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Traditional on-chip and off-chip logic analyzers present important shortcomings when used for the long-
term verification of industrial embedded systems, forcing the designer to implement ad hoc verification
solutions. This paper introduces a suitable solution for long-term verification of FPGA-based designs con-
sisting of a verification core that uses the PicoBlaze microcontroller, dedicated logic and a serial port com-
munication in order to monitor the internal signals of the system in a continuous way. The core design
focuses on low resource requirements and has been successfully applied to the verification of a real
industrial synchronization platform showing remarkable advantages over commercial on-chip solutions
like Xilinx’s ChipScope Pro. Moreover, in order to improve the reusability of this core a software tool has
been developed to automatically include the verification core in any specific system.
1. Introduction

Over the past decade, FPGAs have become the major implemen-
tation technology for industrial embedded digital systems due to 
their fast prototyping, short time-to-market and increasing capa-
bilities. The always reducing cost of FPGAs make them suitable not 
only during the prototype phase but also for low and medium 
volume production. The re-programmability of FPGA chips is also 
very valuable during the design and production phases of the sys-
tem allowing for easier verification, debugging and support of the 
systems.

FPGA verification can be done by simulation and hardware exe-
cution [1–4]. Simulation is especially useful during the first stages 
of the design flow to assure the correct operation of the systems. A 
variety of verification techniques are applied at the model and RTL 
levels like functional verification or regression testing. But there are 
scenarios where simulation is not a feasible approach, like the 
verification of a whole complex system, because the simulation 
time would be huge and/or computational resources may be 
exhausted. In these cases, hardware execution is an interesting 
alternative derived from the re-programmable nature of FPGAs that 
permits the observation of the design under study in real time 
during its operation. Such observations are carried out in several 
nternal (on-chip) logic 
Scope Pro [5] are able to 
nd store the results in 
ition is limited by the
storage resources available in the chip [6,7]. While this limitation
is not a big problem for the verification of many types of systems,
it is important to note that on-chip logic analyzers share the re-
sources with the system under test and may occupy an important
part of the available area, requiring significantly more resources
during verification than in the final production system.

A typical case is the verification of the correct long-term opera-
tion of a system. It is particularly useful to test the robustness of
the implementation in industrial aggressive environments where
systems are supposed to operate continuously for months or years.
In this case, the gathering of data from internal signals over a long
period of time should be possible. These data should be transferred
off-chip in order to avoid the use of internal storage resources (that
would be exhausted over time) and to allow the continuous mon-
itoring of the system.

Neither standard on-chip or off-chip solutions fit well to do this
kind of long-term verification so designers typically have to devel-
op ad hoc solutions (test logic and tools) for each design. A good
example is a network synchronization system for remote terminal
units previously developed by the authors [8] where internal data
need be collected every few seconds for a period of days or even
months.

This contribution introduces a more general solution for long-
term verification of digital systems implemented on FPGA that
can be adapted to several specific problems to avoid the cost of
designing custom verification logic. The proposed solution takes
the form of a test core based on the PicoBlaze microcontroller
and an associated software tool that can greatly facilitate long term
verification of complex systems with minimal resources or
external equipment requirements when compared to traditional
on-chip or off-chip logic analyzers.
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The paper is organized as follows: in Section 2 an outline of
common verification tools is presented from the point of view of
their applicability to scattered event acquisition and analysis,
Section 3 describes the architecture of the proposed long-term
on-chip data acquisition core. In Section 4 the software tool that
automates the generation and inclusion of the core in a specific
design and performs the analysis of the captured data will be
presented. In Section 5 the proposed solution and the commercial
ChipScope Pro test system are compared against a real application.
Finally, Section 6 summarizes the most relevant conclusions.
Fig. 1. Field of applicability of the analyzed verification tools.
2. Current solutions for system verification

Typically, there are three main types of solutions when
approaching digital system verification: standalone logic analyz-
ers, on-chip logic analyzers and custom cores for specific purposes.

Standalone Logic Analyzers (SLAs) are very powerful tools for
debugging an already implemented design. This type of equipment
is able to acquire data at a very high frequency from any signal that
can be accessed at the pins of the chip. Moreover, they may have a
large number of channels (100 or more) that makes them a very
useful tool for debugging high speed buses and signals between
components. The main disadvantage of SLAs is that they cannot
reach signals inside the chip. To overcome this issue, designs are
modified in order to route the desired signals to external pins
accessible by the SLA thus modifying the characteristics and timing
parameters of the original design.

An evolution of SLAs are On-chip Logic Analyzers (OLAs) like Xi-
linx’s ChipScope Pro, that have become very popular in the field of
programmable logic. This type of logic analyzers are hardware
modules that connect to the desired signals inside the chip and
communicate over a standard bus (usually RS232 or JTAG) with a
computer that executes software for data analysis. These modules
are an intrusive solution since the verified design is different from
the production design where the analysis components have been
removed.

Both SLAs and OLAs find the size of the captured data to be lim-
ited by the size of their storage resources. When these resources
are exhausted, the monitoring process need be stopped and the
captured data is transmitted to a processing system.

On the other hand, the testing of some applications requires
data to be captured and processed in a continuous way for a long
time (from days to months). To perform this type of testing, devel-
opers usually create custom debugging cores (CDCs) to overcome
the limitations of both SLAs and OLAs [9,10].
3. Logical event analyzer

To overcome the cost of designing a CDC for every particular
application, we propose a general purpose device, the Logical Event
Analyzer (LEA), that can fill the gap between SLAs and OLAs and
substitute CDCs in several practical cases. As it can be observed
in Fig. 1, SLAs and OLAs are best suited to verify high-speed
systems where the number of samples is not a critical aspect.
However, LEA can be used for debugging systems where it is
necessary to capture a large number of samples scattered in time.
The LEA also features a much lower footprint than an OLA.

The architecture of the proposed analyzer is based on the Pico-
Blaze microprocessor from Xilinx [11], but it could be replaced by
any other equivalent soft microcontroller like Mico8 [12] from
Lattice. Fig. 2 shows the block diagram of the analyzer. As it can
be observed from the diagram, a set of input ports of PicoBlaze
are reserved for trigger, clock and communication control signals.
The remaining ports are dedicated to capture data signals.
PicoBlaze allows the addressing of 256 8-bit ports. Thus, using a
single PicoBlaze module and dedicating N ports to trigger, clock
and control signals the analyzer can capture (256-N) � 8 binary sig-
nals. However, as it will be discussed later, the number of data sig-
nals that can be acquired is also limited by the rate at which
captured data can be transmitted out of chip.

PicoBlaze uses one of its output ports to communicate with an
UART that is in charge of transmitting the captured data through a
serial line. The UART has a half_full_buffer signal which indicates
that the FIFO is half full, and its baud rate can be set as needed.
PicoBlaze will use the half_full_buffer signal to control the data
transmission to the UART. Assuming an UART configuration of
fixed data format ‘‘8N1’’ (8 data bits, 1 stop bit and no parity), com-
munication through the RX and TX signals (no other signals
needed), and flow control disabled; the maximum bit rate (bps)
that can be obtained is calculated according to (1).

bitratemax ¼
baudrate� 8

10
ð1Þ

Bit rates calculated for some typical baud rates are shown in Ta-
ble 1. With these numbers, if the LEA is configured to acquire the
largest possible number of signals, that is, only one port is used
for trigger, clock and control signals, the maximum number of sig-
nals that can be captured is 255 � 8 = 2040 binary signals. Accord-
ing to Table 1, a rate of 4800 baud is enough to transmit this
number of bits if the interval between events is at least one second.
In a general way, the baud rate required to transmit a variable
number of signals (numsignals) connected to the data ports in t sec-
onds can be calculated according to (2).

baudrate ¼ numsignals
t

� 10
8

ð2Þ

Nevertheless, if it is necessary to capture more data signals, a
simple solution is to add an external n bits register to extend the
port selection signal port_id as shown in Fig. 2. By using this alter-
native, the maximum number of signals (numsignalsmax) that can
be sampled is calculated according to (3). It must be considered
that N < 256 � 2n in order to dedicate at least one port for data
signals.

numsignalsmax ¼ ð256� 2n � NÞ � 8 ð3Þ

From (2) and (3), the minimum baud rate required to transmit
the information connected to the data ports can be calculated
according to (4).



Fig. 2. Architecture of the logical event analyzer.

Table 1
Bit rates calculated for some typical baud rates.

Baud rate Bit rate

4800 3840
9600 7680

19,200 15,360
38,400 30,720
57,600 46,080

115,200 92,160

Fig. 3. Main tasks performed by the software tool.
baudratemin ¼
ð256� 2n � NÞ � 10

t
ð4Þ

From the above analysis, it can be easily seen that the sampling
frequency is clearly limited by the UART baud rate. For example, if
32-bit data is to be monitored, the LEA can sample above 2800 data
values per second transmitting at a 115,200 baud rate. This fre-
quency should be enough for a system which events are scattered
in time (events occurring in the range of 1 ms). When events are
not scattered in time, the system would require a more sophisti-
cated transmission system (USB, Ethernet, etc.) which, on the other
hand, would greatly increase the complexity of the final system.

Finally, the program module corresponds to the program that
will be run by PicoBlaze. This program performs the following
tasks:

1. Trigger condition verification. PicoBlaze reads the ports
assigned to the trigger signals and applies the configured bool-
ean function. If the condition is verified, data acquisition starts.

2. Data acquisition according to the clock signal. The clock signal
corresponds to an event of the designed system, so that when-
ever this event occurs, PicoBlaze starts to read the data con-
nected to the input ports.

3. Data processing and transmission. This processing consists of
calculating a checksum of the transmitted data so that the
receiver can verify the correct reception of information. Data
will be sent to the UART.

4. Communication control. Periodically, the microprocessor will
check the status of half_full_buffer signal. If it is active PicoBlaze
will wait for the FIFO to become half empty before sending
more data.

4. Software tool

To automate the verification process using the proposed ana-
lyzer, a graphical and multi-platform tool has been developed in
Java. The two main tasks performed by this software are depicted
in Fig. 3: (1) automatic generation of the hardware core, and (2)
data acquisition and processing.
Regarding the first task, the tool must parse the system’s top le-
vel module described using a hardware description language
(HDL). Next, the tool facilitates the selection of the trigger, clock
and data signals and the configuration of the triggering condition.
Finally, the software automatically generates the verification core
according to the specified signals and provides a new system top
level that includes the generated core. Moreover, this tool gener-
ates a configuration file in XML format that is used by the data
acquisition software and contains the verification system informa-
tion necessary to process the received data correctly.

In relation to the second task, once the new system is imple-
mented on the programmable device, the tool is in charge of
acquiring the data transmitted by the verification core. To do this,
the software allows the user to: (1) configure the baud rate, (2)
start and stop the acquisition process, and (3) format and depict
the received data correctly using the configuration file. Finally, this
information can be stored for later processing.

5. Application example and results

In this section we describe the application of the LEA to the
on-chip verification of a SNTP client and server fully implemented



in hardware. SNTP is a simplified version of the more general Net-
work Time Protocol (NTP) [13] that is commonly used for syn-
chronizing the clocks of computer systems over data networks
such as the internet. The operation of this protocol is to send
periodic time requests to a server synchronized with an accurate
time source like a GPS receiver at request intervals that can vary
from a few seconds to several minutes. When the server reply is
received, the client uses a set of timestamps to calculate the
round trip time and the time offset between the client’s and ser-
ver’s clocks.

The client can then adjust its local clock based on these calcula-
tions. In a typical scenario, the client will be accurately synchro-
nized to the server only after several request–response cycles.
Since the time between requests can vary from a few seconds to
several minutes the most important aspect in the testing analysis
of these systems is not the speed at which samples are acquired
but to capture a large number of system events, covering a wide
time interval.

On-chip verification tools like ChipScope Pro feature high fre-
quency sampling which allow the testing of high-speed buses
and systems, but they face some limitations regarding the
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Fig. 4. Number of LUTs depending on the number of signal and samples using: (a)
ChipScope Pro, and (b) LEA.
maximum number of samples that can be obtained from the sys-
tem. This is mainly due to: (1) internal resources of the FPGA are
used to store the samples, and (2) some of these resources,
depending on the type of programmable device used, are often
limited.

The number of LUTs, FFs and BRAMs used by ChipScope Pro
depending on the number of signals and the number of samples
are shown in Figs. 4a, 5a, and 6a, respectively. Figs. 4b, 5b, and
6b show the number of LUTs, FFs and BRAMs used by LEA depend-
ing on the number of signals and the number of samples.

As it can be observed from Figs. 4a and 5a, LUTs and FFs depend
mainly on the number of signals. However, Fig. 6a shows that the
main problem when performing on-chip verification using such
tools is that the number of BRAMs used is directly proportional
to the number of signals and the number of samples. Furthermore,
an additional BRAM must be included for each added Integrated
Logic Analyzer (ILA) since each ILA can capture a maximum of
256 signals only. Thus, considering that BRAMs are the most lim-
ited resource and fixing a number of signals to capture, this type
of simulation is unfeasible if the goal is to capture a large number
of samples. Comparing these results to data obtained using LEA,
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Fig. 5. Number of FFs depending on the number of signal and samples using: (a
ChipScope Pro, and (b) LEA.
)



512
1024

2048
4096

8192
16384

32
64

128
256

512

0

100

200

300

400

500

Number of signalsNumber of samples

N
um

be
r o

f B
R

AM

(a)

512
1024

2048
4096

8192
16384

32
64

128
256

512

0

100

200

300

400

500

Number of signalsNumber of samples

N
m

er
o 

de
 B

R
AM

(b)
Fig. 6. Number of BRAMs depending on the number of signal and samples using: (a)
ChipScope Pro, and (b) LEA.

0 2000 4000 6000 8000 10000 12000 14000 16000
0

50

100

150

200

250

300

Number of samples

N
um

be
r o

f B
R

AM
s

Spartan−3E XC3S500E 
Spartan−3E XC3S1600E 
Virtex−4 XC4VLX15 

Virtex−4 XC4VLX40 

Virtex−4 XC4VLX80 

Virtex−4 XC4VLX160 

ChipScope

LEA

Fig. 7. Percentage of used BRAMs depending on the number of samples for 256
signals using ChipScope Pro and LEA.
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Fig. 8. Offset as a function of time for various days.
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Fig. 9. Offset as a function of time when the system operates in holdover.
Figs. 4b and 5b show LUTs and FFs become solely dependent on the
number of signals. As it can be observed from Fig. 6b, the LEA has
the advantage that it does not store data in BRAM but transmits
them via serial. Therefore the number of BRAMs used to verify
the system does not depend on the number of signals or the num-
ber of samples, so the system can be tested indefinitely, only lim-
ited by external resources.

For the case under discussion, the SNTP client and server have
been implemented on a Spartan-3E FPGA device (xc3s500e). These
FPGAs have a total of 20 BRAMs and each block contains 18,432
bits of fast static RAM, with 16 Kbit allocated for data storage.
For each design a total of 256 signals have been sampled: time-
stamps (least significant part), time offset, round trip time and lo-
cal clock adjustment parameters. With this configuration, the LUT



and FF usage is not critical, since the percentage of used LUTs and
FFs to verify the system, in terms of number of samples, is 9% and
8%, respectively using ChipScope Pro, and 3.79% and 1.68% using
the LEA. These results are obtained considering the worst case.
However, as it can be observed in Fig. 7, when ChipScope Pro tool
is used, there is a big usage of BRAMs even for a small number of
samples. In this case, a maximum of 1024 samples can be captured
with ChipScope Pro, which is insufficient for the type of system
that is intended to be verified. In the case of the LEA, for the same
scenario presented for ChipScope Pro, it is worth noting that only
one BRAM is used (this memory stores the program that will be
run by PicoBlaze), being this alternative feasible in any grade of
FPGA chips.

Finally, the collected data, using the LEA and the developed soft-
ware tool, have permitted the correct long-term verification of the
synchronization platform. In this way, Fig. 8 shows the offset as a
function of time for various days, where one sample per second
has been transmitted by the verification core. As it can be seen
from the figure, the system always remains synchronized, and no
inappropriate behavior has been observed. Moreover, captured
data have been used in order to measure the clock drift when
the system operates in holdover. Fig. 9 shows the clock drift when
the SNTP server loses the GPS reference and how the synchroniza-
tion is recovered once the reference source is reestablished.
6. Conclusion

In this contribution, a verification core based on PicoBlaze for
long-term on-chip verification is presented. The proposed solution
allows developers to avoid the implementation of custom verifica-
tion cores in many cases, greatly improving the design and verifi-
cation time.

The verification core has been successfully applied to the long
term verification of a client–server synchronization system, and
compared to ChipScope Pro logic analyzer. The results show that
the ChipScope Pro tool is not suitable to verify this type of sys-
tems because this would need excessive internal resources to
store the captured data even for a small number of samples to
be acquired. The proposed core does not store data using inter-
nal resources but transmits them via serial port so the system
can be verified indefinitely, only limited by external computer
storage.
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