implementations 
is exploited focusing on the use of internal fixed formats and error 
analysis what requires specific analysis for every application and 
supporting tools. Therefore, floating-point operators are mainly rep­
licated in hardware without tailoring the format to the applications. 
In this scenario is where we have focused on, improving the perfor­
mance of the floating-point units taking advantage of FPGA flexibil­
ity. We have tuned the architecture of floating-point operators to get 
the best performance-cost trade-off with slight deviations from the 



standard. This approach was also discussed in [17] but it is extended 
here in several ways: 

• We have included advanced operators. 
• A more complete set of deviations is studied. 
• We perform an in-depth analysis of the implications of the 

deviations. 
• We study the replicability of the operators. 
• We provide a set of recommendations to achieve the resolution 

and accuracy of the standard with high performance. 

Our proposed libraries include both conventional and advanced 
operators. Starting by an almost fully-compliant library1 (Std), we 
have made several design decisions that allow clear improvements 
in terms of area and performance. These design decisions include 
the substitution of denormalized numbers by zero, the use of trunca­
tion rounding or the definition of specific hardware flags that allow 
the use of extended bit width internally. 

The interest of this work is focused on the impact of those deci­
sions over floating-point operators and not in presenting new 
architectures. Thus, the main contributions of this work are the 
following: 

• A thorough analysis on the implications of the proposed design 
decisions has been carried out focusing on the performance-
accuracy trade-offs. This is the base of a set of recommendations 
that can be considered when a complex floating-point applica­
tion is implemented in configurable hardware. 

• A complete set of varying accuracy floating-point libraries has 
been developed including both conventional (adder/subtracter, 
multiplier, divider and square root) and advanced (exponential, 
logarithm and power functions) operators. 

• A systematic approach based on specific interfaces has been 
adopted allowing the use of extended bit widths. It simplifies 
the implementation of complex applications and reduces the 
resources needed for chained operators fitting in a single FPGA 
with better performance. 

• Two final FPGA oriented libraries with significant hardware 
improvements have been implemented, taking advantage of 
the proposed design decisions. 

The paper structure is as follows: Section 2 summarizes the 
floating-point format. Section 3 presents the key design decisions 
that are proposed while Section 4 describes the particular architec­
ture of each operator. Experimental results are thoroughly dis­
cussed in Section 5, paying special attention to the influence of 
the proposed design decisions. Finally, Section 6 introduces a hard­
ware library specially designed for FPGAs and Section 7 draws 
some conclusions. 

s exp mnt 

1 e mh b ' " b 

Fig. 1. Floating-point word. 

zeros, infinities, exceptions (Not a Number, NaN) and two number 
types, normal ones (normalized) and numbers very close to zero 
(denormalized). The differentiation among these five types is based 
on the exponent and mantissa values. Table 1 depicts all possible 
combinations of exponent and mantissa values. 

The standard is specifically designed to handle these five num­
ber types sharing a common format while maximizing the total set 
of numbers that are represented. Combining these two facts in­
creases the complexity of the arithmetic units because, in addition 
to the calculation unit itself, it is needed a preprocessing (also 
known as prenormalization) of the inputs numbers and a postpro­
cessing (also known as postnormalization) of the output numbers, 
see Fig. 2. 

Therefore, when implementing a floating-point operator, the 
hardware required is not only devoted to the calculation unit itself, 
additional logic is needed just to handle the complexity of the for­
mat. This logic represents a significant fraction of the area of a 
floating-point unit, a 48% of logic in average for the studied opera­
tors, as will be shown in Section 5. In a general way preprocessing 
logic includes: 

• Analysis of the number type of the inputs, which includes expo­
nent and mantissa analysis. 

• Determination of operation exceptions due to the number type 
or sign of the inputs (square root, logarithm). 

• Normalization of inputs. 
• Conversion of inputs to the format required by the calculation 

unit. 

Table 1 
Types of floating-point numbers. 

Type 

Zero 
Denormalized 
Normalized 
Infinities 

NaN 

Exponent 

0 
0 
1 to 2'" - 2 
2^-1 
2^-1 

Mantissa 

0 
^ 0 

-
0 

^0 

h 

_ 
0 
1 

-
-

value 

±0 
Eq. (1) 
Eq. (1) 
±oo 

-

2. Floating-point format IEEE 754 

The IEEE Standard [18] is mainly designed for software architec­
tures, usually using 32 bit words (single precision) or 64 bit words 
(double precision). Each word (Fig. 1) is composed of a sign (s, 1 
bit), a mantissa (mnt, mb bits) and an exponent (exp, eb bits), being 
the value of a number: 

s x mnt' x 2exp' =sxh-mntx 2exp-bias 
(1) 

where h is an implicit bit known as the hidden bit and the bias is a 
constant that depends on eb being its value 2et~1 - 1. With this 
number representation the floating-point format can represent 

1 Only some software issues as exception handing with additional flags and 
signaling NaNs (not a number) are not implemented. 
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Fig. 2. Floating-point operator. 



In the same way, postprocessing logic includes: 

• Rounding of the result to adjust it to the format precision (man­
tissa and exponent correction). 

• Determination of result exceptions. 
• Format of the output to fit the result number type. 

3. Floating-point units for FPGAs: Adapting the format and 
standard compliance 

The implementation of a floating-point application in hardware 
using FPGAs requires the adaptation of the software-oriented float­
ing-point format to this particular context to obtain the best 
performance. This can be accomplished by simplifying the com­
plexity of the format so its associated processing is reduced. Fol­
lowing this idea, we have developed four different floating-point 
custom formats where three key design decisions have been grad­
ually introduced: 

1. Simplification of denormalized numbers. 
2. Limitation of rounding to just truncation towards zero. 
3. Introduction of specific hardware representation for the num­

ber type. 

These decisions affect three features of the format that are 
responsible of most of the preprocessing and postprocessing over­
head: handling denormalized numbers (1), rounding (2) and han­
dling the five number types with a common format (3). Next, the 
implications of these decisions are studied. 

3.1. Simplification of denormalized numbers 

The use of denormalized numbers is responsible of most logic 
needed during preprocessing and postprocessing. However, most 
floating-point arithmetic algorithms work with a normalized 
mantissa (leading bit equals 1) in the calculation unit. Thus, 
denormalized numbers have to be converted to normalized ones 
during preprocessing. This requires the detection of leading one 
bit of the mantissa, left shift of the mantissa and an adjustment 
of the exponent value depending on the position of the leading 
one. 

During postprocessing the result of the calculation unit is ana­
lyzed to determine the number type it corresponds to and to make 
some adjustments to its exponent and mantissa. Again, most logic 
related to these two tasks is required for handling the case of re­
sults that are denormalized numbers. 

Consequently, the use of denormalized numbers requires of sig­
nificant resources, negatively affecting the performance of the 
arithmetic units as usually the slowest paths are related to the 
handling of that denormalized numbers. However their use does 
not contribute substantially to most applications because denor­
malized numbers (i.e. single precision eb = 8 and mb = 23): 

• Represent a small and infrequent part of the format: most of the 
floating-point format is reserved for normalized numbers being 
2™b x (2eb - 2) different normalized numbers to only 2™b denor­
malized ones (i.e. ->223 x 254 normalized to 223 denormalized 
for single precision). Furthermore, their value, < 2eb - 2 (i.e. 
-><2~126), also makes their use very infrequent except for some 
special applications. 

• Compromise the accuracy of results: while normalized numbers 
have a precision of mb + 1 bits the denormalized precision varies 
from mb bits to 1 depending on its leading one position. This 
compromises the accuracy of the result of any operation where 
denormalized numbers are involved. 

Therefore, one way to simplify the format and reduce logic is 
handling denormalized numbers as zeros so all the related logic 
is eliminated. Actually, all commercial FPGA floating-point libraries 
[19,20] follow this scheme and previous works as [17,12] also devi­
ate this way from the standard. 

Deviation from the Standard. The standard cost of this solution is 
related to resolution and accuracy. First, when denormalized 
numbers are replaced by zeros we are losing resolution around 
the zero, as now 2™b (i.e. ->223) numbers with values between 
2-(2% ' - 2 ) _2-<?> '-2+m,,) a n d 2-(1% '-2+m,,) h a y e b e e n r e m o v e d ( ¡ ^ 

^ 2 - !26 _ 2-149 a n d 2-149^ 

Second, we are losing accuracy because we operate with zeros 
at the inputs or obtain a zero result when we have denormalized 
input or output. However, this loss of accuracy is relative as the 
resolution of a denormalized number depends on the position of 
its leading 1. Due to the lack of resolution or due to a rounding 
from a previous operation, the maximum relative error a denor­
malized number can reach is even the 100% of its value,2 being 
much bigger than the maximum relative error for a normalized 
number, 2~mb. 

3.2. Truncation rounding 

The exact result of any operation can need more mantissa bits 
than the bits provided by the format. In this case the result needs 
to be rounded to fix with the format as its value will be comprised 
between two consecutive representable floating-point numbers. In 
the IEEE standard we can find four different rounding methods: 

• Nearest: rounding to the nearest value. 
• Up: towards +oo. 
• Down: towards —oo. 
• Zero: towards 0. 

To implement these methods the result is generated with addi­
tional mantissa bits. Then, in the postprocessing stage, the extra 
bits of the result (guard bit when necessary, round bit and sticky 
bit) and the sign of the result (for rounding methods towards up 
and down) are analyzed to carry out the rounding. Rounding to 
nearest, provides the most accurate rounding, as ensures a maxi­
mum error of \ ulp (unit in the last place, that is the least significant 
mantissa bit, Isb). The other three methods have a maximum error 
of 1 ulp. 

Meanwhile, rounding to zero is the method that needs less logic 
because it is equivalent to truncating the result without taking into 
account the round bit and the sticky bit. This feature is useful for 
hardware floating-point units, specially for units that require of 
iterative algorithms like division or square root. If only rounding 
towards zero is implemented, these units can be reduced as they 
do not need to generate the round bit and the sticky bit, consuming 
less cycles and resources and, in case of pipelined architectures, 
less stages.3 

Deviation from the Standard. Truncation rounding slightly affects 
the accuracy of a single operation, and this only happens if we 
compare with round to nearest, which ensures a rounding error 
of up to half ulp while truncation rounding ensures up to 1 ulp. If 
we just take into account one operation, this small loss of accuracy 
can be considered negligible as we are in the range of a relative er­
ror of 2~m\ 

However, for applications with a large number of chained oper­
ators, the error propagation must be considered, as the errors 

2 When the leading 1 of the mantissa corresponds to the Isb and rounding mode is 
up or down. 

3 Always for algorithms computing one bit per cycle, and depending on the 
precision and number of bits obtained for other algorithms. 



introduced in the first operations spread along the chain while the 
following operators also introduce error in the partial results. In 
these cases the error in the final result can be higher when using 
truncation rounding instead of round to nearest. 

Additionally, with truncation rounding the results are biased as 
truncation always rounds to the same direction, diminishing the 
absolute value of the result for each operation. 

3.3. Hardware representation 

In any operation using a floating-point number the first task is 
to analyze the values of the exponent and the mantissa of the oper­
ands to determine the number type. Meanwhile, the last task of the 
operation is to compose the exponent and mantissa of the result 
taking into account the number type of the result. 

These two tasks are necessary to make compatible the software 
architecture requirements of a fixed word length and the use of the 
floating-point standard implying different number types. 

However, in an FPGA architecture the word length used is flex­
ible and configurable by the designer and can be extended with 
some flags to indicate the number type. To represent the five num­
ber types three flag bits would be necessary. However, if the previ­
ous mentioned simplification of denormalized numbers is applied, 
two flag bits are enough. 

This scheme follows the internal use of flags presented in previ­
ous works [14,15] of the FPLibrary [21] that we have extended with 
a systematic approach using interface blocks. Two interface blocks 
are required: first, the input interface that calculates the value of 
the flags from a standard floating-point number; second, the out­
put interface that composes a standard floating-point number from 
our custom floating-point number and its corresponding flags. 

The two interfaces carry out some of the preprocessing and 
postprocessing tasks so the logic needed in the arithmetic unit 
can be reduced. When a datapath involves chained operations, 
the advantages of this scheme are clear as the input interface is 
only needed for each input number while the output interface is 
found only at the final result. All intermediate operations need 
no interfaces so all the operators involved have been reduced. 

Deviation from the Standard. This design decision has no cost in 
terms of resolution or accuracy. Meanwhile, the use of interfaces 
makes transparent the transformation between the standard for­
mat and the extended FPGA format. 

3.4. Global approach analysis 

The three design decisions just explained insist on the same 
point, the simplification of the floating-point format complexity. 
Handling complexity requires logic resources, thus as the complex­
ity is reduced so are the logic resources needed for an operator. Addi­
tionally, as less resources are used, operators implementations 
become more efficient, and speed or the number of pipeline stages 
is improved. Therefore our approach has focused on determining 
those features of floating-point arithmetic that require a heavy pro­
cessing overhead while their relevance in the format is minimum. 

Table 2 
Logic reduction due to design simplifications. 

However, while the use of dedicated flags does not have any ef­
fect on the standard compliance, the other design decisions affect 
compliance in terms of accuracy and resolution around zero. 

Finally, and regarding floating-point standard compliance, one 
last issue should be addressed when using FPGAs: the non-associa­
tivity of floating-point operations. FPGA datapaths are commonly 
designed taking advantage of FPGAs intrinsic parallelism placing 
parallel operators in the datapath. However the results obtained 
with parallel operations may differ from the ones obtained with 
an equivalent sequential implementation [22]. Therefore, two is­
sues affect standard compliance: how the floating-point operators 
are implemented and how the datapath is designed. The second is­
sue is architecturally dependent and cannot be analyzed in a gen­
eral way, being out of the scope of this work. 

4. Arithmetic units 

To study the impact of the three design decisions on floating­
point operators we have implemented a set of libraries where 
those decisions have been gradually applied, from standard opera­
tors to operators including the three simplifications. Table 2 re­
views the tasks that are eliminated by each design decision and 
for each operator. 

The libraries are composed of seven operators: addition-sub­
traction, multiplication, division and square root, exponential, log­
arithm and power functions, while the precision selected has been 
single precision. Although double precision presents higher accu­
racy, the accuracy required by many applications can be achieved 
with single precision or a tailored precision which is much closer 
to single than to double precision [23]. Furthermore, the conclu­
sions of the study we perform here for single precision can be eas­
ily generalized to double precision. 

Following, we briefly analyze how we have implemented the 
calculation stage of each operator. 

4.1. Adder-subtracter 

The calculation stage of a floating-point adder-subtracter unit 
does not present any particular complexity and is just com­
pounded of a fixed arithmetic adder/subtracter (preprocessing 
aligns the mantissas) that calculates the mantissa of the result 
and the sign calculator that takes into account the input signs, if 
it is an addition or a subtraction and which operand is bigger. 

The exponent of the result is considered equal to the exponent 
of the biggest operand, and then it is adjusted during postprocess­
ing if the mantissa result presents a carry (addition) or a cancel­
ation of its most significant bits (subtraction). 

4.2. Multiplication 

Nowadays FPGAs include embedded multipliers that can be di­
rectly used to multiply the input mantissas. Since current embed­
ded multipliers (18 x 18 multipliers for Virtex 4 and Stratix III and 

Preprocessing Postprocessing 

Denormalized 
Numbers 
Simplification 

Truncation 

Rounding 

Hardware 
Flags 

Leading one detection (*,/,. 
Mantissa left shifting (*,/, v 

Exponent correction (+,*,/,-

Mantissa analysis {All) 
Exponent analysis (All) 

i,\n,xy) 
\n,xy) 
¡\n,xy) 

Mantissa shifting (+, *J,ex,xy) 
Exponent correction (+,*,¡,e'!,xy] 

Rounding bits evaluation (All) 

Rounding (All) 

Format exponent (All) 
Format mantissa (All) 



IV, 25 x 18 multipliers for Virtex 5 and 6) have at least one of their 
two operand inputs with a bit width smaller than the 24 bits man­
tissas of single floating-point precision, our operator gets advan­
tage of the multiplication distribution property: 

(a + b) x (c + d) = ax c + ax d + b x c + b x d 

and splits de input mantissas into two parts, one corresponding to 
the most significant bits (upper parts, xu and yu) and the other part 
corresponding to the least significant bits (lower part, xt and y¡) by 
multiplying these subparts in parallel. Afterwards, the results of 
the partial multiplications are added taking into account the neces­
sary alignment between operands4: 

(xu*212 + x,) x (yu*212 +y¡) = xu*yu2
24 + (xu*yl+x,*yh)*212 

+ x¡*y, 

The sign of the result is calculated with an XOR gate while the expo­
nent is obtained by adding the input exponents (we will not go into 
the details of handling the exponent bias; the same will be done in 
the rest of the units). As in the adder-subtracter, a carry may be ob­
tained in the mantissa result so an additional exponent adjustment 
is needed in postprocessing. 

4.3. Division 

Divisor and multiplier architectures are similar as division is the 
multiplication inverse function (the exponent result is now calcu­
lated by subtraction). However since there are no embedded divi­
sors in current FPGAs, mantissas division has to be implemented 
with logic. 

Exact binary division can be implemented by several algorithms 
[24], like digit recurrence methods as restoring, non-restoring or 
SRT algorithms [25]. From those algorithms, the most common 
implementations are the digit recurrence methods where one 
(restoring, non-restoring and radix-2 SRT algorithms) or more bits 
(radix-4 SRT, radix-8 SRT, etc. algorithms) of the mantissa result 
are calculated per division step. 

Other implementations rely on some kind of approximation as 
algorithms based on Taylor series [26], Goldshmidt algorithm 
[27] or the Newton-Raphson method, where the mantissa result 
is computed with several extra bits to minimize the error intro­
duced by the approximation. 

For our libraries we have selected the non-restoring algorithm 
due to its better performance when compared to other digit recur­
rence methods, and due to its logic requirements when compared 
to approximation algorithms as these methods require of multipli­
cations and even look-up tables in the case of the Taylor series [12]. 
This selection implies a division with the highest number of divi­
sion steps needed to obtain the result, and therefore more clock 
cycles than with SRT algorithms with a radix bigger than two 
[28]. However it presents the highest performance per each divi­
sion step (mainly an XOR for a conditional negation, and an adder) 
being the algorithm most suited for high clock rates. 

4.4. Square root 

Square Root can be computed very similarly to division when a 
digit recurrence algorithm is implemented and thus a non-redun­
dant algorithm has been selected again. 

The calculation unit follows the non-restoring algorithm pre­
sented in [29]. This algorithm is especially well suited for FPGAs 
as it works with bit-width reduced operands. As in the divisor each 
step is composed of a conditional negation and an addition, but 

4 For Virtex 5 and 6, this scheme will correspond to the equation a x (b + c) where 
only one input mantissa needs to be split. 

now, the bit width of each step (and of that operations) is deter­
mined by the bit width of the partial result calculated before that 
step. 

The exponent of the result is obtained just dividing by two the 
input exponent (shifting right one position) and a preprocessing of 
the mantissa in case the input exponent was odd (one shift left). No 
sign calculation is needed as calculated square roots are always 
positive. 

4.5. Exponential, logarithm and power functions 

The exponential and logarithm operators are based on the pre­
vious work of Detrey and Dinechin [14,15]. The technique used in 
both works is to reduce the input range and then use table-driven 
methods to calculate the function in the reduced range. This type 
of algorithm has been selected instead of iterative algorithms 
[16], due to better performance in terms of frequency. For our 
operators we have redesigned the exponential and logarithm data­
paths, introducing several changes to improve performance while 
reducing resources [30]. 

The basis for our power unit can also be found in our previous 
work [30]. The power unit derives from the exponential and loga­
rithm operators as xy can be reduced to a combination of other 
operations and calculated straightforward with the transformation: 

z = xy = eyx,nx (2) 

5. Libraries evaluation and comparison 

The evaluation of our libraries has been carried out in a Xilinx 
Virtex-4 XC4VF140-11 FPGA with the ISE 10.1 environment [20]. 
Results obtained are post place & route with balanced mapping, 
and place & route with high effort. 

To make a fair study and comparison of the impact of each 
design decision four libraries have been developed: 

• s td : operators without any significant change with respect to 
the floating-point standard (supporting the four rounding 
methods and denormalized numbers). Only software issues as 
exception handling and signaling NaNs are not implemented, 
just providing quiet NaNs. 

• Form: operators handling denormalized numbers as zeros. 
• 0_Hnd: operators with only truncation rounding mode and also 

handling denormalized numbers as zeros. 
• HP (High Performance): operators designed including all three 

design decisions; denormalized numbers as zeros, truncation 
rounding and use of flags. 

If performance is the design goal, floating-point operators re­
quire deeply pipelined implementations. The criterion followed to 
determine the number of pipeline stages of the operators has been 
achieving a high clock frequency with a reasonable number of 
stages. Thus, we have determined which basic calculation or itera­
tion in any of the operators of the HP library is in the critical path, 
being its delay the maximum delay for all other operators of HP. 

For Std and Korm libraries, the same design criterion has been 
followed, while for 0_Hnd we have chosen the same number of 
pipeline stages as the operators of the HP library to study the ben­
efits of the use of internal flags without any other changes. 

The experimental results obtained are summarized in Table 3 
where each operator is characterized by the number of logic re­
sources (Sic, slices), the number of pipeline stages (Stg, stages) 
and their clock frequency (MHz), and in Table 4 where are detailed 
the operators' embedded resources, which are common for all the 
libraries, Block RAMs (BRAM) and embedded DSPs (DSP). 



Table 3 
Operators results. 

+ / -

* 
/ 
•J 

In 
xy 

Std 

Sic 

414 
471 

1044 
515 
554 
878 

1734 

stg 

9 
9 

29 
20 
17 
18 
37 

MHz 

250.9 
250.9 
253.4 
250.0 
250.0 
234.0 
210.0 

Norm 

Sic 

402 
148 
802 
411 
482 
777 

1472 

stg 

8 
6 

26 
18 
16 
16 
34 

MHz 

252.9 
253.5 
276.9 
250.2 
244.4 
250.6 
209.4 

Table 4 
Libraries' common resources. 
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Table 5 
Operators results. Commercial library. 

Xilinx [31] 

Stg Sic MHz 

Norm 

Sic MHz 

NormXlx 

Sic MHz 

+/- 8 418 256.1 402 252.9 395 257.9 
* 6 150 246.9 148 253.5 144 255.0 
/ 26 668 175.7 802 276.9 777 276.9 

27 868 290.9 821 293.7 781 296.8 
V 18 418 190.7 411 250.2 389 250.6 

Our evaluation has been carried out in three main parts. 

1. Comparison of operators with a commercial library to verify the 
quality of our libraries. 

2. Study and comparison of the results for each component and for 
each of the libraries, analyzing the impact of each design deci­
sion on preprocessing and postprocessing logic. As xy is com­
posed of a chain of other operators, we have not included this 
unit in this study as it will distort this global analysis. 

3. Analysis of the capabilities of current FPGAs to implement float­
ing-point operators. 

5.1. Comparison with respect to a commercial library 

As reference commercial library we have selected Xilinx float­
ing-point operators (logic core Floating-Point Operator v4.0 [31]). 
This library is parameterizable (variable exponent and mantissa 
bit widths, number of pipeline stages), denormalized numbers 
are not supported and rounding is restricted to round to nearest. 

Consequently, Xilinx operators are almost equivalent to our 
Form ones, only differing in the calculation of the rounding as Xi­
linx does not support the four floating-point standard rounding 
modes, see Section 3.2. Therefore, to make an exact comparison 
we have tuned our Korm operators restricting rounding to round 
to nearest, UormXix operators. Finally we have configured Xilinx 
and UormXix operators with the same number of stages as the 
ones of Form. 

For the four basic operators some common features can be ob­
served in Table 5. Our operators achieve better frequencies, with a 
remarkable increase in both divisor and square root. The 100 MHz 
increase of the divisor is due to a design improvement as one stage 
is removed making a dual first division step5 so the calculation of 

5 Dividend - Divisor, for the cases where mantissa dividend is bigger or equal than 
divisor one, and (Dividend * 2) - Divisor for cases where divisor mantissa is bigger. 

0_Rnd 

Sic 

369 
109 
753 
342 
463 
737 

1457 

stg 

6 
5 

24 
16 
15 
14 
33 

MHz 

267.5 
242.7 
274.3 
250.4 
258.6 
250.3 
220.2 

HP 

Sic 

344 
102 
733 
328 
449 
732 

1433 

stg 

6 
5 

24 
16 
15 
14 
33 

MHz 

286.4 
250.0 
280.5 
256.8 
253.9 
250.3 
214.8 

the guard bit is unnecessary. This makes that the Xilinx operator is 
configured with one stage less than its optimum. However, if divi­
sors are configured with Xilinx optimum number of stages, 27, our 
operator is still faster. 

Regarding the square root, the 60 MHz increase is due to the 
algorithm selected or how it is implemented, as the Xilinx operator 
is below 200 MHz until it is configured with 26 stages. 

With respect to the resources used, all our Korm operators are 
slightly smaller although implementing the four rounding meth­
ods (except division with 26 stages, which is not comparable as 
ours is 100 MHz faster). 

When comparing Xilinx operators with UormXix ones, the 
improvements are increased as we are removing logic from our 
operators. The biggest impacts can be observed at the divisor and 
at the square root due to the removal of part of the sticky bit cal­
culation logic. This can be possible as in both operators the calcu­
lation of the sticky bit differs between rounding to nearest and 
rounding up or down methods, and requires independent logic. 

For the three advanced operators no comparison is possible as 
the Xilinx library only provides the four basic operators. 

5.2. Operators evaluation 

In Fig. 3 the results of Table 3 (clock frequency, number of pipe­
line stages and number of logic resources) are graphically depicted. 

Regarding all figures of merit the final library, HP, outperforms 
the standard library Std in all metrics, being each operator faster 
while requiring less resources and less pipeline stages. And as each 
design decision is introduced each library outperforms or equals 
the previous one. Only one exception can be found, the clock 
frequency. 

For each design decision, we are removing logic (completely or 
partially) and therefore the clock frequency should be increased if 
the pipelined architectures are not changed, as it is our case. How­
ever there are several exceptions to this general trend and mainly 
in operators using DSPs. Analyzing these exceptions we have found 
it is due to the placement and routing heuristic algorithms which 
do not ensure achieving the optimum implementations. In the 
exceptions found, the stages determining the clock frequency were 
exactly the same (or even with less logic) that in previous faster 
operators, being the slower frequency achieved due to a different 
placement or routing. 

The importance of all the improvements can be analyzed 
together comparing HP operators from Std. The reduction of logic 
resources is between a 78.3% (multiplier) and a 16.6% (logarithm), 
while pipeline stages are reduced between 5 (divisor) and 2 (expo­
nential) stages. 

To analyze the impact of preprocessing and postprocessing 
overheads on the different libraries we have separately analyzed 
each stage: preprocessing (pre), operator calculation (cal) and 
postprocessing (pst). Two metrics have been analyzed, the number 
of resources needed, see Table 6 and the number of pipeline stages 
required, see Table 7. 
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Fig. 3. Operators evaluation. 

Table 6 
Split slice comparison. 

+/-

* 
/ 
V 
e" 
In 

Std 

Pre. 

146 
262 
252 
150 
124 
130 

Cal. 

128 
75 
729 
355 
301 
581 

Pst. 

198 
186 
122 
49 
169 
231 

Norm 

Pre. 

146 
43 
47 
39 
124 
25 

Cal. 

128 
75 
729 
355 
301 
581 

Pst. 

192 
113 
64 
39 
105 
231 

0_Rnd 

Pre. 

146 
43 
47 
39 
124 
25 

Cal. 

124 
63 
695 
311 
301 
581 

Pst. 

155 
51 
46 
16 
74 
178 

HP 

Pre. 

138 
4 
4 
29 
119 
3 

Cal. 

124 
63 
695 
311 
301 
581 

Pst. 

134 
50 
12 
0 
38 
173 

Table 7 
Split stages comparison. 

+/-

* 
/ 
V 
e" 
In 

Std 

Pre. 

2 
2 
2 
2 
1 
2 

Cal. 

2 
4 
25 
17 
13 
12 

Pst. 

5 
3 
2 
1 
4 
4 

Norm 

Pre. 

2 

Cal. 

2 
4 
25 
17 
13 
12 

Pst. 

4 
3 
2 
1 
3 
4 

0_Rnd 

Pre. 

2 

Cal. 

2 
4 
24 
16 
13 
12 

Pst. 

2 
1 
1 
1 
2 
2 

HP 

Pre. 

2 

Cal. 

2 
4 
24 
16 
13 
12 

Pst. 

2 
1 
1 
0 
2 
2 

5.2.3. Denormalized numbers 
Comparing Std operator with Korm ones we can observe a 

reduction on the number of slices required from a 68.5% (multi­
plier) to a 11.5% (logarithm). The adder can be considered a special 
case as almost all the extra logic needed in Std is subsumed in the 
logic of Uo rm, and only the exponent correction due to a denormal­
ized number is simplified, see Table 2. 

Std overheads can be mainly found in the preprocessing stage 
where almost every operator has several tasks related only to 
denormalized numbers as these numbers need to be converted 
into normalized numbers, see Table 2. Results in Table 6 show that 

these tasks have a major impact in the resources required, mainly 
in the multiplier and the divider, as for both the resources for these 
tasks have to be replicated for both inputs. 

On the other hand, the impact in the postprocessing stage is 
much smaller due to two facts. Firstly, there is only one output 
to handle so the logic is not replicated. And secondly, part of the 
logic of the tasks needed for handling the denormalized number 
is shared with the logic required for handling the result. 

With respect to pipeline stages, not handling denormalized 
numbers reduces the required pipeline stages (between 1 and 3) 
in two ways: 



• Elimination of stages; as some tasks are removed with dedi­
cated logic in the datapath. 

• Overlap of stages; when denormalized numbers are no longer 
handled, the calculation stage of some operators can directly 
work with the input numbers. In parallel, the preprocessing 
stage analyzes the inputs number type and processes the excep­
tions due to not normalized input. 

Furthermore, it can be also observed that the handling of denor­
malized numbers also affects the clock frequency of the operators. 
Although there are specific pipeline stages for this handling, these 
stages become the slowest stages harming the global speed of most 
units (see Fig. 3a), requiring even more additional pipeline stages. 

5.2.2. Rounding 
Introducing the limitation of rounding methods to just rounding 

towards zero, 0_Hnd, implies an additional reduction of slices, up 
to 69 for the square root, and between 1 and 2 stages when com­
paring 0_Hnd operators with Form ones. 

Rounding mainly affects to the postprocessing stage and to the 
calculation stage as the rounding bits need to be calculated. With 
respect to postprocessing, the resources needed are required to 
evaluate the rounding bits, the rounding that implies two adders 
(exponent and mantissa), and the logic needed for cases where a 
carry can be obtained after rounding the mantissa (a multiplexor). 

Regarding the calculation stage the major impact is in the oper­
ators with digit recurrence methods as extra iterations are needed 
for computing those bits. 

5.2.3. Number types 
Again, as with denormalized numbers, when applying this de­

sign decision the major impact can be found in the operators with 
two inputs. The logic needed (comparators) to determine the num­
ber type by analyzing the mantissa and exponent values needs to 
be replicated. Meanwhile, in the postprocessing the result is for­
matted (using a multiplexor). When this logic is removed, the 
saved resources are equivalent to the resources needed by the 
interface units. Therefore, the reduction of logic resources respect 
0_Bnd (up to a 6.8% in the multiplier) will only be effective when 
implementing chained operators. 

5.3. Replicability 

Replicability is a key issue to address when analyzing the suit­
ability and capacity of modern FPGAs to implement floating-point 
applications. We can define replicability in an easy way as the 
number of operators that can be implemented in an FPGA consid­
ering 100% of resources available and taking as base reference the 
resources used by one operator. The results obtained following this 
definition are depicted in Fig. 4 for HP operators and for four diffent 
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FPGAs which present a good mix of elements, two Virtex-4 (SX55, 
FX140) and two Virtex-5 (FX200, SX240). 

From Fig. 4, it can be deduced the great capacity of modern 
FPGAs to implement complex single floating-point algorithms, 
even involving hundreds of operators. However, in a real scenario 
other facts have to be taken into account as: 

• Routing stress: for large implementations routing congestion 
can affect very seriously the performance or make impossible 
to route already mapped operators. 

• Use of logic resources instead of embedded elements: when no 
more embedded elements are available, they will be substituted 
by slices. 

• The datapath: for operators sharing the same inputs there could 
be replicated logic removed by implementation tools. Addition­
ally, for chained operators the input or output registers should 
be removed. 

Taking all these features into account, we have designed a syn­
thetic datapath, Fig. 5, to analyze how many times an operator can 
be replicated. The datapath is composed of n levels of 10 operators 
each while another 9 operators provide the final output. For coarse 
grain configurability, n can be increased adding more levels, while 
for fine grain configurability, operators can be added at the output. 
The datapath has been designed to prevent implementation tools 
removing duplicated logic: there are no two equal inputs, using 
Zij (the output of each operator) and Z¡¿ (the output but with the 
bits reordered) while the operators are registered only at their out­
puts. Operators under study are the adder among the operators not 
using embedded elements and the logarithm among the ones using 
embedded elements (for this case, we have chained operators as 
there is only one input per operand). The reference FPGA used 
has been the Virtex-4 XC4VF140 and the design strategy has been 
balanced implementation. 

In Fig. 6 the results obtained for the adder operator are shown. 
The expected number of operators obtained extrapolating the re­
sults for one operator is widely exceeded. Instead of the 183 oper­
ators expected (first vertical line starting from the left in Fig. 6) it is 
possible to implement up to 241 adders. The first reason for this in­
crease, is that only the outputs are registered in these tests. The 
second reason is the way the implementation tools work. When 
reaching the usage limits of the FPGA, the implementation tools fo­
cused their work on area optimization (although results are ob­
tained with balanced goal). Therefore, and for operators without 
input registers, two more theoretical limits have been calculated: 
the first one with balanced implementation (203, second vertical 
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Fig. 4. Operators replicability. Fig. 5. Synthetic datapath. 
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Fig. 6. Adder replicability results. 
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Fig. 7. Logarithm replicability results. 

50 60 

line) and the second with area oriented implementation (250, third 
vertical line). For the adder, this area oriented limit has proved to 
be the one closest to the results obtained in the experimental tests, 
where we have obtained just 3.6% fewer operators than this limit. 

In the Slices graph (results are normalized, being 1 the total 
number of slices of the FPGA) we can see that 100% of resources 
of the FPGA are achieved before the 241 operators. The number 
of slices used grows linearly with the operators until the 100% is 
achieved. Then, the implementation tools reduce the slices needed 
per operator as the resources limit has been achieved. In this point, 
the speed of the datapath, MHz graph, is seriously affected as for 
each new operator introduced routing becomes more difficult, 
harming the performance. 

When the embedded elements are the limiting components the 
situation changes, as can be seen in Fig. 7 for the logarithm. When 
the limit is going to be achieved (between 38 and 39 logarithms) 
the implementation tools replace one 18 x 18 multipliers of each 
logarithm by logic. Therefore, for 39 multipliers, all the operators 
now have four 1 8 x 1 8 multipliers instead of the previous five, 
when it would be strictly necessary 36 logarithms with five 
18 x 18 and three with four 1 8 x 1 8 . Consequently there is a big 
increase in the number of slices used while a big decrease is ob­
served in the number of 18 x 18 multipliers. The same circum­
stance happens for 48 operators. However, the next frontier (64 
operators) becomes the final limit as with 64 logarithms we have 
reached the 100% of slices used, making impossible to replace 64 
18 x 18 multipliers with logic. 

6. Towards standard compliance and high performance 

As seen in Section 5, performance of FPGA floating-point oper­
ators can be considerably improved when introducing a few mod­
ifications to obtain substandard operators. However, how can we 
obtain a standard compliant library while trying to preserve 
improvements of sub-standard libraries? 

Since using dedicated flags for the number type has no cost in 
terms of standard compliance, we can always apply it by using 
interfaces. The two other decisions cannot be directly applied if 
compliance with the standard is a must, so trying to fulfill the stan­
dard will require additional techniques. 

6.1. Simplification of denormalized numbers: one bit exponent 
extension 

A number is denormalized for a given floating-point precision 
depending on the exponent bitwidth for that precision, eb. Thus, 
it will be denormalized if the value of its leading one corresponds 
to a 2* with x in [-2e"_1 - mb,-2

et~~[ +1] while it will be normal­
ized ifx is in [-2 e^1+2,2 e^1) . 

Consequently, a denormalized number for a given precision will 
be a normalized number for a precision with one extra exponent bit, 
e'b = eb + 1 as now the x corresponding to the leading one will be in 
the new normalized range of [-2eí>_1 +2,2ei>~1) = [-2eb+ 2,2eb). 

Therefore, the operators handling of denormalized numbers as 
zeros can be applied in combination with an extension of the num-



Table S 
Operators results with the final proposed features. 

Slices 

Speed (MHz) 

Stages 

HW 
HW+1 

HW 
HW+1 

HW 

+ 

378 
385 

270.0 
273.9 

8 

* 
138 
145 

250.2 
252.3 

6 

/ 
742 
742 

286.2 
284.4 

26 

V 
366 
368 

250.1 
250.6 

17 

e" 

470 
505 

246.7 
248.3 

16 

In 

760 
805 

258.5 
258.5 

16 

xy 

1455 
1508 

213.1 
210.2 

34 

ber precision in one exponent bit in order to preserve the resolu­
tion of the denormalized numbers of the not extended format. 

Now, as in the use of flags for the number type, the interfaces 
between standard numbers and hardware numbers will be in charge 
of transforming the numbers. Meanwhile operators will need to 
handle numbers with an extra bit in the exponent. However, 
handling exponents has a small hardware cost in the operators, 
much smaller than handling denormalized numbers, see Section 6.3. 

Regarding the standard compliance, this solution ensures that 
we are not loosing accuracy nor resolution, as the denormalized 
numbers in the new format will always be zero in the standard 
precision. 

Furthermore, with the extended precision more accurate results 
can be obtained. In datapaths involving several operations we can 

Table 9 
Required interfaces. 

Slices 
Speed (MHz) 
Stages 

SW-HW 

HW 

42 
434.2 
1 

HW + 1 

124 
323.5 
2 

HW-SW 

HW 

35 
700.8 
1 

HW + 1 

120 
295.6 
2 

find that partial results that were zeros or infinities with the stan­
dard precision, with the new precision are normalized numbers. 
Therefore, final results that were a zero, an infinity or NaN with 
standard precision can have a numeric value with the new preci­
sion. Additionally, partial results with a standard denormalized 
number, and reduced precision, now can be normalized numbers 
with not reduced precision, so the subsequent operations are more 
accurate. 

6.2. Truncation rounding: mantissa extension 

To try to obtain the same accuracy with truncation rounding 
than with round to nearest, an extension of one bit of mantissa 
can be applied. The ulp of the new precision with extended man­
tissa, ulp', has a value of half of the standard ulp. So the maximum 
error of extended precision and truncation rounding, 1 ulp', will 
equal the maximum error obtained with standard precision and 
round to nearest, 0.5 ulp. 

This solution will require that each operator would compute the 
input mantissas with one extra bit and also generate outputs with 
the extra bit. Part of the advantages of truncation rounding, not 
having to compute the rounding and sticky bit, is lost while the cal­
culation unit has to work with input mantissas of one more bit, 
requiring more resources. 

iStd 0H1/V B H M - 1 D H P 
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Fig. 8. Standard operators evaluation. 



Concerning the bias introduced by truncation rounding, this 
source of no standard compliance cannot be corrected and we 
can only try to reduce the introduced bias by extending the preci­
sion with more mantissa bits, making the relative error per opera­
tion smaller and so the bias. Nevertheless, the bias can have an 
important impact on the accuracy of results, for example, in the 
statistical analysis of large quantities of data or in applications 
requiring a high degree of accuracy. 

Therefore as bias cannot be corrected, round to nearest should 
be kept for standard compliance and to avoid the impact of bias 
in given applications. 

6.3. FPGA-oriented floating-point library 

From the previous analysis and discussions, we consider the fol­
lowing features as good options for almost standard compliance 
while still taking advantage of the FPGA flexibility: 

• Use of dedicated flags for the number type. 
• Handling denormalized numbers as zeros while exponent is 

extended in one bit. 
• Round to nearest should be kept. 

Following these recommendations we have developed two last 
libraries taking into account two possible scenarios: one with the 
one bit exponent extension, HW + l (Hardware library and +1 indi­
cates the exponent extension), and another without the exponent 
extension, HW. Table 8 summarizes the results for the developed 
operators with those features while Table 9 shows the results for 
the required interfaces. 

As can be seen in both tables, the exponent extension has im­
pact mainly in the interfaces required, as now they have to handle 
the conversion between denormalized and normalized (one more 
stage, more resources and less frequency), and in the complex 
operators (up to 7.4% of slices in the exponential). Thereby, if it 
is known that in a given application denormalized numbers are 
not in the range of partial or final results, it would be better using 
operators with no bit extension. 

When comparing the results of these final libraries, HW and 
HW + l, with respect to the other libraries we can focus on Fig. 8, 
which shows the results of the operators of HW and HW + l com­
pared to the results of the initial standard library, Std, and to 
the results of the sub-standard high performance library, HP. 

Firstly, it can be observed that HW and HW+I operators preserve 
partially the clock frequency improvements achieved with the sub­
standard operators, except for the exponential operator. 

If we focus on the graphics depicting the number of pipeline 
stages and use of logic resources it can be seen that for both fea­
tures, although not all the improvements achieved with sub-stan­
dard operators can be preserved, the HW and HW + l results are 
closer to the results for HP than to the Std ones, HW and HW+ l 
operators present a reduction of pipeline stages between one and 
three fewer stages than Std operators while the increase of stages 
with respect to HP operators is between one and two stages. 

And finally, considering the use of slices, the improvements 
achieved with respect to Std operators are between 12% (exponen­
tial) and 67.2% (multiplier) for HW operators and between 10% and 
66.1% for HW + l operators. 

7. Conclusions 

Current nanometer technologies allow the implementation of 
complex floating-point applications in a single FPGA device. Never­
theless, the complexity of this kind of operators (deep pipelines, 
computationally intensive algorithms and format overhead) makes 

their design especially long and complicated. The availability of 
complete and FPGA-oriented libraries significantly simplifies the 
design of those complex floating-point applications. 

In this work we have presented several design decisions that 
can be made to improve the performance of floating-point opera­
tors implemented in FPGA architectures. An in depth analysis of 
the performance-accuracy trade-offs of those decisions has been 
carried out through the development and comparison of complete 
floating-point libraries of operators. These libraries include both 
conventional (adder/subtracter, multiplier, divider and square 
root) and advanced (exponential, logarithm and power functions) 
operators. Actually, the power operator is included in a floating­
point library for the first time. 

Three design decisions targeting the simplification of floating­
point complexity have been thoroughly analyzed. Handling com­
plexity requires logic resources, thus as the complexity is reduced 
so are the logic resources needed for an operator. Additionally, as 
less resources are used, operators implementations become more 
efficient, and speed is also improved or the number of pipeline 
stages is reduced. Our approach has focused on determining those 
features of floating-point arithmetic that require a heavy process­
ing overhead while their relevance in the format is minimum or 
can be neglected. 

The extended experimental results validate the different deci­
sions made to improve performance and area requirements of 
floating-point units and can be taken as guide by hardware design­
ers when implementing this kind of applications. 

Finally, a set of features that implies improved performance and 
reduced resources has been chosen to design two almost standard-
compliant libraries where their tailored implementation adapts the 
standard format to improve performance taking advantage of FPGA 
flexibility. 
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