Automated Design Debugging in a Testbench-Based
Verification Environment

Mehdi Dehbashi

André Siilflow

Gorschwin Fey

Institute of Computer Science, University of Bremen
28359 Bremen, Germany
{dehbashi, suelflow, fey} @informatik.uni-bremen.de

Abstract—Debugging is one of the major bottlenecks in the
current VLSI design process as design size and complexity
increase. Efficient automation of debugging procedures helps to
reduce debugging time and to increase diagnosis accuracy. This
work proposes an approach for automating the design debugging
procedures by integrating SAT-based debugging with testbench-
based verification. The diagnosis accuracy increases by iterating
debugging and counterexample generation, i.e., the total number
of fault candidates decreases. The experimental results show that
our approach is as accurate as exact formal debugging in 71%
of the experiments.

Keywords—automated debugging; testbench; diagnostic trace;

I. INTRODUCTION

The size and complexity of VLSI designs has increased
significantly during the recent years. In this situation, the
debugging process is a major bottleneck in the design flow.
Once the verification tool detects a design error, the error
is returned as a counterexample which shows a misbehavior
in the design. Having a counterexample, localization and
rectification of the erroneous behavior, i.e. debugging, remains
often as a manual task that consumes a significant portion
of design time. Thus, automated debugging approaches are
necessary to speed up the process. Among these approaches,
debugging based on Boolean Satisfiability (SAT) [1] has been
shown as a robust and efficient approach in a variety of design
scenarios from diagnosis to debugging properties. The pur-
pose of SAT-based debugging is to automatically identify the
potential sources of an observed error by using the available
counterexamples. Each potential source of the error is returned
as a fault candidate which is a set of components of the
circuit. Each fault candidate can fix all erroneous behavior
of counterexamples using non-deterministic replacements.

Different approaches have been proposed for enhancing the
performance and accuracy of SAT-based debugging. They can
be categorized into two groups. The approaches of the first
group try to enhance the debugging performance with a given
set of counterexamples. The approaches of the second group
generate more counterexamples for improving the accuracy of
the debugging process.

The approaches based on the given set of counterexamples
aim at reducing run time and memory requirements. The work
in [2] exploits the hierarchical nature of modern designs to
improve the performance and quality of debugging. That work
as well as [3] uses Quantified Boolean Formulas (QBF) to
reduce the size of the problem instance. In [4], Maximum SAT-
isfiability (MaxSAT) [5] is used to improve the performance
and applicability of debugging. MaxSAT allows for a simple

This work has been funded in part by the German Research Foundation
(DFG, grant no. FE 797/6-1).

formulation of the debugging problem and therefore reduces
the problem size and run time. Abstraction and refinement
techniques are used in [6] for handling large designs with a
better performance and reduced memory consumption. Totally
the main drawback of these approaches is that the diagnosis
accuracy is limited by the given set of counterexamples.

The approaches of the second group combine counterex-
ample generation (verification) and debugging in a single
flow. With each new counterexample, the diagnosis accuracy
increases by excluding fault candidates that cannot fix erro-
neous behavior of the added counterexample. Thus, a high
quality counterexample is a counterexample which reduces
the number of fault candidates effectively. The work in [7]
uses randomly generated counterexamples for debugging and
applies automatic correction based on re-synthesis. Automatic
correction increases the computational costs and is not guar-
anteed to fix an error in the desired way. Using random coun-
terexamples may decrease the diagnosis accuracy, and may
increase the iterations between verification and debugging. In
[8], a heuristic approach based on three-valued logic is used
to find high quality counterexamples. For an injected X value
at a fault candidate and by observing X values on outputs, the
approach assumes that modifying the fault candidate can create
any value at the output. But this is an over-approximation due
to the conservative properties of X values. An exact approach
based on QBF is proposed in [9]. That creates high quality
counterexamples to find fault candidates fixing any erroneous
behavior. However, the explicit enumeration of fault candidates
may decrease the debugging speed for large designs. The
approaches in [8] and [9] need a formal specification for
creating high quality counterexamples. However, a formal
specification is often not given for complex designs. Here a
testbench is used to create the expected output response of an
input stimulus.

In this paper, we present a flow to improve the accuracy of
SAT-based debugging when a testbench is used for verification.
No formal specification is required. At first diagnostic traces
are derived from the faulty implementation. A diagnostic trace
is an input stimulus which tries to activate a fault candidate
(or a set of fault candidates) and to propagate its behavior
to the outputs. The diagnostic traces help testbench-based
verification to create high quality counterexamples. Then these
counterexamples are used for iterating SAT-based debugging
and increasing the diagnosis accuracy. The techniques in
this paper do not need a fault model for generating the
diagnostic traces. Moreover, diagnostic traces are created by
way of the faulty implementation and the initial set of fault
candidates only. Whereas the focus of this paper is on designs
using a testbench, these diagnostic trace generation techniques

can also be applied for debugging designs using a formal
specification. Experimental results compare three heuristics to
find diagnostic traces by run time, memory, and accuracy to
random trace generation and to the formal approach of [9] that
is exact but requires formal specification. The experimental
results show that our approach is as accurate as exact formal
debugging in 71% of the experiments.

The remainder of this paper is organized as follows. Sec-
tion II introduces preliminary information on three-valued
logic, circuits and sensitized paths, and SAT-based debugging.
Then, our approach is presented in Section III. Section IV
presents experimental results on benchmark circuits. The last
section concludes the work.

II. PRELIMINARIES
A. Three-Valued Logic in Boolean Satisfiability

In three-valued logic, each signal can have the value 0, 1, or
X (unknown). This logic has been used in the field of formal
hardware verification for creating strong counterexamples [10],
[11] and faster verification engines [12], [13]. Also, this logic
has been used for generating high quality counterexamples [8].

An encoding in Conjunctive Normal Form (CNF) is needed
for the three-valued logic defined over {0, 1, X} to apply a
standard SAT solver. Accordingly, the modeling of gates and
components in the CNF formula has to be adjusted. Here,
three-valued logic is encoded by using two variables for each
signal similar to [12]. The three-valued constants 0, 1, and X
are defined by pairs (0,0), (0,1) and (1, —), respectively.

B. Circuits and Sensitized Paths

Each combinational circuit is represented by a directed
acyclic graph C' = (V, E), referred to as the circuit graph,
where V is the set of circuit nodes and F, the set of edges,
corresponds to the gate input-output connections in the circuit
[14]. The fan-out of v is a set of nodes wu, such that there is
an edge from v to u. The fan-in of v is a set of nodes w,
such that there is an edge from w to v. A path P from node
go to node g, is a sequence of nodes, (go, 91,92, - - -, gr) such
that (g;_1,9:;) € E. An edge whose value changes under the
presence of some fault(s) is called a sensitized edge, and a
path of sensitized edges is called a sensitized path [15]. In
this paper, an X value is injected at a fault candidate to over-
approximate a sensitized path. An input to a node is said to
have a controlling value (cv) if it determines the value of the
node output regardless of the values on the other inputs to the
node. If the value on some input is the complement of the
cv, the input is said to have a non-controlling value (ncv). An
input with X value is neither a cv nor a ncv.

C. SAT-based Debugging

Debugging is a procedure in a design process that is started
when the implementation of the design has failed verification.
The output of the verification engine is typically returned as
a set of counterexamples C'E's which proves the existence of
a bug in the implementation. A counterexample CE; € C'Es
usually includes input stimuli causing erroneous behavior, and
the expected correct output response.

An approach for SAT-based debugging was presented in
[1] that searches for all possible fault candidates in the
implementation. Given an implementation of a circuit and

a set of counterexamples, one copy of the circuit is created
for each counterexample. Then, the inputs and outputs are
constrained to the input stimuli and to the correct output
response of the corresponding counterexample. Also the circuit
is enhanced with correction logic by adding a multiplexer at
the output of each component. The original output function
F. of component C' is replaced by F!. The select line S. of
the added multiplexer controls F. such that if S, is activated
F! = R, where R, is an unconstrained variable and a value for
correcting the erroneous behavior may be injected, otherwise
F! = F,. The select line is also called abnormal predicate.
The number k of active abnormal predicates is controlled by
a fault cardinality constraint.

Debugging for sequential circuits is done by unrolling
the circuit for some time steps equal to the length of the
counterexample [16]. The correction logic is added as in the
combinational case and usually the same abnormal predicate
is used for the same gate in all time steps and for all
counterexamples.

Conceptually, for each counterexample C'F; there is a set
of fault candidates Fcp,. For single faults these sets are
intersected to return the final set of fault candidates F:

F=Fceg, NFecp, N...0NFcg, = n‘/TCEi (1)
i=1

For counterexample generation, the goal is to minimize the
size of F and the number of counterexamples n in Formula
(1). The set F shows the diagnosis accuracy, and parameter n
is effective on the memory and the time of debugging engines.
Thus, an algorithm which can minimize the number of fault
candidates with a minimum number of counterexamples in a
reasonable time improves the performance of the debugging
engines.

For multiple faults, each fault candidate F'C; € F includes
a tuple of k components, F'C; = {FC;1,FC;2,...,FC;}.
The set F is constituted in a way that each component of fault
candidate F'C; is contained by at least one sensitized path of
one counterexample.

Fault model-free SAT-based debugging does not need a fault
model. As a drawback fault masking may not be recognized.
This case occurs for multiple faults when one fault masks
behavior of another fault. This is a known problem but not
addressed in this work.

III. INTEGRATION OF FORMAL DEBUGGING WITH
TESTBENCH-BASED VERIFICATION

This section presents the approach to combine SAT-based
debugging and counterexample generation which is aided by
generating diagnostic traces. In this approach, the diagnostic
traces help to create high quality counterexamples for auto-
mated design debugging to increase the diagnosis accuracy.

Figure 1 shows the overall approach which consists of
three main steps. These steps are debugging, diagnostic trace
generation, and running the testbench to validate diagnostic
traces. Debugging is started by having the design and an
initial counterexample for finding all fault candidates which
can correct the erroneous behavior of the circuit exhibited by
the initial counterexample.

The second step of the approach, called diagnostic trace
generation, is the main focus of this work. The inputs of this

Design Initial CE

New CEs

Debugging

Design | Fault Candidates

Diagnostic Trace
Generation

Diagnostic Traces

Testbench

Failed

Passed |(CEs)

Fig. 1. Integration of debugging and testbench-based verification

step include the faulty design and the set of fault candidates.
The aim of this step is to generate diagnostic traces by heuristic
methods. As a high quality counterexample aims at reducing
the number of fault candidates effectively, each diagnostic
trace activates a small number of fault candidates and observes
their behavior on outputs. Therefore, the counterexample de-
rived from diagnostic traces can likely reduce the number of
fault candidates.

Afterwards, the diagnostic traces are tested in a testbench
environment, because it is not guaranteed that the diagnostic
traces really create erroneous output responses in the design.
Here, a testbench is used as a black box specification for
creating the expected correct output of a diagnostic trace.
A diagnostic trace creating erroneous output behavior is a
counterexample and the step validates the diagnostic traces. If
there is no counterexample, the algorithm returns to the second
step for generating more diagnostic traces. Otherwise, the
algorithm continues debugging with the new counterexamples.

In the following, Section III-A describes the intuition behind
the diagnostic traces to create high quality counterexamples.
Sections III-B, III-C, and III-D introduce three heuristics for
diagnostic trace generation. The discussion of each section
starts with a single fault assumption, then it is followed by an
extension to multiple faults.

A. Counterexample versus Fault Candidate

This section describes why more counterexamples are effec-
tive for reducing the number of fault candidates and how we
can derive a high quality counterexample. Figure 2(a) shows
a faulty circuit with a single fault. The real fault location is
shown by a circle. The counterexample C'E; is propagated
through the dashed path to the circuit output O1. The fault
candidates indicated by x can correct the erroneous behavior
of O1. Actually, the fault candidates show the sensitized path
related to the counterexample. The set of fault candidates
related to C'E; is written as Fopg,. Figure 2(b) shows the
effect of the second counterexample C'E, separately. The
counterexample C'Ey is propagated through another path to
02 and creates F¢p,. The effect of using both C'E; and
CFE, in the debugging procedure is described in Figure 2(c).
According to Formula (1) , the number of fault candidates is
reduced to the set of 7 = Fcp, N Fcp, where each fault
candidate F'C; € F is a single fault candidate. Now it is

—o1
X X @K

Sele02

(a) (b)

401

Slo2

©) (d)

Fig. 2. Counterexample versus fault candidate: (a) Fault candidates of C E.
(b) Fault candidates of C'F. (c) Fault candidates of C'E1 and C Es. (d) Fault
candidates of CE1 and CE3 and CE3

interesting to figure out how a high quality counterexample
can have the strongest effect in reducing the number of fault
candidates. Figure 2(d) shows the counterexample C'E3 which
further reduces the size of F. The sensitized path of C E3 has
the minimum intersection with the sensitized paths of other
counterexamples.

For multiple faults, each fault candidate F'C; can have
k components. In this case, the sensitized paths of a new
counterexample intersect with a fault candidate F'C; when all
of the sensitized paths leading to erroneous behavior propagate
through the components of F'C;. Thus, a new counterexample
which has minimum intersection with fault candidates can
effectively reduce the size of F.

B. Local Branch Activation (LBA)

In this technique, the X value is considered as a token
for the behavior of one fault candidate and the algorithm
tries to propagate the token X through different branches
around a fault candidate to the primary outputs, i.e., different
sensitized paths are activated for each fault candidate. By
activating different sensitized paths around a fault candidate,
the intersection with paths related to other fault candidates
is likely reduced, because the fault candidates are usually
adjacent and close to each other in the circuit graph. As
a result, the created counterexample usually decreases the
number of fault candidates in the debugging procedure. In
the following, first the branch and path activation method is
described and then the total algorithm is presented.

1) Branch and Path Activation: Considering the node grc,
traversing the circuit graph from node grc along successor
nodes until reaching a fan-out, is called forward branch for
grc. Traversing the circuit graph from node gpc along prede-
cessor nodes until reaching a fan-in, is called backward branch
for grc. Before reaching the forward branches for grc, there
are some middle nodes which are collected in the set M G, and
the nodes of forward branches are collected in the set F'G.
Figure 3 shows an example of a circuit graph. Considering
grc, the sets MG = {gmflvgmfz} and F'G = {gfl7gf2}
result. Thus the number of forward branches is |FG| = 2.
The nodes of backward branches are collected in the set BG.
The set BG for gpc in Figure 3 is BG = {g,, g, } and
thus the number of backward branches is |BG| = 2. The
X value of gpc can be propagated through |BG| x |FG|
different paths. The method activates the individual paths to
more likely reduce the intersection with paths related to other
fault candidates. As shown in Figure 3, one of the paths is
P = (Gbys Gmbs > Gmby» JFCs Gm fr > Gmfs» 9,)- For propagating
the X value of gpc through the path P, the following
constraints are required:

Gmb, Grc

Fig. 3. Branch and path activation

- The off-path inputs of each gate g,,r, € MG have to
have a ncv.

- The off-path inputs of each gate gy, € FG, gy, ¢ P
have to have a cv.

- The off-path inputs of each gate g, € FG, g5, € P
have to have a ncv.

- The output of each gate g,, € BG, g, ¢ P has to have
a ncv.

- The output of each gate g,, € BG, gp, € P has to have
an X value.

2) LBA algorithm: The algorithm of the complete proce-
dure is described in Figure 4. The algorithm data are a faulty
design D and an initial counterexample C'E; (line 1). The
initial counterexample is assigned to the set of counterex-
amples C'Es (line 2). The first step is SAT-based debugging
(line 7). SAT-based debugging is responsible to find all fault
candidates which can rectify the erroneous behavior of coun-
terexamples (C'Es). Then for each fault candidate F'C, the
function LBA generates some diagnostic traces (line 10), after
that the diagnostic traces are checked by the testbench to detect
whether they produce a counterexample (line 11). If at least
one new counterexample is found, the algorithm continues
the debugging step for the new set of counterexamples. The
algorithm finishes when there is no new counterexample for
any existing fault candidates.

Figure 5 shows the function LBA which is responsible
for generating diagnostic traces for a fault candidate. After
converting the faulty design to CNF, additional constraints
are inserted in the CNF. The constraint of line 2 assigns the
value X to a fault candidate, and line 3 causes that X to
be observed at least at one primary output (PO). Then the
algorithm searches for the backward and forward branches
considering one fault candidate, and constitutes different paths
for X propagation (line 4). For each path, the appropriate
constraints as mentioned in the Section III-B1 are applied
(line 8). Then the SAT solver searches for a solution that is
added to the set of diagnostic traces (lines 9-10).

In Figure 5, there are three types of constraints: fault
candidate constraint, observability constraint (primary outputs
constraint), and path constraint. For inserting a new constraint,
firstly any previous constraint of the same type is removed,
then the new constraint is inserted. For simplicity it is not
shown in Figure 5.

Each of the additional constraints consumes some memory
which can be measured by the number of clauses. One unit-
literal clause is added per fault candidate constraint. For each
path, if standard gates are used in the circuit, two unit-
literal clauses for backward branches, m unit-literal clauses

1 | function Debugging_LBA(D,CE1)

2 |CEs=CE;

3 | New CEs =10

4 | do

514

6 CEs =CFEsUNew_CFEs

7 F = SAT_Based_Debugging(D,CEs)

8 foreach Fault Candidate FC € F do
9 {
10 Diag_Traces = LBA(D, FC)
11 New_CEs = Testbench(Diag_Traces)
12 if New_CEs! =0 then break
13 }
14 |} while New_CEs! =0
15 |end function

Fig. 4. Automated debugging using LBA method

1 | function LBA(D,FC)

2 | Constraint(FC = X)

3 | Constraint(3_1_,(PO; == X) > 1)
4 | Paths = Find_Branches(FC)

5 | Diag_Traces = 0

6 | foreach Path € Paths do

71

8 Constraint(Path)

9 if Solve() == SAT then
10 Diag_Traces = Diag_Traces U Extract_Trace()
11
12 | end function

Fig. 5. LBA algorithm

for middle nodes (|[M G| = m), and two unit-literal clauses for
forward branches are added. For the observability constraint,
O(q) clauses are inserted [1], where ¢ is the number of
primary outputs. Thus, the number of additional clauses are
14 (24 m+2) 4 O(q) = O(m) + O(q).

Fault ranking techniques [14] may help increasing the per-
formance of this algorithm. If a fault candidate related to the
real bug location is processed earlier, then the diagnostic traces
create at least one counterexample with higher probability.

For sequential circuits, firstly the circuit is unrolled for some
time steps. In this case, each time step is like a combinational
circuit and branches and paths are activated like in the com-
binational case. A fault candidate has one component in each
time step. For applying the LBA method to sequential circuits,
we activate one fault candidate and its paths in each time
step independently. Then the algorithm investigates whether
the X can be observed on outputs. For multiple faults, where a
fault candidate includes multiple components, we activate each
component independently. Therefore the memory consumption
for additional constraints remains as mentioned before.

C. Minimization of Sensitized Path Intersection (MSPI)

This technique finds the sensitized paths including a mini-
mum number of existing fault candidates. Again, the token X
is used for the behavior of one fault candidate or a set of fault
candidates. The token X is propagated from inputs, crosses a
number of fault candidates and arrives at outputs. The number
of fault candidates having value X is denoted by L:

| 7]

Y (FCi==X)=1L)

i=1

1 | function Debugging MSPI(D,CE)

2 |CEs=CEFEy

3 | New CEs =10

4 |L=1

5 |do

6 |{

7 CEs =CFEsUJNew_CFEs

8 F = SAT_Based_Debugging(D,CEs)

9 New_CEs =10
10 | while L<|F| and New_CEs==0 do
11 {
12 Diag_Traces = MSPI(D,F,L)
13 New_CEs = Testbench(Diag_Traces)
14 L=L+1
15 }
16 |} while New CEs! =0
17 | end function

Fig. 6. Automated debugging using MSPI method

1 | function MSPI(D,F,L)

2 | Constraint(> (FC; == X) = L)

3 | Constraint() (PO; == X) > 1)

4 | Diag_Traces =0

5 | VisitedFCs = 0

6 | while |VisitedFCs| < |F| do

74

8 NonVisitedFF'Cs = F \ VisitedFC's

9 Constraint(}_(NonVisitedFC; == X) > 1)
10 if Solve() == unSAT then break
11 Diag_Traces = Diag_Traces U Extract_Trace()
12 VisitedFFC's = VisitedFC's U Extract_Visited FC's()
13
14 | end function

Fig. 7. MSPI algorithm

The technique starts with L = 1 to find paths sensitizing
one fault candidate. Thus the token X is propagated from
inputs, crosses one fault candidate, and arrives at outputs. If
there is no path with one fault candidate having X which can
create a diagnostic trace or a counterexample, the paths with
more fault candidates having X are searched until at least one
counterexample is found. The algorithm continues until L is
equal to the number of fault candidates.

Figure 6 shows the algorithm. Line 2 assigns the initial
counterexample to the set of counterexamples C'E's. The set
of new counterexamples New_C'Es and L are initialized in
lines 3-4. The first step is done by SAT-based debugging and
extracts the fault candidates F (line 8). While L is less than the
number of fault candidates and the set New_CFE's is empty
(line 10), the MSPI function searches for diagnostic traces
(line 12). In the next step the testbench checks the diagnostic
traces for generating new counterexamples (line 13). In line 14,
L is increased. If the diagnostic traces yield at least one new
counterexample, the algorithm continues with the debugging
step. Otherwise the algorithm searches for new paths with
more fault candidates having X. The algorithm finishes when
L and the number of fault candidates converge.

The MSPI function is described in Figure 7. Firstly the
faulty design is converted to CNF. Then additional constraints
are inserted into the CNF. Line 2 determines the number of
fault candidates having an X value. This number is specified
by L. Line 3 applies the observability constraint in order
to see the erroneous behavior at least on one output. At
this point, different methods can be applied for finding the

diagnostic traces. One method can be simply finding all
existing diagnostic traces according to the applied constraints
(without need to lines 5-13). The weakness of this method
is that usually there are many solutions with respect to L.
Thus, the algorithm performance is biased by increasing the
run time significantly. To overcome this weakness, the number
of extracted diagnostic traces for each L should be limited by
applying some heuristics. Lines 5-13 apply a heuristic method.
When a new diagnostic trace is found, the fault candidates
having an X value on this diagnostic trace are added to
the set of VisitedF'C's. Next time, the algorithm searches
for a diagnostic trace that includes at least one non-visited
fault candidate (lines 8-9). By this, more fault candidates are
covered by the diagnostic traces.

When the number of diagnostic traces in MSPI is limited,
some counterexamples may not be found by the testbench. To
overcome this weakness, another method is applied. When the
MSPI algorithm is finished, there typically remains a small set
of fault candidates. In this case, executing MSPI for another
round may find the missed counterexamples.

In Figure 7, for applying the constraint related to the
heuristic method (line 9) and the constraint on fault candidates
(line 2), O(f) clauses are added to the CNF, where f is the
number of fault candidates. Also O(q) clauses are needed for
the obervability constraint on primary outputs (line 3). In total,
O(f) + O(q) additional clauses are needed for combinational
circuits with a single fault.

For multiple faults, each fault candidate F'C; € F can have
k components: FC; = {FC;1,FC;2,...,FC;}. Also the
erroneous behavior of a fault candidate can be propagated to
outputs by each component or by a combination of compo-
nents. This behavior is modeled by the following formula:

-

FC, = \/(FC,,; == X) 3)

1

J

Thus for each F'C;, the X-behavior can be observed by
assigning at least one of its components to X. For sequential
circuits with a single fault, a similar strategy is applied. In
this case each F'C; € F has one component in each time
step: FC; = {FC} FC?,...,FC?}, where s is the number
of time steps. The activation of a fault candidate in each
time or its activation by a combination of times may lead
to the erroneous behavior on outputs. The following formula
describes this behavior:

FC; = \/ (FC} == X) @)

t=1

Now, when there are sequential circuits with multiple faults,
each fault candidate has two dimensions, one dimension
represents the location and one dimension represents the time.
In this case firstly in each time step, the sensitized components
of a fault candidate are abstracted by Formula (5):

k
FCl=\/(FC}; == X) (5)

j=1

l| Ol

X_Observation

t=1

(@

0,
X_Observation

t=1 t=2

(®)

Fig. 8. MSPI method for sequential circuits with multiple faults: (a) first
time step. (b) second time step

After that, the behavior of the fault candidate in time is
abstracted according to Formula (6):

Fci:FCilchfv...vFsz\/FCf (6)
t=1

Finally, for all of the above mentioned cases Formula (7) is
used to apply the limitation (L) to all fault candidates.

|7

Y FC;=L (7
i=1

By using this method, the algorithm in Figure 7 can be
applied for all cases.

For clarifying the mentioned formulas, Figure 8 shows a se-
quential circuit with multiple faults. Figure 8(a) considers one
time step (this case is similar to combinational circuits with
multiple faults). One OR-gate is inserted per fault candidate.
The inputs of the OR-gates correspond to the variables of fault
candidates specifying the X values. The outputs of the OR-
gates are added and constrained to L. Also the observability
constraint is applied to the primary outputs. Figure 8(b) shows
two time steps. In addition to the OR-gates inserted for
multiple faults, one OR-gate is applied for each fault candidate
to control the fault candidate’s behavior in the time dimension.

When considering ¢ € [1, f] as fault candidate index, j €
[1, k] as location index, and ¢ € [1, s] as time index, the MSPI
technique for sequential circuits with multiple faults needs f-s
OR-gates with k inputs for each OR-gate (f - s - OR(k)) to
control the locations of the fault candidates for all times. Also
f - OR(s) are needed to control the time dimension. Thus
totally this method requires O(f) + O(q) + f - s - OR(k) +
f - OR(s) additional constraints where each OR(i) gate has

1 | function Debugging_ LM BA(D,CE)
2 |CEs=CE;
3 | New CEs =10
4 |L=1
5 |do
6 | {
7 CEs =CEsUNew_CEs
8 F = SAT_Based_Debugging(D,CEs)
9 New_CEs =1
10 | while L <|F| and New_CEs==0 do
11 {
12 Diag_Traces = MSPI(D,F,L)
13 New_CEs = Testbench(Diag_Traces)
14 L=L+1
15 }
16
17 if L ==|F| then
18 {
) 19 foreach Fault Candidate FC € F do
20 {
21 Diag_Traces = LBA(D, FC)
22 New_CEs = New_CFEsUTestbench(Diag_Traces)
23 }
24 L=L+1
25 }
26
27 |} while New_CEs! =0
28 | end function

Fig. 9. Automated debugging using LMBA method

i+ 1 clauses. Therefore the number of additional clauses is in
O(f)+0(@)+ f-s-(k+1)+ f-(s+1)=0(f) +O(q) +
O(f-s-k)+O(f -s).

D. Limited Minimization followed by Branch Activation
(LMBA)

The counterexamples generated by LBA and MSPI may
have different characteristics. LBA investigates each fault can-
didate in detail whereas MSPI has an overall view of all fault
candidates. The advantages of both methods are combined in
one unified algorithm (LMBA) to obtain higher accuracy. The
LMBA technique tries to increase the diagnosis accuracy with
a reasonable overhead by improving the MSPI technique with
local branch activation. After finishing the MSPI algorithm
with a small set of fault candidates, activating the branches of
all fault candidates can be done in a short time and without
high computational cost. By spending this short time, a higher
accuracy can likely be achieved.

Figure 9 shows the details of LMBA. Firstly the algorithm
searches for the paths including a minimum number of Xs
on the fault candidates (lines 10-15). When the convergence
of L and the number of fault candidates is reached, the
first step of LMBA is finished. Thus, the second step of
LMBA starts. Now, the local branches of all fault candidates
are activated (line 19-23) and the new counterexamples are
collected (line 22). If there is at least one new counterexample
then SAT-based debugging is executed. After that the LMBA
algorithm finishes. The number of required additional clauses
for the LMBA method is the maximum of additional clauses
of LBA and MSPI:
max(0(m) + 0(q) , O(f) + O(q) + O(f - s - k) + O(f - 5)).

IV. EXPERIMENTAL RESULTS

In this section, the effects of the presented techniques
are experimentally demonstrated. The techniques described

TABLE I
RESULTS FOR SINGLE FAULTS

Method Heuristic Methods Random Method Formal Method
Name LBA MSPI LMBA RND QBF [9]
Circuit |#Gates|#FC|#CE| Time |Mem [#FC#CE| Time |Mem |#FC|#CE| Time |Mem |#FC|#CE| Time |Mem |#FC|#CE| Time | Mem
comb.
apex5 |3938| 2| 7 19.8)] 39 2| 7 12.7] 35| 2| 7| 13.4| 35 3 21 66.4) 104 2| 4] 228 26
c7552 | 4674| 22| 18| 639.9| 188| 22| 17| 712.8) 204| 22| 18| 538.7| 139 22| 21| 691.7| 206| 22| 6| 346.5| 77
cordic | 2938| 10| 18] 109.5| 78| 10/ 8| 46.1| 39| 10| 12| 43.7| 51f 10| 21| 260.7| 102| 10/ 3| 30.6] 19
dalu 2883| 4| 15| 82.1) 102] 4| 9 14.1] 39| 4] 13| 29.7] 52| 4] 21| 49.2| 104] 4| 2 149 19
des 3942 2| 3 3.7] 18] 2| 3 6.6/ 26| 2| 3 6.5 26| 2| 21 70.8] 138 2| 2 11.1] 18
i10 3294 6| 18| 886.5| 104 12| 11| 253.8| 102| 7| 17| 360.7| 103| 14| 21| 593.2] 137 6| 3| 52.5| 20
misex3 | 6249| 2| 15| 126.9| 105] 2| 7| 29.1| 52| 2| 7| 24.5| 52| 4] 21| 443.9| 140 2| 3 18.8| 38
pair 2848 9| 11| 182.5| 69| 9| 10| 87.2| 68| 9| 14| 84.7| 69| 10| 21| 192.3] 96/ 9| 3| 41.3] 26
seq 4776] 7| 14| 141.4| 103] 7| 5| 39.1| 38| 7| 9 46| 52| 9| 21| 176.6) 138] 7| 3 19.7) 34
seq.
b04 821| 6| 20| 115.5] 105] 15| 20| 158.6] 106| 15| 21| 146.1| 106] 18] 21| 134.8| 106] 6| 7| 57.8] 47
b05 1198] 2| 1 0.3 9 2| 1 0.3 9] 2| 1 0.3 9] 2| 21 26.1) 140f 2| 1 49| 25
b08 223] 6] 1 0.6 2[6] 1 0.3 2] 6] 1 1.1 2[6] 21 6.8] 26| 4| 2 1.1 5
b10 260] 1] 21 26.6| 51| 11| 14| 17.3| 26| 10| 16 18.2] 26| 10| 21 17.6] 39| 1| 3 2.2 8
bl1l 867 9| 21 73.6] 138] 9| 3 7.6 23| 9| 8| 21.2] 47 9] 21 71.3| 138 5/ 3 10.8| 34
b12 1297] 29| 6/ 69.1] 68| 27| 21| 329.2| 207| 27| 20| 201.4| 189| 29| 21| 328.1] 207| 27| 3| 78.1] 51
ged 1217] 7| 19| 150.2| 188] 7| 21| 151.8| 205| 7| 21| 128.2| 157| 7| 21| 135.7| 189| 7| 4| 81.4] 50
phase_de.| 1834 29| 3| 45.1| 48| 29| 16| 388.5| 209| 29| 20| 434.2| 277| 29| 21 471.4| 278| 29| 2| 113.5] 47
TABLE II
RESULTS FOR MULTIPLE FAULTS
Method Heuristic Methods Random Method Formal Method
Name LBA MSPI LMBA RND QBF [9]
Circuit |#Gates| k |#FC|#CE| Time |Mem|k |#FC|#CE| Time |Mem|k |#FC#CE| Time |Mem|k |#FC#CE| Time |Mem|k #FC#CE| Time |Mem
comb.
apex5 |3938[1] 5| 14 76.5/102f 3] -] 19/1447.4]153| 3| -] 19/1444.7|153|2| 45| 21| 250.1) 154 3] 60| 5| 1107.6| 124
c7552 | 4674| 1] 4| 21| 260.2|189]|2| 88| 21/1846.9/303[1| 2| 4 41.2] 47]1] 2| 21| 143.8/189[2| 58] 9| 877.1| 185
cordic | 2938| 1| 9] 21 77.4102]1] 6] 11 24.7| 51|11 6|12 22.1] 391 9] 21 65.4/102|1] 3] 3 7.6/ 19
dalu 2883| 2| 56| 16| 395.7|184(2| 56| 19| 424.1|185|2| 56| 18] 561.5/184|2 -] 21|1270.1/379[2]| 56] 7| 194.4| 124
des 3942| 3| 4] 20| 256.6|139(3] 4| 12 85.3] 78[3] 4|13 86.5| 78]|3] 4] 21| 174.9/140{3] 4| 3| 205.3] 74
i10 3294| 1| 2| 19| 101.3]104f1] 1] 6 23.4| 4711 1| 7 31.8] 39[1] 1|21 65.8/105[2| 6| 6 84.5| 68
misex3 | 6249| 2| 26| 21| 586.1]157| 2| 16| 20| 440.4| 123| 2| 18] 21| 221.1|123[2] 60| 21/3270.2| 254| 2| 16| 5 145.3] 76
pair 2848| 2| 15| 20| 169.4|136] 2| 15/ 11 94.2| 693 -] 12| 193.8/160]|2| 15| 21| 151.7/136| 3] -] 6| 2453.1| 158
seq 4776| 2| 4] 21| 289.5/186|2] 2|11 92.2] 93|2| 2|21 292.4]121|1] 3] 21 98.6/137|2| 2| 5 34.4] 67
seq.
b04 821| 1| 5/ 21| 116.4/106[1] 2| 6 20.3] 51)1| 2|14 36.1] 70f{1] 2| 21 67.3/106| 2| 62| 13| 1082.6| 152
b05 1198/ 1] 5] 1 4.2 9]1 5 5 20.4] 4711 5| 3 11.8] 261 5 21 41.9/140(1] 5 1 11.2) 23
b08 223[1] 69| 1 6.2 4] 1] 58| 20 61.6/ 26| 1| 58| 20 62.4] 26[1| 58| 21 66.1) 38| 1] 58] 2 4.5 4
b10 260[2| 14| 11| 222.7| 62]|2] 14| 17| 120.1] 62|2| 14| 8 61.4] 19[2| 14| 21 99.5| 59]|2| 14| 6 16.3] 43
b1l 867| 2] 60] 11/1053.7/215[2| 66] 1 32.1] 47|12/ 66| 1 87.6] 47(2| 60| 21| 781.8|251| 2] 60| 3| 223.2|467
b12 1297/ 1] 93] 1 41.9] 19[1] 93| 12| 269.2) 105/ 1] 93] 12| 269.1|105|1) 93| 21| 787.7/207(1] 93| 1| 171.2] 33
ged 1217] 2] 35| 12| 248.4|153|2| 28] 19| 563.3/189(2| 28| 17| 342.2|/139|2| 32| 21| 332.6/206|2] 28] 3|40163.1| 141
phase_de.| 1834 1| 11| 13| 215.5/207|1) 11] 19| 374.1,276{1] 11| 18/ 298.1]211|1| 11| 21| 303.6/278] 1 11| 2 419, 51

in this paper are implemented using C++ in the WoLFram
environment [17] and are evaluated on combinational and se-
quential circuits of LGsynth93 and ITC-99 benchmark suites.
The faults are randomly injected by replacing gates. For
example an AND gate is replaced by an OR gate. For bounded
sequential debugging, the circuits are unrolled for five time
steps.

The experiments are carried out on a Quad-Core AMD
Phenom(tm) II X4 965 Processor (3.4 GHz, 8 GB main
memory) running Linux. MiniSAT is used as underlying SAT
solver [18]. Run time is measured in CPU seconds, and the
memory consumption is measured in MB.

In the experiments, we compare the methods presented in
this paper (LBA, MSPI, LMBA) to a method based on random
trace generation (RND) and to QBF [9]. Note that LBA, MSPI
and LMBA do not have access to a formal specification but
they only use a testbench as a simulation model or a black box
specification. Thus the accuracy of these methods is limited. In
contrast, QBF [9] uses a formal specification and can therefore

achieve a higher accuracy. In these experiments all methods are
limited to a maximum of ten iterations between the debugging
and the verification procedures. As mentioned in Section III-C,
the MSPI method may be executed for two rounds in these
ten iterations. The best results among heuristics and random
methods are marked bold.

Table I presents the experimental results for single faults.
The table shows the final number of fault candidates (#FC),
the total number of counterexamples used (#CF), the re-
quired run time (7'¢me), and the maximum memory consump-
tion (Mem). The experiments are started with one initial coun-
terexample. The QBF [9] method is the only exact approach.
Thus the number of fault candidates (#F'C) determined by
this method is considered as the minimal number of fault
candidates in each experiment. In the tables, a dash (-)
indicates more than 99 fault candidates. The experiments of
Table I show that the diagnosis accuracy of the presented
methods is better than of RND. By comparing # F'C' columns,
LBA, MSPI and LMBA have a better accuracy than RND in 7

experiments, while RND is never better than LBA or LMBA.
Also for single faults, LBA has the best accuracy among the
methods presented in this paper in most of the experiments.
LBA is as accurate as QBF [9] in 82% of the experiments (14
experiments), while MSPI and LMBA are as accurate as QBF
[9] in 71% of the experiments (12 experiments). For 10, LBA
has a good accuracy but long run time. LMBA obtains a good
accuracy with a reasonable run time by merging the advantages
of LBA and MSPI. Also LMBA and MSPI are faster than
LBA for combinational circuits. In sequential circuits b04 and
b10, LBA finds the minimum number of fault candidates in a
relatively short time.

Table II shows the experimental results for multiple faults.
In this case, each fault candidate has up to k components.
The debugging procedure starts with k& = 1 and iteratively
increases k until a satisfying solution is found. This yields a
fault candidate which is a tuple of k£ components. As men-
tioned in Section II-C, fault masking may not be recognized
here due to fault model-free SAT-based debugging.

The methods which do not have access to a formal spec-
ification have some limitations for their diagnosis accuracy.
One limitation occurs when one fault (among multiple faults)
always remains inactive and never appears among the fault
candidates found by the counterexamples so far. This can be
seen in Table II for ¢10. MSPI and LMBA localize one fault
location accurately but another fault remains always inactive
(k = 1), while QBF [9] activates all faults (k = 2) by
comparing the faulty circuit to a complete specification.

Comparing two approaches, a larger value of & indicates
better accuracy. If the value of k is equal for two approaches,
a smaller # FC indicates better accuracy. In this case, MSPI
and LMBA have a better accuracy than RND in 7 experiments.
MSPI and LMBA are less accurate than RND in only one
experiment, while in that case they use less counterexamples.
MSPI and LMBA are as accurate as QBF [9] in 59% of the
experiments (10 experiments) for multiple faults. For ¢7552,
MSPI determines a minimum cardinality of 2 which is found
by QBF [9], too. For misex3, MSPI finds the minimum
number of fault candidates. LMBA also has a good accuracy
with a reasonable time for multiple faults. For pair, LMBA
determines a minimum cardinality of 3 while this method does
not spend a long time. Also for gcd, LMBA has the best
performance and accuracy.

Although the QBF [9] method has the best accuracy in the
experiments, the heuristic methods often have a better perfor-
mance for complex circuit structures and for fault candidates
of large cardinality. For example for pair and gcd in Table II,
the QBF [9] approach is slow, while the heuristic approaches
have a good performance and accuracy. Because the heuristic
methods do not need to enumerate fault candidates explicitly.
Especially an explicit enumeration for multiple faults reduces
the performance of the exact approach, because the number
of fault candidates increases exponentially with the fault
cardinality [9].

Overall, the experimental results show that when we do not
have a formal specification, LBA is a good method for the
diagnosis of single faults while MSPI and LMBA are suitable
for multiple faults. Thus, by selecting the best heuristics our
flow is as accurate as an exact formal debugging in 71% of
the experiments (24 experiments).

V. CONCLUSION

This paper introduced an approach for automating de-
bugging procedures for designs using a testbench. Three
techniques were proposed to generate diagnostic traces for
deriving high quality counterexamples enhancing the diag-
nosis accuracy. LBA activates the local branches of each
fault candidate. MSPI finds the sensitized paths including a
minimum number of fault candidates. The advantages of both
techniques are combined in LMBA. These techniques were
evaluated and compared to random trace generation and one
completely formal technique with respect to accuracy, run
time and memory. The experimental results showed that our
approach has an accuracy close to an exact formal debugging
approach.

REFERENCES

[1]1 A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and logic
debugging using boolean satisfiability,” IEEE Trans. on CAD, vol. 24,
no. 10, pp. 1606-1621, 2005.

[2] M. Ali, S. Safarpour, A. Veneris, M. Abadir, and R. Drechsler, “Post-
verification debugging of hierarchical designs,” in Int’l Conf. on CAD,
2005, pp. 871-876.

[3] H. Mangassarian, A. Veneris, S. Safarpour, M. Benedetti, and D. Smith,
“A performance-driven QBF-based iterative logic array representation
with applications to verification, debug and test,” in Int’l Conf. on CAD,
2007, pp. 240-245.

[4] Y. Chen, S. Safarpour, J. M. Silva, and A. Veneris, “Automated design
debugging with maximum satisfiability,” IEEE Trans. on CAD, vol. 29,
no. 11, pp. 1804-1817, 2010.

[5] A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, Eds., Handbook
of Satisfiability, ser. Frontiers in Artificial Intelligence and Applications.
I0S Press, February 2009, vol. 185.

[6] S. Safarpour and A. Veneris, “Abstraction and refinement techniques in
automated design debugging,” in Design, Automation and Test in Europe,
2007, pp. 1182-1187.

[71 K. Chang, 1. Markov, and V. Bertacco, “Fixing design errors with
counterexamples and resynthesis,” in ASP Design Automation Conf.,
2007, pp. 944-949.

[8] A. Siilflow, G. Fey, C. Braunstein, U. Kiihne, and R. Drechsler, “In-
creasing the accuracy of SAT-based debugging,” in Design, Automation
and Test in Europe, 2009, pp. 1326-1332.

[9] A. Siilflow, G. Fey, and R. Drechsler, “Using QBF to increase accuracy

of SAT-based debugging,” in IEEE International Symposium on Circuits

and Systems, 2010, pp. 641-644.

K. Ravi and F. Somenzi, “Minimal assignments for bounded model

checking,” in Tools and Algorithms for the Construction and Analysis

of Systems, ser. LNCS, vol. 2988, 2004, pp. 31-45.

A. Groce and D. Kroening, “Making the most of BMC counterexam-

ples,” Electronic Notes in Theoretical Computer Science, vol. 119, no. 2,

pp. 67-81, 2005.

[12] M. N. Velev, “Comparison of schemes for encoding unobservability in

translation to SAT,” in ASP Design Automation Conf., 2005, pp. 1056—

1059.

S. Safarpour, A. Veneris, and R. Drechsler, “Improved SAT-based reach-

ability analysis with observability don’t cares,” Journal on Satisfiability,

Boolean Modeling and Computation, vol. 5, pp. 1-25, 2008.

T.-Y. Jiang, C.-N. Liu, and J.-Y. Jou, “Accurate rank ordering of error

candidates for efficient HDL design debugging,” IEEE Trans. on CAD,

vol. 28, no. 2, pp. 272-284, 2009.

A. Veneris and I. N. Hajj, “Design error diagnosis and correction via test

vector simulation,” IEEE Trans. on CAD, vol. 18, no. 12, pp. 1803-1816,

1999.

M. Ali, A. Veneris, S. Safarpour, R. Drechsler, A. Smith, and M. Abadir,

“Debugging sequential circuits using Boolean satisfiability,” in Int’l

Conf. on CAD, 2004, pp. 204-209.

A. Siilflow, U. Kiihne, G. Fey, D. GroBe, and R. Drechsler, “WoLFram

— a word level framework for formal verification,” in IEEE/IFIP Int’l

Symposium on Rapid System Prototyping (RSP), 2009, pp. 11-17.

N. Eén and N. Sorensson, “An extensible SAT solver,” in SAT 2003, ser.

LNCS, vol. 2919, 2004, pp. 502-518.

[10]

(11]

[13]

[14]

[15]

[16]

(17]

[18]

