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This paper presents a model-driven framework that provides a tool-supported design flow for fault-tolerant
embedded systems. Its system models comprise abstract descriptions of the application and the underlying
execution platform. They provide the input to our analysis and optimization techniques that enable the
automated exploration of design alternatives for applications with reliability requirements. The automated

generation of source code and platform configuration files speeds up the development process. Our contri-
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bution is to advance reliability-aware design further into practice by providing an integrated tool frame-
work and removing unrealistic assumptions in the analyzes. The case studies demonstrate the
effectiveness of our approach.
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1. Introduction

Reliability is becoming one of the most important concerns in
today’s embedded systems. However, as technology scales, modern
devices are more susceptible to faults [5]. Such hardware faults
could be permanent (hard errors) or transient (soft errors). Despite
the efforts of the hardware community to enhance the hardware
reliability, there is an increasing need to use system-level Fault-
Tolerance Mechanisms (FTMs) to mitigate the impact of such
faults.

Fault-tolerant embedded system design involves several chal-
lenging problems. First of all, the designer needs to reason about
the system properties in the presence of FTMs to check if all
requirements are met. Respective analysis techniques, such as reli-
ability and timing analyses are needed. Second, since FTMs typically
come with high overhead, it is critical to find the optimal design un-
der given constraints. Therefore, a Design Space Exploration (DSE)
problem arises. It is important to note that the configuration of
FTMs must be considered jointly with other design parameters
due to their correlation. In particular, the amount of redundancy
highly influences the schedulability of the application. For multi-
processor systems, FTM configuration has to be considered together
with the classical task mapping and scheduling problem. Finally,
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implementing the selected design on complex platforms such as
Multiprocessor System-on-Chips (MPSoCs) is also challenging.
Here, the designer faces both complex and labor-intensive prob-
lems such as multiprocessor programming, inter-core communica-
tion and the configuration of the execution platform. Therefore, tool
support is highly desirable in order to reduce the design cost and
the time-to-market.

Over the past decades, a lot of research effort has been devoted
to the aforementioned challenges in the design of reliable systems.
However, there is still a gap between theory and practice. On the
one hand, due to the high complexity of the problem, the theoret-
ical studies are typically based on certain assumptions and the
according simplified system models. For instance, in many studies,
it is assumed that any transient faults are detected at the end of the
task using certain fault detectors so that all tasks have perfect fail-
silent behavior [16,29,8,30]. Although a lot of important results
have been achieved by studying this simplified version, such unre-
alistic assumptions limit the practical usability of the proposed
techniques. On the other hand, most of the work focuses only on
a single part of the overall problem and little effort is spent on inte-
grated approaches providing tool support for the entire design pro-
cess. In particular, current work mostly focuses on the “front-end”
of the process, namely calculating the mapping/schedule under
reliability constraints. The challenge of the “back-end”, i.e. imple-
menting the calculated schedule on a complex hardware platform,
is underestimated.

This paper presents a model-driven development (MDD) frame-
work to tackle the aforementioned problems. MDD is a well-known
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approach to cope with the rising complexity of embedded system
design [26]. Our framework features modeling, analysis, optimiza-
tion, and code generation tools in order to provide a complete inte-
grated reliability-aware design flow. Fig. 1 compares the traditional
development approach for reliable systems (left) to the design flow
supported by our framework (right).

In the traditional approach, the designer extracts a scheduling
model from the system specification in order to apply the reliabil-
ity-aware scheduling algorithms. These algorithms may operate on
different models (periodic task sets, task graphs, etc.) and the de-
signer has to ensure the consistency. In parallel, the source code
of the application is developed manually, including both functional
code for the application and platform-specific structural code.
Finally, the scheduling results and the source code are combined
to an executable image and the platform configuration. The advan-
tages of the proposed flow stem from the fact that models are first
class citizens in MDD. They serve as central integration point for
subsequent tasks such as analysis, DSE and code/configuration
generation. Models speed up the development process and ensure
the overall consistency by raising the level of abstraction and
automation.

Our approach is based on the following:

- Platform-independent description of the application including
timing and reliability requirements.

- Fine-grained platform model covering both hardware platform
and system software (HW/SW stack).

— Multi-criteria design space exploration: mapping and schedul-
ing w.r.t. timing and reliability constraints (consideration of
permanent and transient faults).

- Automatic insertion of fault-tolerance techniques, including
active redundancy, voting and fault detection to meet user-
specified reliability goals.

- Generation of implementation artifacts such as application C
source code and platform configuration files.

The remainder of the paper is organized as follows. The system
models are presented in Section 3. The main contribution of this
work, namely the reliability-aware design flow is presented in

detail in Section 4. A case study is discussed in Section 5. Finally,
Section 6 concludes this paper.

2. Related work
2.1. Fault-tolerant embedded system design

Using system-level FTMs has been addressed in a number of re-
search studies. The approach presented in [36] handles transient
faults by selectively inserting task re-executions. Girault and Kalla
[8] consider fault-tolerant scheduling with active task replications
and present a bi-criteria heuristic algorithm. Izosimov et al. [16]
combine spatial and temporal redundancy and propose novel tech-
niques to share the re-execution slack among multiple tasks. In the
follow-up work [15], a more accurate probabilistic analysis is pre-
sented and hardware hardening is considered. Stralen and Pimen-
tel present a DSE based approach for fault-tolerant deployment of
applications on MPSoCs [33]. The FTMs are described as patterns
that are applied to the application model. Only spatial redundancy
patterns have been considered so far, i.e., dual and triple modular
redundancy (DMR/TMR).

A recent work that is close to our approach is from Bolchini and
Miele [4]. They also propose a generic DSE framework that sup-
ports a configurable set of FTMs, such as active redundancy, fault
detection and voting. Moreover, they also synthesize time-trig-
gered fault-tolerant schedules using genetic algorithms. One major
difference between their work and ours is the fault model. They
adopt a similar fault model as Izosimov et al. [16] and aim at han-
dling a maximum number of concurrent faults. The reliability of
the execution platform is modeled using a simple qualitative tag
(e.g., if the processor supports fault detection or fault-tolerance).
Only coarse evaluation of the system reliability can be provided
in this case. In contrast, our probabilistic reliability analysis pro-
vides precise quantitative results to guide the optimization process.

Tables 1 and 2 provide a qualitative comparison of representa-
tive related work. In Table 1, we first summarize the fault model
utilized by the individual approaches. Some early work in the field
[36,19] considers a single-fault model. This is a reasonable
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Fig. 1. Comparison of traditional and MDD flow.
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Table 1
Qualitative comparison of related work: fault model.
Approach Fault model Reliability
analysis
Transient Permanent
faults faults
Xie et al. [36] Single X None
GlaRet al. [9] X Probabilistic Quantitative
Girault and Kalla [8] Probabilistic X Quantitative
Izosimov et al. [16] Multiple X None
Izosimov et al. [15] Multiple X Quantitative
Stralen and Pimentel Multiple X None
[33]
Bolchini and Miele [4]  Multiple X Qualitative
Proposed Probabilistic Multiple Quantitative

simplification since faults typically occur with very low probabil-
ity. These initial approaches have been extended with a fault mod-
el that covers multiple faults [16,15,4]. Still, probabilistic events
are the most precise way to describe the physical properties of
faults. The major challenge of using a probabilistic fault model is
the complexity of corresponding reliability analyzes. For ap-
proaches based on a fault model that covers a certain number of
faults, no detailed reliability analysis is needed, since the design
objective is merely to add sufficient FTMs to tolerate all assumed
faults. In contrast, a probabilistic approach needs quantitative eval-
uation of the system reliability after applying the FTMs. Recent ap-
proaches contribute appropriate reliability analysis techniques, but
supports only very limited FTMs [8,15]. For this reason, we aim at
providing a generic reliability analysis in our approach. Also, our
framework is the only one that supports both transient and perma-
nent faults. Table 2 lists the FTMs supported by individual ap-
proaches. As it can be seen, a major limitation of current
approaches is that only a small set of FTMs is supported, making
it infeasible to evaluate the tradeoff between various FTMs to find
the system-wide optimal solution. Only the recent work presented
in [4] and our approach try to support a configurable set of FTMs.
The configurability enables the user to select candidate FTMs for
the specific application domain and is therefore essential for the
practical applicability of the approach.

2.2. Model-driven development

The UML profile MARTE [25], SysML [24] (based on a subset of
UML 2) and AADL [7] enable modeling of complex HW/SW sys-
tems. While these approaches focus on the modeling aspect only,
our framework also defines a design flow and provides an infra-
structure for the implementation of platform-specific tool support
(e.g., modular code generator, modeling of HW/SW stack, etc.). DOL
is closely related to our approach since it supports an entire design
flow, including modeling, DSE and code generation [34]. However,
our modeling framework is more generic and provides a variety of
model-of-computations (MoCs) as well as platforms. DOL focuses

Table 2
Qualitative comparison of related work: fault tolerant mechanisms.

on streaming communications since, so the application model is
fixed to the Kahn Process Network (KPN) [18] MoC. Its platform
model is tailored to shared-memory systems. Additionally, DOL
does not consider reliability as one of the key non-functional prop-
erties and therefore does not provide the corresponding reliability
analysis and optimization techniques.

3. System models

The proposed framework focuses on analysis and optimization
of system-level reliability based on the reliability of the individual
components. The component-level reliability is typically obtained
using fault models derived from the physical failure mechanisms
[35] and is configured by the user as an input to the framework.
This section briefly describes the fault models used in our
experiments.

For transient faults, we adopt the Poisson fault model since it is
well established and used in many related approaches [32,1,8,37].
It assumes transient faults to be independent events following a
Poisson distribution with a constant failure rate. Using the Poisson
model, the following equations can be used to compute the suc-
cess/failure probability of tasks:

P(task t; executes correctly on processor p) = e "
P(task t; experiences transient faults) = 1 — e~

where 4, is the failure rate of processor p, and w; is the Worst-Case
Execution Time (WCET) of task t;.

Concerning permanent faults, we focus on the defect of process-
ing elements in MPSoC platforms. We assume that each individual
core fails independently. Such fault containment behavior is essen-
tial to enable the use of MPSoCs for safety-related applications
[23]. Based on given component reliabilities, the goal is to optimize
the Mean Time To Failure (MTTF) of the system (c.f. [9]). Our DSE
approach is designed primarily for transient faults. Nevertheless,
permanent fault-tolerance is supported later on using an encoding
technique in the optimization process (see Section 4.2).

We consider active redundancy as one major FTM to enhance
the system reliability. Active redundancy replicates software tasks
into multiple copies (replicas). The replicas can be executed on the
same component (temporal redundancy) or distributed to several
components (spatial redundancy). The availability of replicated
software tasks allows for the implementation of subsequent voters
where the set of available inputs is used to detect/mask possible
faults and produce a reliable output. In this paper, we consider a
majority voter, which generates an output if and only if more than
half of the inputs have the same value.

Another FTM that we consider is fault detectors which are
embedded into tasks. This could be done in hardware, software
or using a combination [21]. Software-implemented fault detection
typically involves transforming the original program into an
instrumented version that adds the capability to detect transient

Approach Supported fault-tolerant mechanisms
Spatial redundancy Temporal redundancy Fault detection Voting Other

Xie et al. [36] X V4 X X

GlaBet al. [9] Vv X X X

Girault and Kalla [8] Vv X X X

Izosimov et al. [16] Vv Vv X X Shared re-execution
Izosimov et al. [15] Vv v X x Hardware hardening
Stralen and Pimentel [33] Vv x X X

Bolchini and Miele [4] Vv Vv Vv Vv

Proposed Vv Vv Vv v Shared re-execution
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faults occurring at runtime [31]. Check rules are executed at the
tasks’ completion to decide if faults have occurred. The arithmetic
codes [31] and the critical variable technique [27] are examples of
this class of detectors. Hardware techniques typically introduce
some monitoring functionality. For instance, the fingerprinting
mechanism [20] can be used to check if the program is executed
as expected. The result of embedded fault detection is made avail-
able to the subsequent voter, so that untrustworthy results can be
excluded from voting. This is similar to making the task fail-silent
upon the detection of a fault. Using embedded fault detectors, the
reliability analysis becomes more complicated since the fault
detection coverage also becomes a factor that influences the sys-
tem reliability. Also, the selection of the fault detector must be con-
sidered as an important design parameter.

Our approach focuses on heterogeneous multiprocessor archi-
tectures with time-triggered execution paradigm, since timing pre-
dictability is highly desirable for the targeted safety-related
domains. In this case, the major objective of DSE is to find a
time-triggered task/message schedule that fulfills the application
requirements.

4. Reliability-aware design framework

Using the proposed framework, the design process is separated
into three major phases: modeling, DSE, and code generation. An
overview of the flow is depicted in Fig. 2. In the first phase, an ab-
stract model of the application is created by instantiating elements
of the meta-model library and specifying their relations. Addition-
ally, a model of the execution platform is either also modeled or se-
lected from a library. Lastly, extra-functional properties such as
reliability of processors and the execution times of application
tasks are specified. The DSE process takes the complete design
model as input and aims at finding the optimal deployment of
the application under user-specified design constraints (e.g., end-
to-end latency and reliability). We use the Multi-Objective Evolu-
tionary Algorithm (MOEA) as a generic optimization engine. The
result of the DSE is a set of recommended implementations. They
are represented by updated models where the corresponding
design parameters have been applied automatically. This includes
the mapping of the application to the platform, the required com-

putation and communication schedules as well as the addition of
FTM:s. In the final phase, the designer may select one of the imple-
mentations and have the generation engine produce source code
and necessary platform configuration files. In the next sections,
the details of each phase will be presented.

4.1. Model-driven development framework

Our MDD framework is based on the Eclipse Modeling Frame-
work (EMF)' which supports the definition of meta-models and
the automatic generation of tooling infrastructure code (e.g., model
serialization, Java implementation of meta-model, basic tree-editors,
etc.).

The first part our framework is an abstract component meta-mod-
el. Its basic building block is the Component class whose external
interfaces are described by Port objects. Systems are either con-
structed by linking the ports of components using Channel objects,
or by encapsulating (sub-)models into composed components.
Different application and platform modeling languages have been
defined by sub-classing these three base classes, introducing dedi-
cated types and attributes. An annotation mechanism provides an
alternative possibility to enrich components, ports and channels
with additional information. Since this approach requires the defi-
nition of dedicated annotation types, it lends itself towards proper-
ties that can be reused with different base models (e.g., timing
annotations that can be used with different application models).

In summary, the component meta-model is used to describe the
“horizontal” relationship between objects residing at the same sys-
tem layer. Examples include data or state flow models of the appli-
cation, or the network topology of a distributed platform.

Fig. 3 shows is a simplified version of the model used in the case
study in Section 5. We start with the discussion how the underly-
ing application meta-models have been constructed using our
framework, and will revisit the other meta-models later. The appli-
cation model instance is shown at the top of the figure. In this
example, the Kahn Process Network (KPN) [18] model-of-compu-
tation (MoC) has been selected to provide a platform-independent
description of the application. It is a coarse-grained MoC that fo-
cuses on modeling the structure of the application and the interac-
tion between components. KPN components represent
computational tasks that communicate via FIFO buffers. The re-
quired meta-model has been constructed by deriving sub-classes
for KPN components, ports, and channels from the abstract compo-
nent model introduced above. The behavior of KPN components is
specified using a dedicated annotation type for source code anno-
tations (here: C code with markup for port access).

We also used our framework to construct more fine-grained
(domain-specific) application meta-models from the generic com-
ponent model. In particular, we defined meta-models for IEC
61131-3 [14] State Flow Charts (SFC) and Function Block Diagrams
(FBD)/synchronous data flow (SDF). Here, SFC states and transition
conditions are represented by dedicated component types (follow-
ing the approach of [2]), whereas the composition of states (i.e., se-
quence, alternative and parallel branches) is represented by SFC
“channels”. For FBD, dedicated meta-model classes have been de-
fined that represent the function block semantics (e.g., basic arith-
metic or logical operations, controller functions, etc.). In contrast to
black box components (such as the KPN components introduced
above), this fine-grained approach allows for an explicit model of
the application, e.g.,, concerning its behavior, or its dependency
on the execution platform (see below).

The second part of our framework provides a mechanism to
model the “vertical” dependencies between the different layers

1 http://www.eclipse.org/modeling/emf].
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of a system model. So far, only the top layer (i.e., the platform-inde-
pendent application models) has been discussed. In order to cap-
ture the resource usage of applications, and their dependency
onto the execution platform, we have introduced a resource
meta-model that provides a unified way to specify deployments
(e.g., the mapping of an application component onto a processor
core, or the usage of an I/O pin by a component of a function block
diagram). Since the resource meta-model decouples application
and platform meta-models, it enables to reuse application meta-
models with different platforms.

The bottom part of Fig. 4 shows the resource meta-model. Re-
source objects present system entities that provide services to
other components in the system. They are typically located in
the platform model. Each resource is annotated with an arbitration
object that defines the arbitration policy used for accessing it. As
policies, we currently consider design-time assignments expressing
the exclusive use of a resource, design-time schedulers for time-
shared resources with a statically defined schedule, and runtime
schedulers for dynamic time-sharing. System entities that depend
on services provided by the platform are described by request ob-
jects. Typically, elements of the application model are pure request
objects, whereas models of a platform’s software stack (e.g., mid-
dleware, operating system) are typically both request and resource
objects (since they rely on services provided by the lower layers of
the platform, and provide a certain service themselves). During the
deployment phase, requests are bound to resources. In the re-
source meta-model, the Allocation class is used to describe the frac-
tion of a resource that is used to satisfy a given request. Typical
examples include time slots (for time-shared resources such as a
time-triggered bus), or spatial regions such as a certain address
range of a memory resource.

In the following, we will sketch how the resource meta-model
can used to extend the application meta-models introduced above
(using multiple inheritance), as well as to construct the required
platform meta-models. To this end, we will revisit the example
model from Fig. 3. The bottom of the figure shows a model of the
MPSoC platform from our case study (see Section 5). Its cores are
interconnected by time-triggered network-on-chip, and have ac-
cess to private memories. The middle part is a model of an operat-
ing system providing partitions for temporal and spatial
separation. The resource meta-model does not provide any seman-
tics about the different resource types used in a given system. Since
this information is required to restrict the allocation of a given re-
quest of an application model to the set of matching resource ob-
jects of the platform, we propose to introduce a resource type
meta-model. This meta-model represents a resource taxonomy
that categorizes the resources of embedded systems (see top part
of Fig. 4). We will use this categorization in order to structure
the following discussion of the meta-models defined for our exam-
ple system - representative examples of the meta-model classes
are shown in the middle part of Fig. 4.

Processing abstracts computation services. The KPN compo-
nents Cy, ..., C4 in Fig. 3 are implemented in software that needs
to be executed on a processor. Hence, PnComponent inherits from
both Request and Processing (and Component). The hardware
platform in the example model is an MPSoC consisting of several
processor cores (inheriting Resource and Processing). During
the deployment of a platform-independent KPN model to a con-
crete platform, the processing requests can be mapped to a dedi-
cated core. Here C, is mapped to Core, which results in the
allocation of the hard-thread (HThr, derived from Allocation
and Processing) provided by the processor core. The middle part
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of Fig. 3 illustrates how a separating operating system is modeled.
Here, the processing request of the 0S (super-classes Processing
and Request) is mapped to Core;. Additionally, 0s also inherits
Resource since the service of the processor is further split by its
partition scheduler (not shown in Fig. 4). The same mechanism is
applied recursively to define processes and threads at the OS level.

Transport describes platform components that can be used to
move data in the system (e.g., buses and networks at the hardware
level, but also software communication APIs). In our example, a
time-triggered bus (TTBus) provides core-to-core communication.
Hence, it inherits from both Resource and Transport. It also ref-
erences a TTBusScheduler object that contains the required de-
sign-time scheduler. In a KPN model, channels represent the
data-flow between components. Therefore, PnChannel inherits
from both Request and Transport (resource view), and Channel
(topology view). The time slots that are allocated to these requests
by the scheduler are represented by Message objects. In both
cases, annotations provide additional information such as band-
width requirements and scheduling constraints for channels or
the message phase computed by the scheduler. In Fig. 3, also other
communication resources are illustrated such as the partition-to-
partition communication facility provided by the OS or thread-
to-thread communication via a shared memory buffer (see below).

EndPoint: In addition to bandwidth, end-points at the sender
and the receiver are required in order to fully specify a communi-
cation channel. In our example, ports of the KPN components
(PnPort, derived from Port) request them from the platform.
The platform provides end-point resources that match the trans-
port resources described above.

Memory can be used to abstract volatile and non-volatile mem-
ories, as well as services realized in software such as file systems or
databases. In Fig. 3, each of the processor cores is equipped with a
local SRAM memory (super-classes Resource, Memory). Similar to
the Processing service provided by the processor, the model of
the operating system tracks how the memory is managed by the
individual partitions and processes. The memory buffer that is
used to implement the communication between the application
components C; and C, contains a request to the address space pro-
vided by Process;. Additionally, it is a combined end-point and
transport resource to which the end-point requests of the ports
of KPN components C; and C; as well as the corresponding channel
are mapped.

In addition to the core resource types pointed out above, also
more specific resources can be included into the taxonomy, leading
to a more expressive system model. Typical examples are the Dio
and Aio resource types which represent digital and analog I/O
resources.

4.2. Reliability-aware design exploration

The DSE process is implemented as an optimization-evaluation
loop. A probabilistic reliability analysis is used to evaluate the sys-
tem-level reliability of the design. The results of the analysis guide
the MOEA-based optimization. This section presents only the key
ideas of the analysis and optimization algorithms whose imple-
mentation works on the system model introduced in the last sec-
tion. A full description of the DSE framework is presented in [13].

4.2.1. Reliability analysis

Computing the system reliability in the presence of FTMs is a
very difficult problem. Certain combinations of faults might be tol-
erable by the system due to the back-up components whereas
other combinations are not. In principle, we have to identify all
the tolerable cases in order to assess the system reliability. This
has been proven to be at least as hard as NP-complete problems
[3]. In our approach, a tree-based reliability analysis approach is
proposed (cf. [11]), an example of which is shown in Fig. 5.

Our reliability analysis systematically enumerates all possible
combinations of faults (called fault scenarios). Each fault scenario
is represented by one node in the tree. Each level of the tree is asso-
ciated with one component in the system (i.e., one task in the sche-
dule as shown in Fig. 5). We grow the tree from an initial node,
where a left branch (solid line) represents a successful execution
of the corresponding component and a right branch (dashed line)
represents a fault which has occurred in that component. While
expanding the tree, we analyze each new node and mark it if it rep-
resents a tolerable fault scenario (nodes C;—C, in the example). In
the end of the tree expansion, the set of all tolerable fault scenarios
is obtained. Then, we compute the occurrence probability of each
tolerable scenario and combine these probabilities to obtain the
overall success probability of the system (see [11] for more de-
tails). The tree-based analysis especially fits our framework, since
it is generic enough to be configured to handle different design sce-
narios. In our implementation, we support the analysis of designs
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that employ spatial/temporal redundancy, voting and fault detec-
tion. Moreover, advanced techniques such as the shared recovery
slot technique proposed in [16] are supported as well.

4.2.2. Optimization procedure

We encode the design into a special data structure called chro-
mosome to use MOEA optimization. Since encoding the complete
set of design parameters into the chromosome results in very large
data structures and low optimization efficiency, we apply an effi-
cient two-step encoding scheme inspired from [22]. The main idea
is, instead of encoding the entire design, to include only partial
information into the chromosome. A heuristic algorithm is used
to derive the remaining design parameters to yield a complete de-
sign. Using our encoding scheme, the chromosome contains a list
of mappings for each task as shown in Fig. 6. FTMs are inserted
by adding special patterns into the chromosome. For example,
temporal redundancy is represented by mapping a task onto the
same component multiple times (e.g., tasks t, and t3) and spatial
redundancy is represented by mapping a task onto different com-
ponents (e.g., task t;). As we are considering time-triggered sys-
tems, the complete design is a time-triggered task/message
schedule. We use a heuristic scheduler (cf. [11]) to transform the
chromosome into such a schedule (shown in the left part of the fig-
ure). As it can be seen, the replicas specified in the chromosome are
instantiated and voting components are inserted where necessary.
The schedule is then submitted to the reliability and timing ana-
lyzer for fitness evaluation. Based on the fitness value, the MOEA
optimizer uses mutation and crossover operators to explore high-
quality designs.

An advantage of the two-step encoding is that additional appli-
cation constraints can be taken into account by putting constraints
on the chromosome. A typical example are separation constraints
such as two critical tasks that are required to be strictly spatially
isolated. This can be encoded as a constraint that the mapping en-
tries of the two tasks do not collide. Another example is how we
handle permanent faults. In current reliability-aware design ap-
proaches, permanent and transient faults are usually considered
separately, since their physical failure mechanisms and impact
on the system are significantly different. In [11], we show the ben-
efit of considering both types of faults in a unified manner. One
obvious way to achieve this is to integrate the existing analysis
in [9] and consider lifetime reliability as one extra optimization
goal. However, additional optimization objectives reduce the opti-
mization efficiency considerably. To overcome this problem, we
propose the virtual mapping technique and encode reliability

ml
T1
m2
S, s, S,
[ 1 || ©2 | w2 |
m1l&m2
[ u 3 | B |
Sy S3 Ss

6 Unknown

—> Success of slot
6 Faulty

\_J Successful

-~ Failure of slot

Fig. 6. Example of encoding technique.

requirements concerning permanent faults as constraints to the
chromosome (cf. [11,13]).

4.2.3. Optimization goals

The MOEA optimization approach enables us to consider multi-
ple (possibly conflicting) optimization goals in the design problem.
Currently, we support several optimization constraints/goals that
can be freely combined by the user: (1) end-to-end deadline; (2)
reliability of the application; (3) resource consumption (processor
time occupation); (4) application specific constraints, e.g., a task
must be mapped to a certain core due to I/O constraints. The MOEA
algorithm evaluates the tradeoff between these optimization
goals and computes the Pareto optimal results. The designer
then makes the selection and proceeds with the implementation
(see Chapter 4.4).

4.2.4. Complexity

The overall execution time of the MOEA algorithm increases
proportionally with the number of iterations configured by the
user. To guarantee the usability of the proposed approach, it is
important to minimize (1) the per-iteration complexity, (2) the
search space for MOEA algorithm. The per-iteration complexity
of MOEA is determined by the complexity of the reliability analy-
sis. However, the tree analysis algorithm presented previously
has worst-case exponential complexity. For this reason, we devel-
oped safe approximation techniques to reduce the complexity to
polynomial [11]. For the second issue, the hierarchical encoding
technique contributes to reduction of the search space. With these
techniques, experimental results verify the applicability of our
framework for offline reliability-aware design (see results pre-
sented in [12]).

Fig. 5. Tree-based reliability analysis.

Microsyst. (2014), http://dx.doi.org/10.1016/j.micpro.2014.02.007

Please cite this article in press as: ]. Huang et al., A framework for reliability-aware embedded system design on multiprocessor platforms, Microprocess.



http://dx.doi.org/10.1016/j.micpro.2014.02.007

8 J. Huang et al. / Microprocessors and Microsystems xxx (2014) xXx-xxx

4.3. Designing fault-tolerant systems using imperfect fault detectors

This section presents an extension of the DSE approach to take
embedded fault detection into account. As mentioned previously,
existing approaches that consider embedded fault detection as-
sume that all transient faults are detected at the end of the task
execution. This assumption simplifies the problem but is problem-
atic in practice. On the one hand, a perfect detector might not exist
or is difficult to implement, making the algorithms developed un-
der this assumption less useful. On the other hand, even if imple-
mentable, perfect detectors typically come with high resource
and timing overheads. In recent work [10,31] it has been shown
that the time needed for high-coverage fault detection may be-
come much longer than the execution time of the task itself (e.g.,
the timing overhead could be 400% using techniques proposed in
[10]).

The problem can be considered from a different angle. In the
fault-tolerance community, researchers have developed various
fault detection techniques that achieve a certain fault detection
coverage and with a particular overhead [10,31]. It is critical to se-
lect which fault detector to implement for each individual task. By
making the assumption of perfect fault detection, a biased design
decision is made, which selects the most expensive fault detector
for every task. Other design alternatives with partial fault detectors
are ignored. Moreover, since fault detection causes timing over-
head, selecting better fault detectors reduces the opportunity for
spatial/temporal replication. Clearly, a tradeoff analysis is needed
to find the optimal setup.

Taking imperfect fault detection into account, the execution of a
task instance may result in three scenarios: (1) it executes success-
fully, (2) a transient fault occurs and is detected, and (3) a transient
fault occurs and is not detected. A detectable fault can be easily
handled by making the component fail-silent to stop error propa-
gation. On the contrary, an undetected fault leads to the case that
a wrong output is delivered to the subsequent tasks without warn-
ing. If a subsequent task receives different inputs from the repli-
cated tasks, it has at this point no knowledge about which of the
inputs is correct. In practice, voting is typically used to handle this
dilemma. Since faults are considered as rare events, the majority
among the set of inputs is considered to be correct.

We assume a majority voting mechanism is implemented for
each task that has replicas available. The voter generates an output
if and only if a dominating result (i.e., a majority) is found. The
overall execution of a task, considering all its replicas, could again
result in the following 3 scenarios: (1) the task executes success-
fully (SUC): it experiences no fault or only some faults that are later
corrected by the voter; (2) Detected Unrecoverable Faults (DUF):
the voter fails to find a dominating result and thus produces no
output; and (3) Silent Data Corruption (SDC): multiple faults occur
and the incorrect outputs mask the correct one. Both DUF and SDC
are unwanted behavior that negatively influences the system
reliability.

The tree-based approach has to be extended to consider imper-
fect fault detection. On the one hand, each node in the tree will
now spawn 3 child branches, representing three possible results
of a task. On the other hand, voting has to be supported in the anal-
ysis. The updated analysis is explained using the following
example.

Consider task t; that features three copies in the scenario de-
picted in Fig. 7. The qualitative execution results of all the replicas
are described by a fault scenario. The fault scenario contains one
variable x, for each replica [, which can have three values: x; is 1
if the task executes correctly; x; is 0 if it fails silently (a fault occurs
and is detected) and x, is —1 if it produces an incorrect output (i.e.,
a fault occurs and is not detected). In the example, if the fault sce-
narioisx = {1, 1, —1}, the incorrect output of t; 5 is masked and the

voting
I tl 1 I tl 2 t2 1 I
I t1,3 I t2,2 I
IR MR M I possible resut of o Instonce
1 1 -1 suc | i
1 SUC (nofault) 1
i 0 0 Ssuc 1 !
1 ) 1 DUF i 0 DUF (detectable fault) :
-l 1 1 SDC 1 -1 SDC(undetectable fault) 1

Fig. 7. Voting scenario analysis.

overall result is SUC. In the scenario x = {1, 0,0}, both t;, and t;3
produce no result, and only the output from t;; will be used.
Hence, the overall result is also SUC. In the scenario
x = {1,0,-1}, a correct and an incorrect output are sent to the vo-
ter. The voter cannot identify the correct input since no majority is
found. In this case, no output is generated and the overall result is
DUF. In the last example scenario x = {—1,1, -1}, two incorrect
outputs are sent to the voter. Note that the fault scenarios model
only the qualitative result (0, 1, or —1), but the voting is performed
based on the real value of the tasks’ outputs. Hence, if two outputs
are incorrect, two cases might happen: (1) the two incorrect out-
puts are equal and mask the single correct one, resulting in a
SDC; (2) the two incorrect outputs are unequal and the voter does
not see a dominating value, resulting in a DUF. To stay on the safe
side, we have to assume the first case (SDC), because the probabil-
ities of the two cases are very difficult to be quantified, even if
possible.?

The analysis approach first performs a voting scenario analysis
and computes the SUC, DUF and SDC probabilities for each individ-
ual task. Afterwards, these probabilities are combined to compute
the system-level reliability as presented in [12]. It is important to
note that the extended analysis has linear complexity in the num-
ber of tasks. The optimization procedure also needs adaptation to
support imperfect fault detection. Here, the encoding scheme is ex-
tended to not only contain the mapping of tasks, but also an indi-
cation which fault detector is implemented by each task.

4.4. Code generation

After the design model has been updated and/or transformed by
the DSE, the back-end of our framework speeds up the implemen-
tation by automatically generating (1) C source code of the applica-
tion, and (2) platform configuration files required to execute the
application.

4.4.1. Template-based code generation

A template-based transformation engine is used to generate
text files from models. Templates are implemented in the Xpand
language provided by EMF. They contain static parts that are used
directly, as well as dynamic parts that are expanded based on the
design model. To foster the modularity of the tool implementation,
code templates adhere to an API (see below) and reside in the same
Eclipse plugin as the corresponding meta-model elements.

4.4.2. Generation strategy
The automatic generation of implementation artifacts is driven
by the updated system model resulting from the DSE.

2 The probabilities are highly influenced by the application characteristics, the
output data type, common cause errors, etc.
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void produce_init () {
srand (100);

}

int produce(void) {
int num;

num = rand() % 100;
write_port_token("out", &num);

return num;

/* PN USER _CODE_INIT START */

/* PN USER CODE INIT END */

/* PN USER _CODE FIRE START */

printf("producer produces : %d'\n", num);
/* PN USER CODE FIRE END */

void consume(int value) {

/* PN USER CODE FIRE START */
intin;

read_port_token(“in", &in);

/* PN _USER CODE FIRE END */

in = value;
/* PN USER CODE FIRE START */

printf("consumer consumes : %d!\n", in);
/* PN USER _CODE FIRE END */

} }
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Fig. 8. Code generation approach.

First, the mapping of the application model to the platform
model is analyzed in order to compute the set of deployment units
required for the particular design (e.g., OS executable or partition,
bare-metal firmware image). Then, for each of the deployment
units, the application code generation is performed by traversing
the corresponding application model elements, tracing their map-
ping to the platform. Here, usually at least one source code file is
generated for each the individual application components. Addi-
tionally, a main file is generated that implements the component
initialization and the communication. In the following, we will
illustrate the details using an example.

The build system required obtain binary images is generated
automatically in form of CMake® scripts. As Eclipse is supported
by CMake, both the system model and the source code can be devel-
oped within the same IDE. The generated CMake scripts consider the

mapping of the application to heterogeneous deployment units
(compiler tool-chain, etc.).

4.4.3. Example

During the discussion of the code generation we will distinguish
between platform-independent (functional) and platform-specific
(structural) code. Consider the simple KPN application in Fig. 8.
Here, the producer generates a random integer which is printed
to the console by the consumer. Our code generator creates one

3 http://www.cmake.org/.

C source and header file for each KPN component. It contains the
following subroutines (unique function names are ensured but
ignored here to increase readability):

- pn_init()/pn_done (): (De-) initialization of the KPN compo-
nent. It is called only once in the initialization (finalization)
phase, before the execution of the KPN components starts
(ends). Since KPN components are stateless [18], this code
implements either technical aspects that are not covered by
the model (e.g., the initialization of the pseudo-random number
generator for the producer component), or other structural code
(e.g., to open or close communication channels).

- pn_read(): This function executes a blocking read on all input
ports of the KPN component and stores the data into a local
buffer.

- pn_fire(): The computation kernel represented by the KPN
component. It processes the input tokens and stores the results
in a local output buffer.

- pn_write (): This function transfers the results from the local
buffer to the output ports.

Additionally, the driver code that invokes these functions is
generated. The template for the driver code traces the mapping
of the processing request of the KPN components in order to
delegate to a platform-specific template. In the example, both the
producer and the consumer are directly mapped to a processor
core. The corresponding processing resource is maintained in the
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allocation reference of class Request (see Fig. 4). The associ-
ated code template generates a main() function as driver code
according to the execution model. In a time-triggered implementa-
tion, the main() function sequentially invokes pn_read();
pn_fire(); pn_write(); functions in the time slot allocated to
the KPN component. In an event-triggered system, each KPN com-
ponent is implemented in a separate execution context (thread,
etc.). The blocking read guarantees that the execution adheres to
the KPN semantics.

The pn_fire () function specifies the functional behavior of the
component. Since the KPN model does not cover this aspect (black-
box components), an additional behavioral specification is required
in order to enable full code generation. Our framework provides
two different alternatives (also used for pn_init()/ pn_done()
if needed): a fine-grained model based on a meta-model with a
pre-defined semantics can be used to fully model the behavior of
a KPN component. If also the corresponding code templates are
provided, functional code can be directly generated using a similar
approach as previously presented for KPN. The IEC 61131-3 [14]
meta-model included in our framework is an example for this ap-
proach that provides the behavioral specification in terms of data-
flow and state-flow models.

If the enhanced analyzability provided by a formal application
model is not required, or if legacy code needs to be integrated,
KPN components can reference (annotated) C source files. Here,
the sections to be extracted by the generator are marked up with
dedicated C comments (see code fragments enclosed by PN_USER_
CODE_FIRE_START, PN_USER_CODE_FIRE_END, etc.).

In contrast to that, the pn_read () and pn_write () functions
contain purely structural code that maintains local communication
buffers. Therefore, these functions can be derived automatically.
Similar to the generation strategy for the processing resource (dri-
ver code), here the code templates for the KPN ports (communica-
tion endpoint request) delegate to platform-specific code
templates associated to the corresponding end-point resource.
For instance, code to send a message to Core, is generated for the
output port of the producer (this step is marked with (1) in
Fig. 8). In the user-supplied C code, an API is used to access the lo-
cal buffers (read_port_token(), write_port_token()). The
implementation of these functions is generated based on the infor-
mation contained in the model. Here, the mapping of the KPN port
to an end-point resource as well as its data type is considered.
Therefore, the implementation details are encapsulated by gener-
ated auxiliary functions that ensure safe access to memory buffers.
The generated communication code provides two layers of abstrac-
tion: pn_read () and pn_write () abstract the target platform and
maintains local buffers. read_port_token() and write_port_
token()) decouple the functional code from the actual buffer
implementation.

As our modeling approach offers a flexible environment to al-
low modeling of a variety of platforms, the code generator is also
designed in a modular way so that it can support different plat-
forms. To achieve this goal, we strictly separate generic (func-
tional) code and platform-dependent (structural) code in the
code templates. The platform-dependent code is specified using
dedicated code templates that are tightly coupled with the plat-
form modeling objects. For example, each communication port
type (e.g., local memory buffer, partition-to-partition, core-to-core,
etc.) is associated with specific templates that generate the code for
reading/writing/initializing the port. Since the platform-specific
code templates share a common interface, and Xpand supports
polymorphism, the appropriate templates are transparently in-
voked by the code generator.

5. Case studies

We demonstrate the usability of our approach using two real-
world applications. The first is an Adaptive Cruise Controller
(ACC) from the automotive domain, the goal of which is to main-
tain the cruise speed while keeping safe distance from objects
ahead. We execute this application using test cases automatically
generated from the AutoFocus tool,* where simulated sensor values
are stored as data arrays. The second application is a production line
controller from the industrial automation domain. The control sys-
tem has been tested in a real demonstrator setup built using the
Modular Production System (MPS) from Festo Didactic® (see
Fig. 9). It is used to control a conveyor-belt and several switches in
order to sort incoming work-pieces. The MPS station is connected
to the control system via Profibus [17].

The target architecture is the ACROSS MPSoC [6] running in an
Altera Stratix IV FPGA. The MPSoC implements in total 8 Nios II
soft-cores from Altera, 3 out of which are for general purpose
application tasks. The application processors run the PikeOS oper-
ating system from SYSGO.® Communication between processors is
realized using a Time-Triggered Network-on-Chip (TTNoC) architec-
ture [28]. A dedicated I/O processor core is used as the gateway to
off-chip resources, including I/O pins, sensors, actuators and network
interfaces. A HSMC extension board provides the physical interfaces
to the FPGA board hosting the MPSoC.

5.1. The ACC application

The ACC applications consists of 10 tasks communicating via 16
channels. We model the application structure using KPN as shown

4 http://af3.fortiss.org/.
5 http://www.festo-didactic.com.
8 http://www.sysgo.com/.
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Fig. 10. Task graph of ACC.

in Fig. 10. The behavior of tasks is described using annotated C
source files. In addition, a platform model is created to describe
the ACROSS architecture. The following design exploration prob-
lem is considered for this application:

- Design objectives: the reliability of the application is to be maxi-
mized. The application is expected to have fail-operational
behavior (in this case, a fault scenario that is only detectable
but not correctable is considered as a failure). We use Failure
In Time (FIT) as the metric of reliability, so the fitness value is
to be minimized. At the same time, the resource consumption
of the application is to be minimized (only processor time is
considered).

- Constraints: An end-to-end deadline must be respected, i.e., the
maximum latency between the sensor and sink task must be
smaller than the specified value. For a time-triggered design,
the end-to-end latency can be directly obtained from the sche-
dule. Additionally, I/O constraints must be fulfilled: The sensor,
driver and sink tasks must be mapped to the 1/O core (gateway
to off-chip peripherals). The sensor task gathers information
from the speed and distance sensors, the driver task collects
the driver input and the sink task represents the actuator. Due
to the unique availability of physical devices, these tasks cannot
be replicated.

The MOEA optimizer is configured with a population of 100 and
runs for 500 iterations. Since the two optimization objectives are
conflicting with each other (higher reliability requires more redun-
dancy and consumes more resources), the optimization result is
not a single solution but a set of design alternatives (Pareto optimal
solutions). The DSE tool generates a 2D figure that visualizes the
tradeoff between these solutions in the objective space (see
Fig. 11). The execution time of the DSE is around 120 s on a Win-
dows machine with a 3 GHz CPU (single-thread).

The designer may select any of the solutions in the figure to
look into the design details. Since we are considering a time-
triggered system in this example, the design is represented as
a Gantt chart, depicting the mapping and scheduling of all tasks.
A screen shot is shown in Fig. 12. Here, dark blue time slots are
used for application tasks, whereas light red time slots represent
voting components. As it can be seen, the tasks are selectively
replicated and distributed to the three application cores. In par-
ticular, a TMR scheme is implemented for the DistanceControlEco
task using temporal replication, whereas a TMR scheme is imple-
mented for the AccelerationControl task using spatial replication.
Since DistanceControlEco generates input to AccelerationControl,
a voter is inserted at each replica of AccelerationControl. The re-
sults of replicated AccelerationControl tasks are voted at the sink
task.
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Fig. 11. DSE Tradeoff visualization (ACC study).
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Based on the tradeoff analysis of the DSE results, the designer
selects the final implementation. An updated model is automati-
cally generated using the Generate Model button from the GUI of
our tool. The FTMs (replicated tasks, voting components, etc.) are
explicitly instantiated in this updated model, so it can be directly
used to synthesize the implementation (i.e., source code for each
core, required configuration files, etc.). The code generated for the
ACC example has successfully been tested on the target system.

The modeling framework allows the designer to retarget the
application to different hardware platforms with minor effort.
The complete application model can be reused by replacing the
platform model and re-running the DSE. For example, the gener-
ated ACC code has also been successfully deployed to a single Nios
Il processor running the PikeOS operating system. In this case,
communication is performed via the PikeOS inter-partition-com-
munication. Additionally, the design has been tested on the devel-
opment host (Windows PC; communication via shared memory).

5.2. The production line controller

The development flow of this application is similar as for the
ACC example. Again, KPN is used as a coarse-grained model to de-
scribe the application structure. On top of that, IEC 61131-3 SFC
and FBD models are used to specify the behavior of the KPN com-
ponents (sorting logic). Functional code can be automatically gen-
erated out of them. The DSE tool suggests a DMR implementation
of the controller. Although the architecture provides three cores to
implement TMR, it is not preferred here. This is because the appli-
cation requires only fail-safe behavior (i.e., stop the conveyor-belt),
and while the TMR implementation achieves the same reliability as
DMR, it consumes extra resources.

6. Conclusion

This paper tackles the problem of fault-tolerant embedded sys-
tem design and presents an integrated framework that supports a
complete reliability-aware design flow. Existing fault-tolerant
scheduling approaches can be integrated to our framework to uti-
lize the tool-supported (modeling) front-end and (code generation)
back-end. In addition, we focus on removing unrealistic assump-
tions in current analysis and scheduling approaches to bring the
research results more into practice. The ACC case study and the
industrial control demonstrator illustrate the applicability of
the proposed approach. As future work, we are interested in

considering other non-functional properties in system design
(e.g., energy consumption) and investigate the reliability issues in
mixed-criticality systems.
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