Run-time Generation of Partial FPGA
Configurations for Subword Operations

Miguel L. Silva Jo&o Canas Ferreira
DEEC, Faculdade de Engenharia INESC Porto, Faculdade de Engenharia
Universidade do Porto Universidade do Porto
Porto, Portugal Porto, Portugal
Email: mims@fe.up.pt Email: jcf@fe.up.pt

Abstract—Instructions for concurrent processing of smaller the PowerPC architecture [4]). Since the processors used
data units than whole CPU words are useful in areas like jn FPGA-based embedded systems usually lack such SIMD
multimedia processing and cryptography. Since the processors extensions, this paper proposes mapping sequences of slibwo

used in FPGA-based embedded systems lack support for such fi t t of hard t d i
applications, this paper proposes mapping sequences of subwordgOP€rations 1o a set ol hardwareé components and generating

operations to a set of hardware components and generating the corresponding FPGA partial configurations at run-tithe.
the corresponding FPGA partial configurations at run-time. The assumes the presence on the system of a CPU (in order to

technique is aimed at adaptive embedded systems that employrun the procedure for creating the new partial bitstreaan),
run-time reconfiguration to achieve high flexibility and perfor- the capability of loading the partial bitstream to a specific

mance. New partial configurations for circuits implementing sets - . - :
of subword operations are created by merging together the FPGA area (without disturbing the operation of other parts

relocated partial configurations of the hardware components Of the system). For the evaluation presented in this paper, w
(from a predefined library), and the configurations of the switch use a Xilinx Virtex-Il Pro platform FPGA equipped with a

matrices used for the connections between the components. The405 PowerPC processor core (without floating-point or SIMD
paper presents and discusses results obtained for a 300MHZ g ctions). The bitstream created at run-time are used t

PowerPC CPU in a Virtex-ll Pro platform FPGA. For the set .) .
of benchmarks analyzed, the complete configuration creation modify part of the same FPGA (self-reconfiguration).

process takes between 5s and 60s. The run-time generated 1he creation of partial configurations starts with a di-
hardware versions achieved speed-ups between 17 and 73 overected acyclic graph (DAG) that describes the connections

the software versions. among medium-sized components (like adders, comparators,
and multipliers). The components can be automaticallygaac
in the target area so that the constraints set by the resource
The growing pervasiveness of computing in all aspects dfstribution of the reconfigurable fabric are respectedthia
human life implies the increased importance of autonomousrk, the DAGs represent the mapping of sets of SIMD
embedded systems that are able to modify their behaviorifmstructions to components. For each component, an abstrac
response to changes in the environment or in the systerdisscription and a partial bitstream must be available. The
goals. Dynamically-reconfigurable hardware is a natural irabstract description specifies the component’'s bounding-b
plementation platform for such systems, because it pravidéie position of the I/O terminals at its periphery, and the
the capability to adapt the hardware infrastructure to theternal location of any special resources (e.g., block RAM
changing demands. Since embedded systems are resourc&he main goal of the implementation is to obtain acceptable
constrained (when compared to a regular desktop system), $blutions in a reasonable time when executing in embedded
possibility of reusing the hardware for supporting diffeire systems with limited computing resources. The partial bit-
tasks at run-time is a very attractive proposition. streams of the placed components are merged together (after
Run-time reconfiguration (RTR) of FPGAs is mostly doneelocation) with the bitstream of the target area in order to
using partial bitstreams created at design time. A morelflexi create a single partial bitstream. This is then further rinedii
scheme using run-time creation of bitstreams is justified td include the interconnections among the components, and
creation at design time is impractical or impossible: thetgetween the components and the target area’s I/O terminals.
may be too many possibilities (e.g., shape-adaptive videoThe generation of partial configurations is, by necessity,
processing [1]) or the required information may be onlglosely tied to the organization of the underlying reconfig-
available at run-time (e.g., self-adaptive systems [2]). urable fabric, and to the methods available for accessiag th
Multimedia and cryptography applications are often sugonfiguration memory. Our proof-of-concept implementatio
ported by special-purpose CPU instructions [3], which émalruns on a Virtex-Il Pro FPGA [5], a device that supports
concurrent SIMD (single-instruction multiple-data) pessing active partial reconfiguration, and has an internal access p
of smaller data units than whole CPU words (e.g., MMXor partial device configuration. We also measured the speed
and SSE instructions for Intel processors, or AltiVec foups obtained by the generated hardware over the corresgpndi

I. INTRODUCTION

software version running on the PowerPC 405.

The paper is organized as follows. Sec. Il describes briefly
background and related work. A short overview of the appli-
cation context considered in this work is given in sec. lll.
Sec. IV describes how the reconfigurable infrastructure is SRAM
modeled for the purposes of bitstream creation. Sec. V ptese
the approach to placement and routing implemented in the >
demonstrator system. Results for several applicatiomfeads
are detailed in sec. VI, while some final remarks are pregente
in sec. VII.

Internal DMA
Memory Interface Controller

PLB
Dock

Write
FIFO
Read
FIFO

On-chip Peripheral Bus (32-bits)

FPGA

Dynamic

PowerPC Area

Connection Interface

Processor Local Bus (64-bits)

External
Memory Interface

Configuration Memory
Controller ICAP

Serial
Interface
v
Host System

External
Memory

Fig. 1. Architecture of the hardware platform for the prygp® implemen-

II. RELATED WORK tation. The configuration generation procedure runs on iheefPC CPU.

. . . The reserved area for loading partial configurations is show the right

The use of RTR naturally raises the issue of creating tlige “dynamic area”). The “PLB dock” implements the interfagivieen the

required partial configurations. This is typically done asign reserved area and the fixed logic.
time: all necessary partial configurations must be specéiet
created before the application is deployed [6].

Configurations target a specific FPGA area. If that ardd'e System should have at least one reserved area for use by
changes after creation, partial bitstreams must be reidaat the loaded components. Thignamic area must be completely
the target area. This capability makes for more flexibleesyst Unused in the base system. A partial bitstream for this uhuse
deployment, so several approaches to the relocation dfiparfréd will a}lso be required. In our demonstration system (see
bitstreams have been proposed, including both software toid- 1, & single reserved area is connected to the processor's
[7], [8] and hardware solutions [9]. local bus (PLB), in order to_enable fast (_Jlata transfers betwe

In all cases, the synthesis tools must be run for each parffd CPU and the dynamically reconfigured modules. The
configuration. This may be a problem, if many configuratiorfock called “PLB dock” implements the interface between
are required, since it is a time-consuming process. A spiutithe reserved area and the fixed logic.
based on building a partial bitstreams by combining bitstre The partial configurations loaded to a dynamic area are
of smaller components is described by [10]. The creation 6feated at run-time by combining the partial bitstreams of
the new bitstreams requires assigning positions of theetar§gmaller modules (the“components”). These are created from
area to components, relocating and merging the individU8TL descriptions by using standard vendor synthesis tools.
component bitstreams, and interconnecting the componeff@mponent designs must be restricted to a specific area of
by modification of the merged bitstream. Since this approat device by specifying the appropriate constraints. fThei
does not rely on the synthesis of logic descriptions, it is &act position is not relevant, because the component will
good candidate for implementation in an embedded systél’ﬁ relocated as required for the assembled configuration. We
for creation of partial configurations at run-time. assume that input and output terminals are located on the

A channel router for the Wires-on-Demand RTR frameworkomponent's periphery. Each component employs the LUT-
is described in [11]. It uses a simplified resource databad@sed interface macros described in [13]. A component may
and simple algorithms to find local routes between blockised dedicated resources like block RAMs and multiplier
using relatively few computational resources: memory coRIOcks, but these impose restrictions on relocation.
sumption during execution is 3 orders of magnitude smaller The bitstream manipulation tool of [10] is used to extract
and execution is 4 orders of magnitude faster than vendbe partial bitstream. All the information about a compdrisn
tools (over a set of seven small benchmarks). The report%@md in a file: in addition to the bitstream data, this idelsi
implementation results were obtained on a desktop PC; #igormation about the width and height of the component (in
possibility of running in an embedded system is mentione§LBS). and about the relative positions of input and output
but no results are reported. terminals. Component description files are grouped togethe

A less versatile version of the bitstream assembly approdghcomponent libraries. More information about the design
applied to run-time generation of configurations is desetib Process can be found in [10]. At run-time, applications can
in [12]. In that implementation, inter-module connectiare US€ the code library that we developed in order to assemble
selected from a table of predetermined routes. Althougt fa88W partial configurations using components from all atgla
the approach has limited flexibility. The present work does nlibraries.
use of a predetermined set of routes, and includes support fo IV. RESOURCEMODELING
automatic placement of the components. '

The basic element used in the creation of configurations
is the rectangular-shaped component with all its terminals

We assume that the hardware infrastructure has the capa-the left or right sides. Components are considered black
bility of loading the partial bitstream to a specific FPGAareboxes during creation of the new configurations: no overlap
(without disturbing the operation of other parts of the eyst of components is allowed and no interconnections can tsaver

[1l. SYSTEM ARCHITECTURE

them. Each component implements the basic operation of a Stripe ; Stripe
SIMD instruction. Instructions that permute or exchangs bi i i ;
only affect the routing of data, and do not require suppgrtin A j 1A |2
components. The use of medium-sized components limits : ; &
the amount of information that must be handled at run- : ;
time, reducing the load imposed on the limited computationa B : ;
resources available in a typical embedded system. § ; B

The application may specify the location of the modules, or : :
it may use the code library’s placement routine. In any case, C
components should grouped in vertical stripes. The pasitio :
of a component inside a stripe and the width of the stripe D g C
depend both on the physical resources used by the components '
and on the position of the stripe in the host area. We also : :
restrict routing to connections between components incadja (@) (b)

stripes. This restriction simplifies the process of creptine . . .
2. Placing components in stripes. (a) Typical placementédmponents

; : . Fig.
mterconne_ctlons by ensuring that they 9'0 not extend beyo_{f\at only have CLBs; (b) Placement resulting from restrigsiomposed by
a well-defined free area, and by reducing the correspondithg use of particular hardware resources, in this case BRAMs

search effort.

All connections are unidirectional: terminals are either
inputs or outputs. The output terminals of one componeptoceeds in two stages: 1) defining the component locations;
connect to one or more terminals of other components on tRecreating the connections (including the connectionshéo t
next stripe. The terminals to be connected are typicallgtied interface of the host area).
in adjacent CLB columns. If there are more columns between
them, these columns must be empty. In order to limit the Bffok petermini ng Component Locations
during routing, only one additional empty column is curhgnt
allowed; this is necessary to account for constraints irepos The current strategy for determining the location of a
by the embedded block RAMs and multipliers. component groups the components in columns (stripes), so

The Virtex-1l Pro FPGA has a segmented interconnection dhat directly connected components are assigned to adjacen
chitecture: interconnections are built from segments eoted groups if possible. The arrangement in columns matches the
through a regular array of switch matrices. These are al®fonfiguration mechanism of Virtex-Il-Pro FPGAs, where
connected to the other resources (like CLBs and BRAMs) [14he smallest unit of reconfiguration data applies to an entir
From the large number of routing resources available in t§€lumn of resources. Two examples of possible arrangements
reconfigurable fabric, we use direct connections to neighb@®f components in a stripe are displayed in figure 2.
CLBs, double lines and vertical hex lines. Long lines (wires The first step in grouping the components is to determine
that distribute signals across the full device height andthyi its level (counted from the primary inputs). The first level
are not used since they can interfere with circuitry outsid@ntains the components whose inputs are connected to the
of the target area. Horizontal hex lines reach beyond tié-B dock; the second level contains that components that hav
area allowed for the connections, which has only up to thréd their input terminals connected to first-level compasen
columns of switch matrices. The final model of the switcAand so forth. A component with more than one input source

BRAM

matrix contains 116 pins, distributed as follows: will be assigned to the level following the highest-numligere
« 16 direct connections to the 8 neighboring CLBs; component connected to it. This procedure assigns componen
« 40 double lines; levels in topological order.
« 20 vertical hex lines; The next step is to determine the set of contiguous CLB

« 8 connections to the outputs of the 4 slices in the CLB;olumns (a stripe) required for all components of each level

« 32 connections to the inputs of the 4 slices in the CLBThe final placement of a component will be restricted to

The area used for connections is modeled as a twihe columns assigned to its level. Levels are processed in
dimensional array of switch matrices, and employs a dawader. The starting column assigned to a given stripe will
structure based on the simplified model just described tp kelze the one closest to the PLB dock without overlapping
track of resource usage. previous stripes. The number of columns assigned to a stripe
is the smallest required to accommodate all components of
the corresponding level (see Figure 2a). This is determined

The run-time creation of new partial configuration startsy the width of the components and by the compatibility of
from a component netlist, which specifies the componerttee component resources with the destination area. In some
to be used and the (unidirectional) connections between theases it is necessary to widen the stripe in order to cover
terminals. No cycles between the components are alloned, ian area compatible with the resource requirements of a given
the netlist must define a directed acyclic graph. The creatioomponent (see fig. 2b).

V. PARTIAL BITSTREAM GENERATION

Output

-] Suiteh internal connections that are required, and therefore etefime
| p Matrix configuration settings of the switch matrices involved.. dg
E LN illustrates one such connection. The dots represent thenialt
el e, pins, while the dashed lines depict the internal connestibat
must be established.
In order to determine all the pins involved in a connection,
Input o ' a breadth-first search of the routing area is performed. The
| o o routing area is represented by an array of switch matrices. F
_ E adjacent str_ipes, two co_lumns of switch matrices are nacgss
Lut one belonging to the right border of the left stripe, and the
‘e loe other belonging to the left border of the right stripe. Anraxt
] L column of switch matrices is included when there is an unused
e BRAM/multiplier column between the stripes.
The actual area searched starts as the smallest rectaagle th
encloses all pins used as terminals of the connection to be
established, and is reduced during the search, therebtrigni

rthe number of segments to are considered. Restricting the

The detailed as_S|gnment O.f compqnents to locations Pl&%arch area in this way may cause some segments to be left
cesses each level in succession, placing the components fro

1o to bottom of the device. The placement of compon r@gt of consideration, but reduces the search effort sigmiflg.

op fo bottom of the device. The placement ot COMPONENS, , o tigns are processed in sequence and no retrying of
with non-homogeneous resources (like BRAMs) may requike: 4 searches is performed

offsetting the component from the default location. As alites '

. . X The shortest path from a source (output terminal) to the
the stripe may have unused areas at its left or right bord%rgrresponding sinks (one or more input terminals) is per-
(fig. 2b).

i i f Dijkstra’s sh h algorithrB][1
The unused areas of the stripe are filled with feed-throuq?P:med by a variant of Dijkstra's shortest path algorithrb];

:)) e breadth-first search of the area considered for routing
components, in order to ensure that all inputs are available

the left bord f the stri d that all outout bro aintains a list of those pins that can be reached from the
€ 1€ft border of the stripe, an at all outputs are brougg, .o by using exactly a number of segments equal to current
to the right border. Feed-through components simply canne

. : : §teration count. For any pin on this list, there is a shortest

their inputs directly to the!r outputs. Components' of th'Bath (measured in number of segments) to the source. The
type are also used to provide a path through a stripe whg arch is managed so that a pin can enter this list only once
connecting components that do not belong to the same lev the earliest opportunity). When a sink is reached, a path

Feed-through components are generated as required, W'”} ‘the source is determined by retracing through the seguenc

recourse to library components. , . of interconnection segments. The search is resumed uhtil al
The assignment of a component to a location fails if tha . < of the current connection are reached

§ur|r1dqf thfe zelrg];hts ﬁf all componen;sd %f thﬁl same level, o connections are processed sequentially in this ways Pin

Including feed-through components added while processifigey for 5 connection cannot be used in subsequent searches.

previous levels, is greater than the height of the host aréa.tpo etore. the order in which connections are processed may
This stage produces a partial configuration which is OIOﬂa"r‘_ﬁﬁluence the final result. (Evaluation of the influence o&thi

by merging the_ partial bitstream of the empty host area With 4, is outside the scope of the present paper.)
the relocated bitstreams of the components. After all connections are processed, the partial confignmat
is updated with the information for the new routes.
The search procedure does not ensure that a global optimum
The second stage of the run-time creation of a new partak all routes is obtained, since each net is handled infisoia
configuration must determine which interconnect resouaces without considering the impact on the following nets. The
assigned to each connection between components. Given iyfact of these limitations is mitigated by the fact thaticke
strategy for defining the locations of the components, thige restricted by the previous placement, and by the design
can done by finding how to establish connections betwegBcision to keep any interconnections confined to the area
terminals of components in adjacent stripes. between stripes. As the next section shows, many sequences
Since we are using LUT-based bus macros for implemenrif SIMD instructions can be routed under these restrictions
ing the terminals as described in [13], component terminals
correspond to some pins of a switch matrix. Other pins in the
switch matrix are connected to pins in other switch matrices The algorithms of the previous section were applied to 10
according to the resource model of sec. IV. DFG specifications derived from SIMD code fragments. The
One connection between two components is defined byaluation was done on a XUP Virtex-1l Pro Development Sys-
the sequence of switch matrix pins required to establish tteam, which has a Xilinx XC2VP30-7 FPGA [5] and 512 MB
desired connectivity. For each matrix, this sequence defme of external DDR memory (PC-3200). The external memory

¥

of

L 4
B

Fig. 3. Example of one possible routed connection.

B. Component Interconnections

VI. EVALUATION

S1 !

contains the program code and data, including the library of
components. Only one of the two embedded PowerPC 405
processor cores is used (running at 300 MHz). The 64-bit
processor local bus connected to the memory controller aises
100 MHz bus clock. The program used to run the benchmarks
was written in C and compiled with the GNU Compiler version
3.4.1included in EDK 8.2. The resulting programs has 105 kB
of instructions and 1597 kB of static data.

The following tasks, which can be efficiently written with
SIMD instructions, were selected for evaluation of the pro-
posed approach. The first six process gray-scale images with
8-bit pixel values.

1. Brightness adjustment (BA): The hardware adds a pixel
value to a signed constant value (saturating add).

2. Contrast adjustment (CA): The hardware processes eacé
pixel according toa + (|pizel — a| * ¢), wherea and ¢ are
constants that represent average brightness and corteasje TABLE |

respectively. EXECUTION TIME FOR CONFIGURATION GENERATION ON THE300 MHz
3. Additive blending (AB): This task consists of adding (with ~°WERPC 40SEMBEDDED IN THE VIRTEX-II PRO XC2VP30-7 FPGA
saturation) the pixel values from two images to producerathi _

4. Fade effect (FE):This task consists of combining the pixels ~ Name In Out Comp. Nets E:Zoﬁ)‘ Tge

of two images according tod— B) x f+ B, whereA is a pixel

M1

2
S1

3

M1 S1

4

bbb

.uuiﬂ

S1

M1

e e S 8

Rl Bul il

ig. 4. Component placement for Fade effect circuit. (M1: Srbultiplier,
1: 8-hit adder, S3: 8-bit subtractor, Feed: 8-bit feedulh.)

-
<

o : : BA 32 32 4 64 3x12 15
value f_rom the first image is z_;_p|xel value f_rom the _secc_md, CA 32 32 12 128 9x32 32
and f is a constant that specifies the relative contribution of g 51 32 4 96 3x12 o5

the first image to the result [3]. The fade-in-fade-out dffec FE 64 32
is obtained by processing the source images successively fo MDD 64 32
different values off. The structure of the circuit generated for MO 64 32

12 128 9x32 38
8 128 6x12 32
16 224 12x28 60

PR oONON PR R

this task is shown in fig. 4. CT 32 6 7 176 6x15 46
5. Motion detection (MD): This task combines the pixels LSBS 40 32 6 128 6x14 36
of two images to produce a third. The absolute difference be- €0 32 8 0 8 3x8 5

TR 24 32 0 24 3x8 8

tween corresponding pixels of the source images is caklilat
If the, calcglatgd Va_lue IS aboYe a predeflned threshold, tm._:‘number of input bitsOut: number of output bitsL.v: number of levels;
resulting pixel is white; otherwise it is black. Comp: number of component$jets: number of nets routeddbox: bounding

6. Motion overlay (MO): This task again combines the pixelgox (CLB columns by CLB rows)Jime: time for whole generation process.
of two images to produce a third. As before, the absolute

difference between corresponding pixels is calculatedhdf

calculated value is above a predefined threshold, the rissult The last two benchmarks involve only bit selection and
equal to the mean of the input pixels; otherwise it is equal Rgrmutation. Therefore, they are implemented only by ryti
the pixel value from the first image. without any logic blocks.

7. Clip test (CT): This task is used in clipping off triangles Tab. | summarizes the structural characteristics of the cir
for graphics processing. A comparison between 4 spatiilits and the total configuration generation time (inclgdin
coordinates is performed for 3 vertices. The task is the sam@cement, routing, and creation of partial bitstream ia th
for each vertex, so vertices are processed one at a time [18jgndard format).

8. Least Significant Bit Steganography (LSBS)This task For Virtex-Il Pro FPGAs the size of the partial bitstream,
takes a sequence of bytes representing a secret messageaaddtherefore the time taken by partial reconfiguration, is
encodes them onto 16-bit PCM audio samples by replaciptpportional to the number of columns occupied by the circui
the four least significant bits of each sample with bits frorfirst number in the third column). For the platform used,eac
the message (hilewitz08-bit). column takes B1 ms to reconfigure. All circuits fit in the host
9. Compression (CO):This task comes from bio-informatics:area of our test system, which is 22 columns by 32 rows.
compress a vector of string representation of codes of tne fo All benchmarks required less than 60 s total generation.time
nucleotides into vector with a 2-bit representation forheacThis is almost completely determined by the routing stage: h
nucleotides [17]. most time-consuming placement took less than 100 ms.

10. Translation (TR): This task translates a compressed Tables Il and Ill compare the running times of software and
sequence of four sets of three nucleotides (6 bits each, rans-time-generated hardware versions of the benchmahes. T
produced by the previous task) to four protein codons, eabhrdware execution time are, in these cases, determingd onl
one represented by an 8-bit. by the data transfer times (DMA setup time included). In thb.

TABLE 1l

EXECUTION TIME PER OUTPUT PIXEL FOR IMAGE PROCESSING TASKS

Tasks Software (us) Hardware (us) Speedup

BA 0,48 0,01 48,0
CA 0,73 0,01 73,0
AB 0,64 0,04 16,0
FE 0,90 0,04 22,5
MD 0,79 0,04 19,8
MO 0,82 0,04 20,5

Note: All images are 8-bit, gray-scale, 1022024.

TABLE Il
EXECUTION TIME FOR NON-IMAGE-PROCESSING TASKS

Name Software (ms) Hardware (ms) Speedup

CT 875,56 26 334
LSBS 1207,07 26 46,1
CcO 290,29 26 11,1
TR 465,69 26 17,8

Note: Each task executes 250 000 times.

The working implementation described here shows that run-
time generation of configurations is a feasible technique fo
use in embedded systems to provide specialized hardware
support to tasks whose computational needs exceed the com-
putational power of the CPU.

Further work is necessary to meet the conflicting goals of
shorter running time and more flexible placement and routing
The inclusion of timing information and constraints is akso
future goal.

ACKNOWLEDGMENTS

The present work was partially supported by research con-
tract PTDC/EEA-ELC/69394/2006 from the Foundation for
Science and Technology (FCT), Portugal. Miguel L. Silva was
funded by FCT scholarship SFRH/BD/17029/2004.

REFERENCES

[1] J. Gause, P. Cheung, and W. Luk, “Reconfigurable compttinghape-
adaptive video processinglEE Proceedings - Computers and Digital
Techniques, vol. 151, no. 5, pp. 313-320, 2004.

[2] K. Paulsson, M. Hiibner, J. Becker, J. Philippe, and Cnf&a, “On-
line routing of reconfigurable functions for future selfagtive systems
- investigations within the A£ATHER project,” imtl. Conf. Field Pro-
grammable Logic and Applications (FPL 2007), 2007, pp. 415-422.

they are different for tasks that process one image (BA, CApB] A. Peleg, S. Wilkie, and U. Weiser, “Intel MMX for multimealiPCs,"
or two images. All tasks in tab. Ill involve the same amount = Commun. ACM, vol. 40, no. 1, pp. 24-38, 1997.

of data transfers and therefore have the same execution tin{‘é]

K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scal&stiVec
extension to PowerPC accelerates media processiftEE Micro,

The speed-ups achieved by the hardware are significant, vol. 20, no. 2, pp. 85-95, 2000. - _
showing that the run-time generation of dedicated hardwardl Virtex-ll Platform FPGA User Guide, Xilinx, Nov. 2007, version 2.2.

may provide significant advantages, provided that the gener

tion times are acceptable for the specific application.

] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. BriddfdInvited
paper: Enhanced architectures, design methodologies abdt@#s for
dynamic reconfiguration of Xilinx FPGASs,” iRroc. Intl. Conference on

The generation times achieved by this implementation arg, Field Programmable Logic and Applications (FPL 2006), 2006, pp. 1-6.

unsuitable for applications that require very fast turoach
times, like just-in-time hardware compilation. Howevdrete

E. L. Horta, J. W. Lockwood, D. E. Taylor, and D. ParlouDynamic
hardware plugins in an FPGA with partial run-time reconfigiora” in
Proc. 39th Design Automation Conference, 2002, pp. 343-348.

are many application scenarios that may accommodate deldf Y- Krasteva, E. de la Torre, T. Riesgo, and D. Joly, “Virtd FPGA

bitstream manipulation: Application to reconfiguration tohsystems,”

in the range under discussion. They include applicatioas th iy proc. International Conference on Field Programmable Logic and
must adapt to relatively slow-changing environments (like Applications (FPL 2006), 2006, pp. 1-4.

exterior lighting conditions or temperature). that may rape

[9] H. Kalte and M. Porrmann, “REPLICA2Pro: Task relocatiop bit-
stream manipulation in Virtex-1l/Pro FPGAs,” iroceedings of the 3rd

tempora}rily with reduced quality, or that may a_mort.ize the conference on Computing Frontiers. ACM, 2006, pp. 403-412.
generation effort over a large enough utilization time. [fio] M. L. Silva and J. C. Ferreira, “Generation of hardwaredules for

partial configurations are reused during the same applitati
overall performance may be improved by keeping a cache ¢f;

previously-generated configurations.

VIl. CONCLUSION

run-time reconfigurable hybrid CPU/FPGA system&T Computers &
Digital Techniques, vol. 1, no. 5, pp. 461-471, 2007.

J. Suris, C. Patterson, and P. Athanas, “An efficient-trone router
for connecting modules in FPGAS,” iroc. Intl. Conference on Field
Programmable Logic and Applications (FPL 2008), 2008, pp. 125-130.

[12] M. L. Silva and J. C. Ferreira, “Generation of partial &R con-

figurations at run-time,” inProc. International Conference on Field

This paper evaluated the run-time creation of partial con- Programmable Logic and Applications (FPL 2008), 2008, pp. 367-372.
figurations that implement small sets of SIMD instruction&-3] M. Hubner, T. Becker, and J. Becker, "Real-time LUT-thswtwork

topologies for dynamic and partial FPGA self-reconfigumatian Proc.

for use in embedded systems with dynamically reconfigurable 17th gymposium on Integrated Circits and Systems Design (SBCCI
FPGAs. The main goal of the generation procedure is to 2004), Sept. 2004, pp. 28-32.
obtain useful solutions in a short time. The computation8*l Virtexll Proand Virtex-ll Pro X Platform FPGAs: Complete Data Sheet,

effort is bounded by several design choices: circuit dpsion
by acyclic netlists of coarse-grained components, sinaglifi
resource models, direct placement procedure, and usel’§

limited areas for routing.

Xilinx, Nov. 2007, version 4.7.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Sthiiroduction

to Algorithms, 2nd ed. McGraw-Hill, Dec. 2003.

]: R. B. Lee and A. M. Fiskiran, “PLX: an instruction set hitecture and
testbed for multimedia information processinghe Journal of VLS
Sgnal Processing, vol. 40, no. 1, pp. 85-108, May 2005.

For a set of ten SIMD-code-derived benchmarks, the genelgd Y. Hilewitz and R. Lee, “Fast bit gather, bit scatter anitl permutation
tion times varied between 5s and 60's: the generated hardware instructions for commodity microprocessordgurnal of Signal Process-

exhibited speed-ups between 17 and 73 compared to the

software versions.

ing Systems, vol. 53, no. 1, pp. 145-169, Nov. 2008.

