
Run-time Generation of Partial FPGA
Configurations for Subword Operations

Miguel L. Silva
DEEC, Faculdade de Engenharia

Universidade do Porto
Porto, Portugal

Email: mlms@fe.up.pt

João Canas Ferreira
INESC Porto, Faculdade de Engenharia

Universidade do Porto
Porto, Portugal

Email: jcf@fe.up.pt

Abstract—Instructions for concurrent processing of smaller
data units than whole CPU words are useful in areas like
multimedia processing and cryptography. Since the processors
used in FPGA-based embedded systems lack support for such
applications, this paper proposes mapping sequences of subword
operations to a set of hardware components and generating
the corresponding FPGA partial configurations at run-time. The
technique is aimed at adaptive embedded systems that employ
run-time reconfiguration to achieve high flexibility and perfor-
mance. New partial configurations for circuits implementing sets
of subword operations are created by merging together the
relocated partial configurations of the hardware components
(from a predefined library), and the configurations of the switch
matrices used for the connections between the components. The
paper presents and discusses results obtained for a 300 MHz
PowerPC CPU in a Virtex-II Pro platform FPGA. For the set
of benchmarks analyzed, the complete configuration creation
process takes between 5 s and 60 s. The run-time generated
hardware versions achieved speed-ups between 17 and 73 over
the software versions.

I. I NTRODUCTION

The growing pervasiveness of computing in all aspects of
human life implies the increased importance of autonomous
embedded systems that are able to modify their behavior in
response to changes in the environment or in the system’s
goals. Dynamically-reconfigurable hardware is a natural im-
plementation platform for such systems, because it provides
the capability to adapt the hardware infrastructure to the
changing demands. Since embedded systems are resource-
constrained (when compared to a regular desktop system), the
possibility of reusing the hardware for supporting different
tasks at run-time is a very attractive proposition.

Run-time reconfiguration (RTR) of FPGAs is mostly done
using partial bitstreams created at design time. A more flexible
scheme using run-time creation of bitstreams is justified if
creation at design time is impractical or impossible: there
may be too many possibilities (e.g., shape-adaptive video
processing [1]) or the required information may be only
available at run-time (e.g., self-adaptive systems [2]).

Multimedia and cryptography applications are often sup-
ported by special-purpose CPU instructions [3], which enable
concurrent SIMD (single-instruction multiple-data) processing
of smaller data units than whole CPU words (e.g., MMX
and SSE instructions for Intel processors, or AltiVec for

the PowerPC architecture [4]). Since the processors used
in FPGA-based embedded systems usually lack such SIMD
extensions, this paper proposes mapping sequences of subword
operations to a set of hardware components and generating
the corresponding FPGA partial configurations at run-time.It
assumes the presence on the system of a CPU (in order to
run the procedure for creating the new partial bitstreams),and
the capability of loading the partial bitstream to a specific
FPGA area (without disturbing the operation of other parts
of the system). For the evaluation presented in this paper, we
use a Xilinx Virtex-II Pro platform FPGA equipped with a
405 PowerPC processor core (without floating-point or SIMD
instructions). The bitstream created at run-time are used to
modify part of the same FPGA (self-reconfiguration).

The creation of partial configurations starts with a di-
rected acyclic graph (DAG) that describes the connections
among medium-sized components (like adders, comparators,
and multipliers). The components can be automatically placed
in the target area so that the constraints set by the resource
distribution of the reconfigurable fabric are respected. Inthis
work, the DAGs represent the mapping of sets of SIMD
instructions to components. For each component, an abstract
description and a partial bitstream must be available. The
abstract description specifies the component’s bounding-box,
the position of the I/O terminals at its periphery, and the
internal location of any special resources (e.g., block RAMs).

The main goal of the implementation is to obtain acceptable
solutions in a reasonable time when executing in embedded
systems with limited computing resources. The partial bit-
streams of the placed components are merged together (after
relocation) with the bitstream of the target area in order to
create a single partial bitstream. This is then further modified
to include the interconnections among the components, and
between the components and the target area’s I/O terminals.

The generation of partial configurations is, by necessity,
closely tied to the organization of the underlying reconfig-
urable fabric, and to the methods available for accessing the
configuration memory. Our proof-of-concept implementation
runs on a Virtex-II Pro FPGA [5], a device that supports
active partial reconfiguration, and has an internal access port
for partial device configuration. We also measured the speed-
ups obtained by the generated hardware over the corresponding

software version running on the PowerPC 405.
The paper is organized as follows. Sec. II describes briefly

background and related work. A short overview of the appli-
cation context considered in this work is given in sec. III.
Sec. IV describes how the reconfigurable infrastructure is
modeled for the purposes of bitstream creation. Sec. V presents
the approach to placement and routing implemented in the
demonstrator system. Results for several application fragments
are detailed in sec. VI, while some final remarks are presented
in sec. VII.

II. RELATED WORK

The use of RTR naturally raises the issue of creating the
required partial configurations. This is typically done at design
time: all necessary partial configurations must be specifiedand
created before the application is deployed [6].

Configurations target a specific FPGA area. If that area
changes after creation, partial bitstreams must be relocated to
the target area. This capability makes for more flexible system
deployment, so several approaches to the relocation of partial
bitstreams have been proposed, including both software tools
[7], [8] and hardware solutions [9].

In all cases, the synthesis tools must be run for each partial
configuration. This may be a problem, if many configurations
are required, since it is a time-consuming process. A solution
based on building a partial bitstreams by combining bitstreams
of smaller components is described by [10]. The creation of
the new bitstreams requires assigning positions of the target
area to components, relocating and merging the individual
component bitstreams, and interconnecting the components
by modification of the merged bitstream. Since this approach
does not rely on the synthesis of logic descriptions, it is a
good candidate for implementation in an embedded system
for creation of partial configurations at run-time.

A channel router for the Wires-on-Demand RTR framework
is described in [11]. It uses a simplified resource database
and simple algorithms to find local routes between blocks
using relatively few computational resources: memory con-
sumption during execution is 3 orders of magnitude smaller
and execution is 4 orders of magnitude faster than vendor
tools (over a set of seven small benchmarks). The reported
implementation results were obtained on a desktop PC; the
possibility of running in an embedded system is mentioned,
but no results are reported.

A less versatile version of the bitstream assembly approach
applied to run-time generation of configurations is described
in [12]. In that implementation, inter-module connectionsare
selected from a table of predetermined routes. Although fast,
the approach has limited flexibility. The present work does not
use of a predetermined set of routes, and includes support for
automatic placement of the components.

III. SYSTEM ARCHITECTURE

We assume that the hardware infrastructure has the capa-
bility of loading the partial bitstream to a specific FPGA area
(without disturbing the operation of other parts of the system).

Fig. 1. Architecture of the hardware platform for the prototype implemen-
tation. The configuration generation procedure runs on the PowerPC CPU.
The reserved area for loading partial configurations is shown on the right
(the “dynamic area”). The “PLB dock” implements the interface between the
reserved area and the fixed logic.

The system should have at least one reserved area for use by
the loaded components. Thisdynamic area must be completely
unused in the base system. A partial bitstream for this unused
area will also be required. In our demonstration system (see
fig. 1, a single reserved area is connected to the processor’s
local bus (PLB), in order to enable fast data transfers between
the CPU and the dynamically reconfigured modules. The
block called “PLB dock” implements the interface between
the reserved area and the fixed logic.

The partial configurations loaded to a dynamic area are
created at run-time by combining the partial bitstreams of
smaller modules (the“components”). These are created from
RTL descriptions by using standard vendor synthesis tools.
Component designs must be restricted to a specific area of
the device by specifying the appropriate constraints. Their
exact position is not relevant, because the component will
be relocated as required for the assembled configuration. We
assume that input and output terminals are located on the
component’s periphery. Each component employs the LUT-
based interface macros described in [13]. A component may
used dedicated resources like block RAMs and multiplier
blocks, but these impose restrictions on relocation.

The bitstream manipulation tool of [10] is used to extract
the partial bitstream. All the information about a component is
stored in a file: in addition to the bitstream data, this includes
information about the width and height of the component (in
CLBs), and about the relative positions of input and output
terminals. Component description files are grouped together
in component libraries. More information about the design
process can be found in [10]. At run-time, applications can
use the code library that we developed in order to assemble
new partial configurations using components from all available
libraries.

IV. RESOURCEMODELING

The basic element used in the creation of configurations
is the rectangular-shaped component with all its terminals
on the left or right sides. Components are considered black
boxes during creation of the new configurations: no overlap
of components is allowed and no interconnections can traverse

them. Each component implements the basic operation of a
SIMD instruction. Instructions that permute or exchange bits
only affect the routing of data, and do not require supporting
components. The use of medium-sized components limits
the amount of information that must be handled at run-
time, reducing the load imposed on the limited computational
resources available in a typical embedded system.

The application may specify the location of the modules, or
it may use the code library’s placement routine. In any case,
components should grouped in vertical stripes. The position
of a component inside a stripe and the width of the stripe
depend both on the physical resources used by the components
and on the position of the stripe in the host area. We also
restrict routing to connections between components in adjacent
stripes. This restriction simplifies the process of creating the
interconnections by ensuring that they do not extend beyond
a well-defined free area, and by reducing the corresponding
search effort.

All connections are unidirectional: terminals are either
inputs or outputs. The output terminals of one component
connect to one or more terminals of other components on the
next stripe. The terminals to be connected are typically located
in adjacent CLB columns. If there are more columns between
them, these columns must be empty. In order to limit the effort
during routing, only one additional empty column is currently
allowed; this is necessary to account for constraints imposed
by the embedded block RAMs and multipliers.

The Virtex-II Pro FPGA has a segmented interconnection ar-
chitecture: interconnections are built from segments connected
through a regular array of switch matrices. These are also
connected to the other resources (like CLBs and BRAMs) [14].
From the large number of routing resources available in the
reconfigurable fabric, we use direct connections to neighbor
CLBs, double lines and vertical hex lines. Long lines (wires
that distribute signals across the full device height and width)
are not used since they can interfere with circuitry outside
of the target area. Horizontal hex lines reach beyond the
area allowed for the connections, which has only up to three
columns of switch matrices. The final model of the switch
matrix contains 116 pins, distributed as follows:

• 16 direct connections to the 8 neighboring CLBs;
• 40 double lines;
• 20 vertical hex lines;
• 8 connections to the outputs of the 4 slices in the CLB;
• 32 connections to the inputs of the 4 slices in the CLB.
The area used for connections is modeled as a two-

dimensional array of switch matrices, and employs a data
structure based on the simplified model just described to keep
track of resource usage.

V. PARTIAL BITSTREAM GENERATION

The run-time creation of new partial configuration starts
from a component netlist, which specifies the components
to be used and the (unidirectional) connections between their
terminals. No cycles between the components are allowed, i.e.,
the netlist must define a directed acyclic graph. The creation

Fig. 2. Placing components in stripes. (a) Typical placement for components
that only have CLBs; (b) Placement resulting from restrictions imposed by
the use of particular hardware resources, in this case BRAMs.

proceeds in two stages: 1) defining the component locations;
2) creating the connections (including the connections to the
interface of the host area).

A. Determining Component Locations

The current strategy for determining the location of a
component groups the components in columns (stripes), so
that directly connected components are assigned to adjacent
groups if possible. The arrangement in columns matches the
reconfiguration mechanism of Virtex-II-Pro FPGAs, where
the smallest unit of reconfiguration data applies to an entire
column of resources. Two examples of possible arrangements
of components in a stripe are displayed in figure 2.

The first step in grouping the components is to determine
its level (counted from the primary inputs). The first level
contains the components whose inputs are connected to the
PLB dock; the second level contains that components that have
all their input terminals connected to first-level components,
and so forth. A component with more than one input source
will be assigned to the level following the highest-numbered
component connected to it. This procedure assigns component
levels in topological order.

The next step is to determine the set of contiguous CLB
columns (a stripe) required for all components of each level.
The final placement of a component will be restricted to
the columns assigned to its level. Levels are processed in
order. The starting column assigned to a given stripe will
be the one closest to the PLB dock without overlapping
previous stripes. The number of columns assigned to a stripe
is the smallest required to accommodate all components of
the corresponding level (see Figure 2a). This is determined
by the width of the components and by the compatibility of
the component resources with the destination area. In some
cases it is necessary to widen the stripe in order to cover
an area compatible with the resource requirements of a given
component (see fig. 2b).

Fig. 3. Example of one possible routed connection.

The detailed assignment of components to locations pro-
cesses each level in succession, placing the components from
top to bottom of the device. The placement of components
with non-homogeneous resources (like BRAMs) may require
offsetting the component from the default location. As a result,
the stripe may have unused areas at its left or right borders
(fig. 2b).

The unused areas of the stripe are filled with feed-through
components, in order to ensure that all inputs are availableat
the left border of the stripe, and that all outputs are brought
to the right border. Feed-through components simply connect
their inputs directly to their outputs. Components of this
type are also used to provide a path through a stripe when
connecting components that do not belong to the same level.
Feed-through components are generated as required, without
recourse to library components.

The assignment of a component to a location fails if the
sum of the heights of all components of the same level,
including feed-through components added while processing
previous levels, is greater than the height of the host area.

This stage produces a partial configuration which is obtained
by merging the partial bitstream of the empty host area with
the relocated bitstreams of the components.

B. Component Interconnections

The second stage of the run-time creation of a new partial
configuration must determine which interconnect resourcesare
assigned to each connection between components. Given our
strategy for defining the locations of the components, this
can done by finding how to establish connections between
terminals of components in adjacent stripes.

Since we are using LUT-based bus macros for implement-
ing the terminals as described in [13], component terminals
correspond to some pins of a switch matrix. Other pins in the
switch matrix are connected to pins in other switch matrices
according to the resource model of sec. IV.

One connection between two components is defined by
the sequence of switch matrix pins required to establish the
desired connectivity. For each matrix, this sequence defines the

internal connections that are required, and therefore defines the
configuration settings of the switch matrices involved. Fig. 3
illustrates one such connection. The dots represent the internal
pins, while the dashed lines depict the internal connections that
must be established.

In order to determine all the pins involved in a connection,
a breadth-first search of the routing area is performed. The
routing area is represented by an array of switch matrices. For
adjacent stripes, two columns of switch matrices are necessary:
one belonging to the right border of the left stripe, and the
other belonging to the left border of the right stripe. An extra
column of switch matrices is included when there is an unused
BRAM/multiplier column between the stripes.

The actual area searched starts as the smallest rectangle that
encloses all pins used as terminals of the connection to be
established, and is reduced during the search, thereby limiting
the number of segments to are considered. Restricting the
search area in this way may cause some segments to be left
out of consideration, but reduces the search effort significantly.
Connections are processed in sequence and no retrying of
failed searches is performed.

The shortest path from a source (output terminal) to the
corresponding sinks (one or more input terminals) is per-
formed by a variant of Dijkstra’s shortest path algorithm [15].
The breadth-first search of the area considered for routing
maintains a list of those pins that can be reached from the
source by using exactly a number of segments equal to current
iteration count. For any pin on this list, there is a shortest
path (measured in number of segments) to the source. The
search is managed so that a pin can enter this list only once
(at the earliest opportunity). When a sink is reached, a path
to the source is determined by retracing through the sequence
of interconnection segments. The search is resumed until all
sinks of the current connection are reached.

All connections are processed sequentially in this way. Pins
used for a connection cannot be used in subsequent searches.
Therefore, the order in which connections are processed may
influence the final result. (Evaluation of the influence of this
factor is outside the scope of the present paper.)

After all connections are processed, the partial configuration
is updated with the information for the new routes.

The search procedure does not ensure that a global optimum
for all routes is obtained, since each net is handled in isolation,
without considering the impact on the following nets. The
impact of these limitations is mitigated by the fact that choices
are restricted by the previous placement, and by the design
decision to keep any interconnections confined to the area
between stripes. As the next section shows, many sequences
of SIMD instructions can be routed under these restrictions.

VI. EVALUATION

The algorithms of the previous section were applied to 10
DFG specifications derived from SIMD code fragments. The
evaluation was done on a XUP Virtex-II Pro Development Sys-
tem, which has a Xilinx XC2VP30-7 FPGA [5] and 512 MB
of external DDR memory (PC-3200). The external memory

contains the program code and data, including the library of
components. Only one of the two embedded PowerPC 405
processor cores is used (running at 300 MHz). The 64-bit
processor local bus connected to the memory controller usesa
100 MHz bus clock. The program used to run the benchmarks
was written in C and compiled with the GNU Compiler version
3.4.1 included in EDK 8.2. The resulting programs has 105 kB
of instructions and 1597 kB of static data.

The following tasks, which can be efficiently written with
SIMD instructions, were selected for evaluation of the pro-
posed approach. The first six process gray-scale images with
8-bit pixel values.
1. Brightness adjustment (BA): The hardware adds a pixel
value to a signed constant value (saturating add).
2. Contrast adjustment (CA): The hardware processes each
pixel according toa + (|pixel − a| ∗ c), wherea and c are
constants that represent average brightness and contrast change
respectively.
3. Additive blending (AB): This task consists of adding (with
saturation) the pixel values from two images to produce a third.
4. Fade effect (FE):This task consists of combining the pixels
of two images according to(A−B)×f+B, whereA is a pixel
value from the first image,B is a pixel value from the second,
and f is a constant that specifies the relative contribution of
the first image to the result [3]. The fade-in-fade-out effect
is obtained by processing the source images successively for
different values off . The structure of the circuit generated for
this task is shown in fig. 4.
5. Motion detection (MD): This task combines the pixels
of two images to produce a third. The absolute difference be-
tween corresponding pixels of the source images is calculated.
If the calculated value is above a predefined threshold, the
resulting pixel is white; otherwise it is black.
6. Motion overlay (MO): This task again combines the pixels
of two images to produce a third. As before, the absolute
difference between corresponding pixels is calculated. Ifthe
calculated value is above a predefined threshold, the resultis
equal to the mean of the input pixels; otherwise it is equal to
the pixel value from the first image.
7. Clip test (CT): This task is used in clipping off triangles
for graphics processing. A comparison between 4 spatial
coordinates is performed for 3 vertices. The task is the same
for each vertex, so vertices are processed one at a time [16].
8. Least Significant Bit Steganography (LSBS):This task
takes a sequence of bytes representing a secret message and
encodes them onto 16-bit PCM audio samples by replacing
the four least significant bits of each sample with bits from
the message (hilewitz08-bit).
9. Compression (CO):This task comes from bio-informatics:
compress a vector of string representation of codes of the four
nucleotides into vector with a 2-bit representation for each
nucleotides [17].
10. Translation (TR): This task translates a compressed
sequence of four sets of three nucleotides (6 bits each, as
produced by the previous task) to four protein codons, each
one represented by an 8-bit.

Fig. 4. Component placement for Fade effect circuit. (M1: 8-bit multiplier,
S1: 8-bit adder, S3: 8-bit subtractor, Feed: 8-bit feed-through.)

TABLE I
EXECUTION TIME FOR CONFIGURATION GENERATION ON THE300 MHZ

POWERPC 405EMBEDDED IN THE V IRTEX-II PRO XC2VP30-7 FPGA

Name In Out Lv Comp. Nets
Bbox
(c×r)

Time
(s)

BA 32 32 1 4 64 3x12 15
CA 32 32 3 12 128 9x32 32
AB 64 32 1 4 96 3x12 25
FE 64 32 3 12 128 9x32 38
MD 64 32 2 8 128 6x12 32
MO 64 32 3 16 224 12x28 60

CT 32 6 2 7 176 6x15 46
LSBS 40 32 2 6 128 6x14 36
CO 32 8 1 0 8 3x8 5
TR 24 32 1 0 24 3x8 8

In: number of input bits;Out: number of output bits;Lv: number of levels;
Comp: number of components;Nets: number of nets routed;Bbox: bounding
box (CLB columns by CLB rows);Time: time for whole generation process.

The last two benchmarks involve only bit selection and
permutation. Therefore, they are implemented only by routing,
without any logic blocks.

Tab. I summarizes the structural characteristics of the cir-
cuits and the total configuration generation time (including
placement, routing, and creation of partial bitstream in the
standard format).

For Virtex-II Pro FPGAs the size of the partial bitstream,
and therefore the time taken by partial reconfiguration, is
proportional to the number of columns occupied by the circuit
(first number in the third column). For the platform used, each
column takes 0.31 ms to reconfigure. All circuits fit in the host
area of our test system, which is 22 columns by 32 rows.

All benchmarks required less than 60 s total generation time.
This is almost completely determined by the routing stage: he
most time-consuming placement took less than 100 ms.

Tables II and III compare the running times of software and
run-time-generated hardware versions of the benchmarks. The
hardware execution time are, in these cases, determined only
by the data transfer times (DMA setup time included). In tab.II

TABLE II
EXECUTION TIME PER OUTPUT PIXEL FOR IMAGE PROCESSING TASKS

Tasks Software (µs) Hardware (µs) Speedup

BA 0,48 0,01 48,0
CA 0,73 0,01 73,0
AB 0,64 0,04 16,0
FE 0,90 0,04 22,5
MD 0,79 0,04 19,8
MO 0,82 0,04 20,5

Note: All images are 8-bit, gray-scale, 1024×1024.

TABLE III
EXECUTION TIME FOR NON-IMAGE-PROCESSING TASKS

Name Software (ms) Hardware (ms) Speedup

CT 875,56 26 33,4
LSBS 1207,07 26 46,1
CO 290,29 26 11,1
TR 465,69 26 17,8

Note: Each task executes 250 000 times.

they are different for tasks that process one image (BA, CA)
or two images. All tasks in tab. III involve the same amount
of data transfers and therefore have the same execution time.

The speed-ups achieved by the hardware are significant,
showing that the run-time generation of dedicated hardware
may provide significant advantages, provided that the genera-
tion times are acceptable for the specific application.

The generation times achieved by this implementation are
unsuitable for applications that require very fast turnaround
times, like just-in-time hardware compilation. However, there
are many application scenarios that may accommodate delays
in the range under discussion. They include applications that
must adapt to relatively slow-changing environments (like
exterior lighting conditions or temperature). that may operate
temporarily with reduced quality, or that may amortize the
generation effort over a large enough utilization time. If
partial configurations are reused during the same application,
overall performance may be improved by keeping a cache of
previously-generated configurations.

VII. C ONCLUSION

This paper evaluated the run-time creation of partial con-
figurations that implement small sets of SIMD instructions
for use in embedded systems with dynamically reconfigurable
FPGAs. The main goal of the generation procedure is to
obtain useful solutions in a short time. The computational
effort is bounded by several design choices: circuit description
by acyclic netlists of coarse-grained components, simplified
resource models, direct placement procedure, and use of
limited areas for routing.

For a set of ten SIMD-code-derived benchmarks, the genera-
tion times varied between 5 s and 60 s; the generated hardware
exhibited speed-ups between 17 and 73 compared to the
software versions.

The working implementation described here shows that run-
time generation of configurations is a feasible technique for
use in embedded systems to provide specialized hardware
support to tasks whose computational needs exceed the com-
putational power of the CPU.

Further work is necessary to meet the conflicting goals of
shorter running time and more flexible placement and routing.
The inclusion of timing information and constraints is alsoa
future goal.

ACKNOWLEDGMENTS

The present work was partially supported by research con-
tract PTDC/EEA-ELC/69394/2006 from the Foundation for
Science and Technology (FCT), Portugal. Miguel L. Silva was
funded by FCT scholarship SFRH/BD/17029/2004.

REFERENCES

[1] J. Gause, P. Cheung, and W. Luk, “Reconfigurable computingfor shape-
adaptive video processing,”IEE Proceedings - Computers and Digital
Techniques, vol. 151, no. 5, pp. 313–320, 2004.

[2] K. Paulsson, M. Hiibner, J. Becker, J. Philippe, and C. Gamrat, “On-
line routing of reconfigurable functions for future self-adaptive systems
- investigations within the ÆTHER project,” inIntl. Conf. Field Pro-
grammable Logic and Applications (FPL 2007), 2007, pp. 415–422.

[3] A. Peleg, S. Wilkie, and U. Weiser, “Intel MMX for multimedia PCs,”
Commun. ACM, vol. 40, no. 1, pp. 24–38, 1997.

[4] K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scales, “AltiVec
extension to PowerPC accelerates media processing,”IEEE Micro,
vol. 20, no. 2, pp. 85–95, 2000.

[5] Virtex-II Platform FPGA User Guide, Xilinx, Nov. 2007, version 2.2.
[6] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford, “Invited

paper: Enhanced architectures, design methodologies and CAD tools for
dynamic reconfiguration of Xilinx FPGAs,” inProc. Intl. Conference on
Field Programmable Logic and Applications (FPL 2006), 2006, pp. 1–6.

[7] E. L. Horta, J. W. Lockwood, D. E. Taylor, and D. Parlour, “Dynamic
hardware plugins in an FPGA with partial run-time reconfiguration,” in
Proc. 39th Design Automation Conference, 2002, pp. 343–348.

[8] Y. Krasteva, E. de la Torre, T. Riesgo, and D. Joly, “Virtex II FPGA
bitstream manipulation: Application to reconfiguration control systems,”
in Proc. International Conference on Field Programmable Logic and
Applications (FPL 2006), 2006, pp. 1–4.

[9] H. Kalte and M. Porrmann, “REPLICA2Pro: Task relocation by bit-
stream manipulation in Virtex-II/Pro FPGAs,” inProceedings of the 3rd
Conference on Computing Frontiers. ACM, 2006, pp. 403–412.

[10] M. L. Silva and J. C. Ferreira, “Generation of hardware modules for
run-time reconfigurable hybrid CPU/FPGA systems,”IET Computers &
Digital Techniques, vol. 1, no. 5, pp. 461–471, 2007.

[11] J. Suris, C. Patterson, and P. Athanas, “An efficient run-time router
for connecting modules in FPGAS,” inProc. Intl. Conference on Field
Programmable Logic and Applications (FPL 2008), 2008, pp. 125–130.

[12] M. L. Silva and J. C. Ferreira, “Generation of partial FPGA con-
figurations at run-time,” inProc. International Conference on Field
Programmable Logic and Applications (FPL 2008), 2008, pp. 367–372.

[13] M. Hübner, T. Becker, and J. Becker, “Real-time LUT-based network
topologies for dynamic and partial FPGA self-reconfiguration,” in Proc.
17th Symposium on Integrated Circuits and Systems Design (SBCCI
2004), Sept. 2004, pp. 28–32.

[14] Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet,
Xilinx, Nov. 2007, version 4.7.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,Introduction
to Algorithms, 2nd ed. McGraw-Hill, Dec. 2003.

[16] R. B. Lee and A. M. Fiskiran, “PLX: an instruction set architecture and
testbed for multimedia information processing,”The Journal of VLSI
Signal Processing, vol. 40, no. 1, pp. 85–108, May 2005.

[17] Y. Hilewitz and R. Lee, “Fast bit gather, bit scatter andbit permutation
instructions for commodity microprocessors,”Journal of Signal Process-
ing Systems, vol. 53, no. 1, pp. 145–169, Nov. 2008.

