

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1016/j.micpro.2014.03.008

http://hdl.handle.net/10251/50718

Elsevier

Lodde, M.; Flich Cardo, J. (2014). Runtime home mapping for effective memory resource
usage. Microprocessors and Microsystems. 38(4):276-291.
doi:10.1016/j.micpro.2014.03.008.

Runtime Home Mapping for Effective

Memory Resource Usage

Mario Lodde and José Flich

Universitat Politècnica de València, Spain

Abstract

In tiled Chip Multiprocessors (CMPs) last-level cache (LLC) banks are
usually shared but distributed among the tiles. A static mapping of cache
blocks to the LLC banks leads to poor efficiency since a block may be mapped
away from the tiles actually accessing it. Dynamic policies either rely on the
static mapping of blocks to a set of banks (D-NUCA) or rely on the OS to
dynamically load pages to statically mapped addresses (first-touch).

In this paper, we propose Runtime Home Mapping (RHM), a new dy-
namic approach where the LLC home bank is determined at runtime by the
memory controller when the block is fetched from main memory, trying to
map each block as close as possible to the requestor thus speeding up exe-
cution time and lowering message latencies. Block migration and replication
provide further improvements to basic RHM. Also, in a further optimization
we eliminate the directory structure. All these optimizations involve specific
NoC optimizations and co-designs. Results with PARSEC and SPLASH-
2 applications show, when compared with alternative solutions, that RHM
achieves a 41% and 35% average reduction in load and store latencies respec-
tively compared to static mapping. This leads to an average reduction of
28% in applications execution.

Keywords:
chip multiprocessors, network-on-chip, cache hierarchy, coherence protocols

1. Introduction

Chip multiprocessor systems (CMPs) usually employ a shared memory
programming model, thus requiring a cache coherence protocol to keep data

Preprint submitted to MICPRO January 23, 2014

Figure 1: Tiled CMP system.

consistency along the cache hierarchy. The on-chip cache is organized hi-
erarchically, with small low-latency caches at the highest level and larger
caches with higher access times at the lower levels. This provides high on-
chip storage capacity without the high access latency a single, large cache
would have. Without losing generality, in this work we assume the tiled CMP
system shown in Figure 1 with a two-level cache. Each tile includes a core,
separate L1 caches for instructions and data, a bank of L2 cache and a switch
to connect the tiles through a 2D mesh.

L1 caches are private to the core in the tile but different policies can
be implemented for the L2 cache. The first option is to use each L2 cache
bank as a private cache to the tile, extending its private cache capacity. This
is the best option if the working set of the application fits in the L2 cache
bank, since all cached data can be accessed without sending requests over the
NoC. If the working set does not fit, this policy generates many L2 cache line
replacements, and therefore, off-chip requests. Furthermore, shared blocks
end up being replicated in different L2 cache banks. The second option is
to consider the sum of L2 banks as a shared but distributed L2 cache. Data
replication is avoided and cache resources are efficiently used. However, the
latency of retrieving a cached data in case of L1 miss will be higher and
variable depending on the distance between the L1 cache and the accessed L2
bank. Thus, the mapping of blocks to L2 banks is a crucial design parameter
for this approach. In this paper we follow this policy.

The L2 bank that hosts a block is called the home bank. There are two
main design options when deciding which L2 bank is the home for a block. On
the one hand, block mapping can be done statically (S-NUCA): the address

2

Figure 2: Average distance of L2 banks to their L1 requestors for different mapping
policies.

space is divided in subsets and all the blocks of a subset are statically mapped
to a bank. This policy is very simple to implement but can be inefficient as
blocks may be mapped to banks which are far away from L1 requestors. The
second option is to perform the mapping dynamically (D-NUCA) [1], where
each subset of blocks is mapped to a group of banks, or bank set, and blocks
can migrate within a bank set to move as close as possible to the requestor’s
tile. This policy has lower miss latencies but is more complex to implement.
Furthermore, the process of finding a block within a bank set leads to a
tradeoff between access time and NoC traffic since all the banks of a bank
set must be accessed, leading to either high latency (sequential search) or
more traffic (parallel search).

Figure 2 shows the average distance of accessed L2 banks by their L1
requestors in a 4×4 tiled configuration. The figure shows results when using
private L2 caches, shared L2 caches with S-NUCA approach and shared L2
caches with D-NUCA approach with bank sets of four configured in columns.
As expected, private caches achieve the lowest hop count, thus impacting in
a reduced access latency. However, this is achieved by highly restricting the
L2 cache capacity. In contrast, neither S-NUCA (due to its static nature)
nor D-NUCA (due to its static bank set configuration) are able to achieve
reduced hop counts. Our goal is to achieve similar results in hop distance to
the private configuration but keeping the shared configuration of L2 banks.

To achieve this, we propose Runtime Home Mapping (RHM), a new dy-
namic approach where the LLC home bank is determined at runtime in hard-
ware by the memory controller (MC). While in D-NUCA the mapping is

3

MC

HOME

2.MAPPING

1
.R
E
Q
U
E
S
T

3
.R
E
S
P
O
N
S
E

(a) Mapping on
requestor’s tile

MC

HOME

2.MAPPING

1
.R

E
Q

U
E
S
T

3
.R
E
S
P
O
N
S
E

APPL. 1

APPL. 2

APPL. 3

(b) Mapping on
application’s partition

MC

HOME

2.MAPPING

1
.R
E
Q
U
E
S
T

3.RESPONSE

FAULTY

L2 BANK

(c) Avoiding faulty L2
banks

MC

HOME

1.
R
E
Q
U
E
S
T

2.
R
E
S
P
O
N
S
E

3.HOME

(d) Migration support

MC

HOME

1.
R
E
Q
U
E
S
T

2.
R
E
S
P
O
N
S
E

3.REPLICA

(e) Replication support

MC

HOME

REQ

(f) Searching for home

Figure 3: Runtime Home Mapping. Different scenarios.

partially static, in RHM a block can be mapped to any L2 cache bank, po-
tentially reducing the distance from L1 requestors to L2 banks. Figure 3.(a)
shows the basic steps of the RHM mechanism comprising the request of a
block to the MC, the selection of the home L2 bank while fetching the block
from memory, and the forwarding of the block to the home L2 bank and to
the requestor. In this case, the selected home is the local L2 bank of the
requestor’s tile.

RHM can be viewed as a D-NUCA configuration where a single bank
set is configured comprising all the L2 banks. However, RHM differs from
D-NUCA in the sense that it enables further optimization opportunities such
as partitioning/virtualization, thread migration, and fault-tolerance. As an
example, in Figure 3.(b) three applications are mapped on different resources
of the chip. The MC, by using RHM, is able to map memory blocks belonging
to an application to the L2 banks mapped for the application, thus guaran-
teeing network-level and memory-level partitioning. In this case the selected
L2 bank is not at the tile’s requestor. Also, Figure 3.(c) shows the case where
one L2 bank has been disabled possibly due to some manufacturing defects.

4

In that situation, the MC, by using RHM, is able to filter out the failed bank
and thus map blocks to functioning L2 banks. In Figure 3.(d) we can see the
case where migration is enabled in RHM. In this case, one requestor solicits
a copy of a private block. The RHM method triggers in this case a migra-
tion process. To further reduce hop distance from L1 requestors to L2 home
banks, we enable in RHM replication of shared blocks. Figure 3.e shows the
case where a home decides to launch a replica for a block.

All the previous examples hide two potential problems that need to be
solved. The first one is the consistency of the coherence protocol. Multi-
ple race conditions can arise when several processors trigger load and store
requests on the same memory block. A careful design of the coherence pro-
tocol is needed. This is more difficult to achieve when enabling migration
and replication of memory blocks. We provide a description of the support-
ing coherence protocol for the RHM method in all these special cases. The
second problem is the efficiency of the coherence protocol. Indeed, the prin-
cipal source of inefficiency is that L1 caches do not know which L2 bank is
the home for a particular block. Since the home bank is not known a priori,
a search must be performed each time an L1 miss occurs. This is shown
in Figure 3.(f) where a request triggers a broadcast action in search of the
home for a block. This problem affects the network infrastructure provid-
ing connectivity support to RHM. Thus, it affects the underlying on-chip
network.

Conversely to previous approaches to home location, based on the use of
limited-size tables, and therefore prone to costly overheads [2], we combine
three different NoC mechanisms to optimize the search phase:

• An efficient home search method where a broadcast message is trig-
gered to query the home. Then, a lightweight and simple dedicated
control network is used to collect acknowledgments generated in the
discovering process. This method and its hardware support enable a
fast and efficient home search procedure. Also, basic signaling between
tiles is supported by the control network.

• Parallel access of L2 tags. We highly couple tag array of L2s into the
current NoC router design. At the same time the broadcast message
enters the router, the tag array is accessed.

• A router mechanism aimed to reduce the broadcast messaging. On an
L2 tag hit, the broadcast message is cancelled, thus reducing traffic by

5

chopping broadcast branches.

In addition to these designs at NoC level, in this paper we develop im-
provements at the coherence protocol level. We provide different design al-
ternatives as support for migration and replication. Also, we eliminate com-
pletely the directory structure by relying on the fast notification network. By
a close design process between the NoC and the coherence protocol, RHM is
able to effectively place the blocks near the core which is using them, reduc-
ing the average number of hops per request by more than 60% on average
compared to static mapping, which leads to reductions of more than 35% in
terms of cache latency and 28% in execution time. NoC and LLC energy
consumption is also reduced by 40% and 23% on average, respectively.

The rest of the paper is organized as follows: in Section 2 we show the
basic RHM mechanism and its NoC-level support. In Section 3 we present
dynamic optimization to reduce the access latency to the blocks. In Section 4
we show how RHM can be merged with a broadcast-based coherence protocol.
In Section 5 we show the evaluation results. In Section 6 we describe the
related work. In Section 7 we discuss future work and conclusions.

2. Runtime Home Mapping

RHM aims to map blocks to L2 banks at runtime, in order to allocate
them as close as possible to the requesting cores, preferably at the L2 bank
of the requestor’s tile. The mapping is performed by the MC each time it
receives a request.

Figure 4 shows the global overview of the RHM protocol. For every
processor access, the local L1 cache is accessed. In case of an L1 miss, a
request is sent to the local L2 bank in the same tile. If the block is found
on the L2 bank it means the L2 bank is the home for that particular block.
Thus, coherence actions are triggered and at the end the block is delivered
to the L1 cache. Coherence actions are described below.

On a miss on the local L2 bank, a broadcast is sent to all other L2 banks.
When an L2 bank receives this broadcast request, it checks its tag array. In
case of a hit, it sends the data back to the L1 requestor and a hit signal to
the L2 bank that triggered the broadcast. All the L2 banks, upon receiving
the broadcast message, trigger an acknowledgement (ACK) back to the L2
bank which issued the broadcast. When the requestor L2 bank receives the
ACKs it checks the hit signal. If the hit signal has not been received it means

6

L1

local L2
access

L2s
L2s

local L2

home L2
coherence

actions

home L2
coherence

actions

MC fetch from
memory and

compute new home
home L2

L2s

broadcast action

gather network

processor access

(if miss)
block request

(if miss)
home
search

(if hit)

(if hit)

ACK and hit signal

ACK

(if miss)
block request

(if hit)
internal

ACK

data to
requestor

data to
requestor

data to
requestor

ALLOCATE
command
to home

data from memory

Figure 4: RHM global overview. From processor access to MC access.

the block is not cached on chip, so the bank sends a request to the memory
controller (MC), which in turn fetches the block from main memory. If the hit
signal has been received it means the block is on its way to the L1 requestor.
Thus, an internal ACK signal is generated.

Upon receiving the request, the MC triggers the access to main memory
to fetch the block. Meanwhile, it computes which L2 bank will act as home
for the incoming block (the mapping policy and algorithm are described in
Section 2.2). Once an L2 bank is chosen as the home for a particular block,
the MC notifies the bank so it can start replacing a cache line, if needed,
and allocate a new line while the MC is still waiting for the block. When the
block is received at the MC, it is sent to the chosen home L2 bank, which in
turn will send the block to the requestor L1 cache.

Upon a hit, either on the local L2 bank, or on a remote L2 bank, RHM
follows the typical MESI protocol. Figures 5 and 6 shows the details of the

7

L2 tag
access

gather networkread request

Change state
to P

Add REQ and OWN
to sharers' list

Change state to P

Add REQ to
sharers' list

(if state is S)(if state is P)

(if state
is C)

L1 OWN

L1 REQ

L2 REQ
(if REPL or MIGR,

allocate L2 entry and
copy data from L1

forward
 request
to OWN

send data
to REQ

send data
to REQ

(if REPL)
send
REPL
signal

to REQ

(if MIGR)
send
MIGR
signal

to REQ

(if MIGR)
send
MIGR
signal

to REQ

send
data

to REQ

coherence action
added to support

migration/replication

Figure 5: RHM coherence actions: load miss

protocol.1

For read accesses (Figure 5), depending on the current state of the block
in L2 different actions are performed. If the block is in private state, then
the request is forwarded to the owner L1 which in turn sends the block to
the requestor. The L2 home updates the sharing list accordingly and the new
state of the block (shared). If the block is in cached state, then it means there
is only one copy of the block and lies in the home L2 bank. Thus, the block
is sent to the requestor and the state is changed to private. If the block is in

1Notice that race conditions in coherence protocols need to be taken into account.
The figure, however, for the sake of description, does not show the additional states and
messaging needed to solve them. They have been carefully analyzed and solved.

8

shared state, then the requestor is added to the sharing list and the L2 bank
sends the block to the requestor.

L2 tag
access

gather network write request

Change state to P
Change OWN pointer

to REQ

Change OWN
pointer to REQ

(if state is S)(if state is P)

(if state
is C)

Old L1 OWN
invalidates

its entry

L1 REQ

L2 REQ
(if REPL or MIGR,

allocate L2 entry and
copy data from L1

forward
 request
to OWN

send data
to REQ

send data
to REQ

(if MIGR)
send
MIGR
signal

to REQ

coherence action
added to support

migration/replication

Change state to P
Change OWN
pointer to REQ

SHARER
invalidates

its entry

send INV
to sharers

L1 REQ

send ACKs
to REQ send data

to REQ

Figure 6: RHM coherence actions:store miss

Similar actions are taken when the access is a write operation (Figure
6). In this case, if the block is in private state, the request is forwarded
to the owner which in turn sends the block to the requestor. The block is
invalidated in the owner. Also, the owner pointer in the L2 bank is updated.
If the block is in cached state (only one copy in the chip), then is simply
forwarded to the requestor and the state and owner pointer are updated. If

9

the state of the block is shared then a multicast message is sent to the sharers
in order to invalidate their copy. Sharers in turn send an acknowledgment to
the requestor. In addition, the L2 bank sends the block to the requestor and
changes the state back to private.

In addition to the previous description, RHM supports migration and
replication of blocks. In particular, blocks in cached or shared state for read
requests and blocks in private state for write requests can migrate. On the
other hand, blocks in shared state for read requests can be replicated over
the chip. In those cases, and when a given threshold is reached (described in
Section 3), the L2 bank triggers a signal (either MIGR or REPL) to the L2
bank that triggered the request (the one in the same tile of the L1 requestor).
When the block is received by the L1 requestor, and if the signal has been
received, the block is also copied on the L2 bank. Further descriptions are
given in Section 3.

From Figures 4 and 5 we can deduce the network latency when accessing
blocks. If the block is mapped in the L2 bank in the local tile then no access
to the network is made. This will be the frequent case as the MC will try
to map most of the blocks to the requestor’s tile. However, when the block
is mapped in an L2 bank on a different tile then different accesses to the
network will be made. First, a broadcast to find the L2 bank. Then, all
the L2 banks sending an ACK signal to the requestor. Also, the L2 home
probably will send new messages to other nodes (from Figure 5) and finally
sending a hit signal and the block to the requestor. In case the block is not
mapped on cache then the MC is accessed and a new L2 home is computed.
This means more messages through the NoC.

The L2 home search policy just described above has high network re-
sources demand: every time a request misses in the local L2 bank, a broad-
cast is issued. Also, all other banks must answer to the broadcast with an
ACK or with the data. The first action can be attenuated by implementing
a tree-based broadcast mechanism within the NoC: a broadcast is sent as
a single message, that replicates at switches to reach every L2 bank. This
reduces NoC traffic and eliminates the serialization of multiple copies of the
same request (one per destination). ACKs however still represent a problem:
they are indeed sent roughly at the same time and will probably serialize in
the network and, most important, all of them must reach the same L2 cache
bank (i.e., the one that initiated the broadcast). In addition, different sig-
nals (hit, MIGR, and REPL) are sent from the L2 bank to the L2 requestor.
These signals need to reach the requestor at the same time ACK signals do.

10

Figure 7: Control info required for each version of RHM.

To reduce the network impact of all those signaling commands, we develop
the Gather Control Network (GCN) described in the next section. This net-
work optimization is vital to make the RHM method become effective and
efficient.

Figure 7 shows the control info required for the coherence protocol. Dif-
ferent versions of RHM will be described in next sections: a version which
uses a directory-based coherence protocol (RHM-Dir), a version using a
broadcast-based coherence protocol (RHM-Hammer) and two optimizations
where blocks can migrate from a bank to another and be replicated in differ-
ent banks; although we implemented these optimizations on the directory-
based version, they are orthogonal to the coherence protocols. For each cache
line, the L2 bank will keep the state of the block. Four bits are needed to
encode all the possible states (the L2 state machine has less than 16 states)
except for the version with block replication and migration support, which
needs five bits (up to 27 states are used to correctly manage the possible
race conditions). All the versions, except RHM-Hammer need the sharing
code, to reflect the list of sharers of a block. Also, migration and replication
support need counters to trigger the migration and replication processes. As
can be deduced, the only field that grows with system size is the sharing
code while the size of the counters only depends on the thresholds which are
chosen to trigger the migration and replication of a block.

2.1. Gather Control Network

The Gather Control Network (GCN), can be logically seen as 16 one-bit
wide subnetworks, one per tile. Each subnetwork is a tree of AND gates,
connecting the destination tile (the root) with all other tiles (located at the

11

Figure 8: Gather control network for tile 0.

leaves of the AND tree). Figure 8 shows the logical view of one subnetwork
with root in tile 0. A one-bit subnetwork (darker arrows) is added to the
regular NoC (bidirectional arrows). If a request misses in the L1 and L2
caches of tile 0 (L1-0 and L2-0 from now on), L2-0 broadcasts the request to
all other L2 banks through the regular NoC. When an L2 bank receives this
request, it triggers the output signal of the GCN for tile 0. Once all L2 banks
trigger their output signals, the output of the AND tree will notify the L2-0
and thus will act as a global ACK message. Two different implementations
of the GCN were used in our previous works to speedup the ACKs sent by L1
caches to the L1 requestor in directory-based and broadcast-based coherence
protocols [3, 5, 4]. In this work, we provide a detailed description of the
GCN logic and extend its use to collect acknowledgements generated by and
destined to different levels of the cache hierarchy and to deliver simple control
information together with the global ACK.

By sending ACKs through the GCN we achieve two major benefits. The
first one is the reduction in network traffic and the associated power con-
sumption saved. The second one is the reduction in message latency, as
ACKs now are sent as signals rather than messages, thus avoiding routing,
flow control, and arbitration in the NoC at each hop and message serializa-
tion at the destination node. Indeed, the GCN takes profit from the fact
acknowledgments can be reduced to only one notification event with a single

12

ROUTING

INPUT

LOGIC

INPUT

LOGIC

INPUT

LOGIC

INPUT

LOGIC

INPUT

LOGIC

OUTPUT

LOGIC

OUTPUT

LOGIC

OUTPUT

LOGIC

OUTPUT

LOGIC

OUTPUT

LOGIC

W
IR

IN
G

 S
H

U
F

F
L
IN

G

W
IR

IN
G

 S
H

U
F

F
L
IN

G

AND

MATRIX

AND

SIGNAL

TABLE

reset reset

VA

SA

N

E

W

S

L

N

E

W

S

L

N

E

W

S

L

N

E

W

S

L

(a) Router with RHM

D
E

M
U

X

reset
from AND matrix

IN
P

U
T

 ID
 B

IT
M

A
P

ID

T
O

 A
N

D
 M

A
T

R
IX

HIT, MIGR, REPL and RETRY signals

reset
from AND matrix

sel
DEMUX

1
to output

logic
D Q

(b) RHM input logic

Figure 9: Router design with GCN network and RHM input logic.

signal as the receiver is waiting for a known event for a known block.
Although the GCN can be implemented as a very specific combinational

block, we choose a sequential implementation with a more general behav-
ior. Instead of wiring different AND trees we develop a network capable of
collecting identifiers with associated control signals. This makes the GCN
scalable with system size and adds more functionality. We will refer to the
number of supported identifiers by n.

The GCN is distributed over the routers with the same logic blocks but
instantiated differently depending on the position of the router on the 2D
mesh. Figure 9.(a) shows a typical NoC 5-port switch with the added logic
for the GCN. The bottom part is the new logic. In detail, the GCN consists
of three main blocks: the input logic, the central logic, and the output logic.

The input logic (Figure 9.(b)) is located on every input port and has
an associated input channel. The input logic receives IDs and three control
signals: hit, MIGR, and REPL. The input logic has one bit (implemented

13

D
E

M
U

X SET-TO-ONE
SIGNAL TABLE

ID

T
O

 O
U

T
P

U
T

 L
O

G
IC

reset
from output logic

sel
DEMUX

to output
logic

D Q

...

...

HIT

MIGR

REPL

RETRY

...

...

...

...

reset
to input

logic

reset
to input

logic

reset
to input

logic

T
O

 O
U

T
P

U
T

 L
O

G
IC

SIGNAL

reset
from output logic

(a) RHM central logic.

reset

from
AND
array

1

to output
logic

D Q

M
U

X

P
R

IO
R

IT
Y

 E
N

C
O

D
E

R

F
R

O
M

 A
N

D
 A

R
R

A
Y

reset
to signal table reset

to GN
output
port

F
R

O
M

 S
IG

N
A

L
 T

A
B

L
E

...

ID

HIT
MIGR
REPL

RETRY

(b) RHM output logic

Figure 10: RHM central and output logic.

as a flip-flop) per identifier, building the input ID bitmap. Thus, the bitmap
register is of size n. Whenever an ID is received the associated bit is set.
Also, the incoming ID and the control signals are forwarded to the central
logic.

The central logic (Figure 10.(a)) is in charge of two actions. First, it
has to AND the input identifiers with the same value, coming from different
input ports. To achieve this, the central logic is made of n AND gates. The
signals coming from the input ports are reorganized appropriately at the
previous wiring shuffling stage. Wires from IDs with the same values are put
close each other. Second, the central logic has a signal table (n× 3 matrix)
combining all the control signals coming from the input ports. Whenever an
input signal comes with value set to one, it is registered. Notice that input
signals coming with a value set to zero do not reset the value in the signal
table. We can view this table as an OR operation of input signals with the
same IDs.

Finally, each output port has a output logic (Figure 10.(b)). The main
function of this logic is to forward IDs that have been combined by the
central logic. To do this, IDs are stored in a bit vector (output ID bitmap)
and encoded when forwarded. A priority encoder is used. The output of the

14

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

1,2,3,5,7,9,11,

13,15
2,3,7,11,15

1,3,5,6,7,9,11,

13,15
3,6,7,11,15

1,3,5,7,9,10,

11,13,15
3,7,10,11,15

1,3,5,7,9,11,

13,14,15
3,7,11,14,15

3,7,11,15

3,7,11,15

3,7,11,15

3,7,11,15

0,1,2,5,9,130,1,5,9,13

1,4,5,6,9,13

1,5,8,9,10,13

1,5,9,12,

13,14

1,4,5,9,13

1,5,8,9,13

1,5,9,12,13

0

4

8

12

4
,6
,8
,1
0
,

1
2
,1
4

4
,5
,6
,8
,9
,1
0
,

1
2
,1
3
,1
4

8
,1
0
,1
2
,1
4

8
,9
,1
0
,

1
2
,1
3
,1
4

1
2
,1
4

1
2
,1
3
,1
4

0
,2

0
,2
,4
,6

0
,2
,4
,6
,8
,1
0

1
,0
,2

0
,1
,2
,4
,5
,6

0
,1
,2
,4
,5
,6
,8
,

9
,1
0

4
,6
,8
,1
0
,

1
2
,1
4

4
,6
,7
,8
,1
0
,1
1

1
2
,1
4
,1
5

8
,1
0
,1
2
,1
4

8
,1
0
,1
1
,

1
2
,1
4
,1
5

1
2
,1
4

1
2
,1
4
,1
5

0
,2

0
,2
,4
,6

0
,2
,4
,6
,8
,1
0

0
,2
,3

0
,2
,3
,4
,6
,7

0
,2
,3
,4
,6
,7
,8
,

1
0
,1
1

X

Y

YX: 0, 2, 4, 6, 8, 10, 12, 14

XY: 1, 3, 5, 7, 9, 11, 13, 15

Figure 11: GCN Mapping of IDs.

encoder also selects the control signals stored in the signal table, thus the
output port forwards the ID with its combined control signals.

As we can see, IDs are stored both at the input and at the output ports,
while signals are centralized in the central logic. Those IDs and signals need
to be reset every time the ID is collected and forwarded through the output
port. To do this, reset signals are triggered from the central logic to the
input logic (to reset IDs) and from the output logic to the central logic (to
reset the signals). The IDs at the output logic are reset whenever the ID is
forwarded through the port.

Notice that the size of registers at each input port will vary from switch
to switch in a 2D mesh. This depends on the mapping strategy used to

15

Figure 12: GCN message format.

collect IDs (e.g. they can be collected following X-Y patterns or Y-X pat-
terns). In particular, we follow the mapping strategy shown in Figure 11.
IDs associated with tiles with odd identifiers follow XY routing whereas IDs
associated with tiles with even identifiers follow YX routing. This creates
a balanced distribution and reduces the number of IDs per output port. In
particular, the maximum number of IDs at an output port (and input port)
is 9 (e.g. north output port at tile 13). In contrast, there are output ports
forwarding only one ID (e.g. west output port at tile 1). Therefore, the size
of the registers at the input and output logic will vary between 0 and 9. By
collecting all the output IDs in a tile through all the output ports, we can
see that the sum is always 15. Indeed, each tile will send one single copy of
each ID except for the local one. The figure does not show the local ports.
In this case, the injection port will have as many IDs as possible destinations
(N-1) and one single ID at the ejection port (the one associated with the
local node). Also, as the central logic will be shared by all the input ports,
the number of AND gates and entries in the signal table will not vary and
will be set to n. In the evaluation section we will show overhead costs of the
GCN implementation.

In principle, IDs through the GCN will be used to communicate between
L2 banks. However, this can be extended to get more functionality. As an
example, with one extra bit for IDs (duplicating the number of IDs) we can
build two GCNs (using the same logic) but having two logical GCNs, one
for gathering ACKs for (notifying) L2 banks and one for gathering ACKs
for (notifying) L1 caches. Also, out-of-order processors may trigger different
request to the network, thus requiring different collecting processes through
the GCN. This can be supported by extending the number of IDs. Figure 12
shows the GCN message fields we assume in this paper. The target system
is a CMP system with 16 tiles. Thus, four bits are used to address the target

16

tile. With one extra bit we indicate whether the target component is the
L2 bank or the L1 cache. In-order processors are assumed. With the ID we
also send the three control signals: hit, REPL, and MIGR. An additional
bit, RETRY, is used to manage concurrent request through a fixed priority
policy.

2.2. Mapping Algorithm

Each time the MC receives a request, a mapping algorithm chooses the
home bank for the requested block. The home is chosen depending on the
requestor’s tile and current L2 banks utilization. The MC takes statistics
about cache utilization, which are stored in a table (alloc table) with N ×M
entries, where N is the number of L2 cache banks and M the number of L2
sets. Each entry contains the number of allocations performed in set m of L2
bank n. If the associativity of L2 sets is Z, the table has to store at minimum
N×M×log2 Z bits. However, the table will double the bits in each entry. For
a 16 × 16 tile system with 16-way 256KB bank sets, the minimum memory
requirements for this single table is 2KB (m = 16, M = 256, Z = 16). With
the increased size, the table will grow to 4KB (to allow 256 allocations per
set). The pseudocode shown in Figure 13 describes the simple algorithm we
implemented.

If there is room in the set in the local L2 bank (r tile), then the home is
the local tile of the requestor. Otherwise, the algorithm scans the neighbor
banks in distance order (first for loop). This search is performed until the
threshold MaxHops is reached, which can be equal to the physical threshold
forced by the system size (number of hops from the requestor to the furthest
tile) or lower.

If all the L2 banks are full (alloc higher than num ways), the algorithm
tries to balance the number of allocations (thus, replacements) in all banks
(second for loop). A threshold (UtilThr) is used. If the difference between
the number of allocations in the local tile’s bank and a neighbor bank is
higher than the threshold, then the neighbor bank is selected as the home
bank.

If all the banks are balanced, then the block is mapped to the requestor’s
tile. Notice that this does not imply that RHM defaults to private L2 caches.
With private caches all the data accessed by a core must be present in the
L2 bank of the same tile, while in RHM this does not apply. For instance, a
shared block will be replicated in all L2 caches if they are private, while in
RHM it will be present only in the home tile. The proposed policy defaults

17

int function allocate(int r, address a) {

banklist n; bank b; set s; bank h;

s = get_set(a);

if(alloc[r,s]<num_ways) {alloc[r, s]++; return r;}

for(int h = 1; h <= MaxHops; h++){

n = BanksReachable(r, h);

for (int i = 0; i < size(n); i++){

b = SelectBankClockWise(n, i);

if (alloc[b,s]<num_ways) {alloc[b,s]++; return b;}

}

}

for(int h = 1; h <= MaxHops; h++){

n = BanksReachable(r, h);

for (int i = 0; i < size(n); i++){

b = SelectBankClockWise(n, i);

if (alloc[r,s] - alloc[b,s] > UtilThr) {alloc[b,s]++; return b;}

}

}

alloc[r, s]++; return r;

}

Figure 13: Mapping algorithm performed by the MC.

to private caches only if all L2 banks are full, each core is requesting private
blocks and all banks are uniformly used. In this case, very unlikely in a
parallel application, all blocks are allocated in the requestor tile, which indeed
is the best choice since it minimizes the data access latency.

3. Optimizations to RHM

In the previous sections we have detailed the RHM method and the GCN
network. Now, we focus our attention on additional optimizations to RHM in
order to make the final solution more efficient. On the one hand, we provide
migration and replication of blocks (to reduce the access latency to L2 home
banks). On the other hand, we provide faster L2 bank access (through a
parallel tag access approach) and remove the directory structure.

18

3.1. Block Migration

RHM reduces the access latency by mapping blocks closer to requestors.
Once the block is on-chip, however, the core which actually use it may change
at runtime. To reduce the access latency in these cases, the initial placement
of the block can be adjusted at runtime allowing blocks to migrate to a new
L2 bank. Notice that a sort of migration mechanism is implicit in RHM,
since each time a block is replaced from an L2 bank and then requested
again it may be mapped to another L2 bank by the MC. However, this may
not always be effective. If the block is never replaced by the L2, it stays in
the bank.

If the initial home allocation performed by the MC results sub-optimal,
block migration can be enabled to further reduce the number of hops be-
tween an L1 cache and the L2 bank where the block is mapped. We propose
a migration scheme similar to the one used in D-NUCA but without the
constraint of being limited within a bank set: in RHM a block is allowed to
migrate to any L2 bank. However, since the migration process introduces
an overhead in terms of traffic and energy, it should be performed only if it
actually leads to a benefit in terms of miss latency reduction.

Solutions in D-NUCA reduce unnecessary migrations and avoid the ping-
pong effect by using a saturating counter for each direction to which a block
can move. A counter is updated each time a request comes from a node
located in the counter’s direction; when the counter saturates, the migration
process towards that direction is triggered. In our case a block may migrate
in any direction, so four counters are needed, one per direction. Each time a
request is received from a tile, the counters are updated adding the distance
in hops from the requestor. When a counter is incremented, the one in the
opposite direction is decremented. When a counter saturates, it starts the
migration process: the block migrates to the L2 bank located in the same
tile of the L1 which sent the request that triggered the migration.

Notice that migration occurs between two L2 banks, one requesting the
block and the other being the L2 home bank. The L2 home bank notifies the
L2 requestor through the GCN by activating the MIGR signal (it also sets
the hit signal). This signal will arrive to the L2 requestor at the same time
all ACKs are collected. Upon receiving this signal, the requestor L2 performs
an internal copy of the block from the requestor L1 cache (in its tile) once
the block is received. The former L2 home bank deallocates the block. See
Figure 5.

19

(a) (b) (c)

Figure 14: Block replication.

3.2. Block Replication

Block migration effectively reduces the LLC access latency of private
blocks. Each time the accessing core changes, the block potentially migrates
to the L2 bank in its tile. For shared blocks, however, this may not be the
optimal solution. First of all, the block may be mapped close to one of the
sharers but away from the others. Second, the block may ping-pong between
two L2 banks when different sharers continuously request it. Since a block
cannot be modified while it is shared, it is safe to replicate it in more L2
banks to reduce the access latency of the sharers.

The minimal access latency is achieved when each sharer has a replica of
the block in its local L2 bank. This case, however, may end up suboptimal
as the on-chip cache capacity will be highly reduced due to the high number
of replicated blocks. To reduce the number of replicas, we partition the chip
in a reduced number of replication regions. At most one copy of the block
can be present in the L2 banks of each region. To avoid unnecessary replicas,
we use a saturating counter for each region.

Figure 14 shows how the replication process works. The CMP is divided
in four replication regions, each one including four tiles, marked with a thicker
line. Initially, there is only a private copy of the block in the L2 of tile 10
(L2-10), which is the tile the MC mapped that block to (or the destination
tile of a previous migration process). In Figure 14.(b) L1-2 requests the block
with read permission, so the block is shared by L1-10 and L1-2. If L1-2 or
any other L1 of the same replication region requests the block several times
until the counter for its region saturates, the replication process begins: L2-
10 sends the block both to L1-3, which requested it, and to L2-3, where it is
saved as a replica (Figure 14.(c)). Notice that L2-10 remains the home bank

20

for the block: it keeps updating the directory and managing all requests,
except for the read requests issued by L1s located in the same region of L2-3.
For those requests, L2-3 is in charge of providing the data to the requestors.

When any node issues a write request for a replicated block, the home
node sends an invalidation message to all replicas and to the L1 sharers
which are in regions where the block is not replicated. Each replica, at the
reception of the invalidation message, invalidates the sharers in its region.
The directory is extended with extra bits to track the replicas at the home
node. As shown in Figure 7, the migration counters are used to control the
replication process also, since a block migrates or replicates depending on its
state but can’t do both things being in the same state. We assumed to divide
the chip in four replication regions; for each region, two bits are used for the
counter and the other two are used to codify the ID of the bank holding a
replica within each region (banks are numbered 0 to 3).

When the home bank has to replace a replicated block, it is not necessary
to invalidate the sharers. One of the L2 banks with a replica of the block is
chosen to become the new home for the block, so is notified with a message
which includes the directory information for that block. On the other hand,
if an L2 bank has to replace a replica, it only has to notify the home bank.
The home bank will remove its ID from the list of replicas and manage the
requests originated in that region.

4. RHM and Broadcast-based Coherence Protocols

In previous sections we assume a directory-based coherence protocol, with
a data structure (the directory) associated to each L2 cache line to store the
list of sharers. The L2 cache uses this information when it has to com-
municate with L1 caches to manage a request; two typical cases are the
invalidation of the sharers of a shared block upon a write request and the
forwarding of read and write requests to the L1 which owns the modified
copy of a private block. The directory introduces an area overhead, since
part of the on chip memory has to be used to store the directory entries.
The size of the directory grows linearly with system size, making full-map
directories unfit for systems with more than a hundred of cores (the size of
the directory would be comparable to the line size).

Broadcast-based protocols completely eliminate the list of sharers from
the directory information, thus eliminating its extra area and power require-
ments. One example is the Hammer protocol [27, 28], used by AMD in its

21

systems based on the Opteron processor family. The drawback of broadcast-
based protocols is the amount of traffic they generate. While in directory-
based protocols the L2 cache always knows exactly to which node it has to
communicate, thus injecting in the NoC the minimum amount of traffic, in
broadcast-based protocols a broadcast must be sent to all L1 caches each
time the L2 home bank has to invalidate the sharers of a block or forward
a request to the L1 which has a private copy of the block. In addition,
each node must answer the broadcast message by sending an acknowledge-
ment message (ACK) to the requestor, and, if the node is also the owner
of a private block, the requested data block. Due to these additional com-
munication, broadcast-based protocols have usually worse performance than
directory-based.

However, now that we have the GCN we can conceive an RHM imple-
mentation with sharing-less information. By using the GCN we can save the
area and power overhead of the directory. Also, we can reuse the broadcast
phase of RHM when searching the home L2 bank. Coherence actions of the
hammer protocol will be embedded in the broadcast search method of RHM.
To achieve this goal, we extend the Gather Control Network and implement
a Broadcast Control Network to send a fast notification from any node to all
other nodes.

4.1. Broadcast Control Network

As described in Section 8, the Gather Control Network can be logically
described as a set of AND trees, one per tile. Each tree has its root in the
destination tile and all other tiles are at the leaves. The implementation we
actually use combines IDs of the destination node, following the structure of
the AND tree. By crossing the tree in the opposite direction, it is possible
to broadcast the ID of a node to all other nodes.

Figure 15 shows the implementation details of the BCN. It reuses the links
of the GCN. To differentiate IDs from the GCN an additional bit is used.
Whenever the BCN is used the bit is set. This bit drives a demultiplexer thus
the incoming bit at the input port is forwarded either to the GCN input logic
or to the BCN logic. The BCN simply disseminates the ID through some
output ports, following the XY pattern. At each output port, a register with
as many bits as IDs is implemented. When an ID is received at an output
port, the associated bit is set. The register is then inputed to a priority
encoder and the output link is arbitrated between the GCN output logic and
the BCN output logic.

22

GN
ID

S
 R

E
G

P
R

IO
R

IT
Y

E
N

C
O

D
E

R

A
R

B
IT

E
R

GN

D
E

M
U

X

TO BN LOGIC

AT OUTPUT PORTS

FROM

INPUT

LOGIC

ID + FLAGS

GN/BN

// //

////INPUT PORTS OUTPUT PORTS

GN/BN MODULE

Figure 15: BCN implementation.

4.2. Merging Hammer protocol and RHM

The basic coherence actions when Hammer protocol is combined with
RHM (RHM-Hammer) are shown in Figures 16, 17 and 18. Each time the
L2 home bank needs to communicate with an L1 cache to satisfy a request,
it broadcasts the request to all L1 caches, which answer by sending an ACK
back to the L1 requestor. The GCN we considered so far must then be
expanded with an additional GCN: one GCN (GCN-1) will be used to collect
the ACKs sent by the L2 banks during the home bank search phase, and
a second GCN (GCN-2) will be used to collect the ACKs sent by the L1
caches back to the L1 requestor once the home bank has been found and it
is managing the request. By adding one bit to the ID identifier we easily
provide support to the GCN-2. Notice that GCN-1, GCN-2 and BCN logic
blocks at each router share the same physical links. In Section 5 we will
provide evaluation results of the number of conflicts inside a GCN module.

In case the requested block is not cached on chip, RHM-Hammer behaves
like the Directory case (RHM-Directory): the home search phase will miss
in all L2 banks, and the L2 of the requestor’s tile will send a request to the
MC. It fetches the block from main memory and executes the home mapping
algorithm. Once the block is received from main memory, a data message is
sent to the chosen L2 home, which will provide the block to the requestor.

If the requested block is cached on chip, RHM-Hammer exploits the BCN
and the GCN to speedup the coherence actions. In the case of a read request

23

GN

L1 REQ

LOCAL L2

L1 REQ

tile internal

NoC

L1 REQ

LOCAL L2

L2
L2
L2

HOME L2

L1 REQ

LOCAL L2
DATA

DATA

ACKs

broadcast

Figure 16: Read request for a shared block in case of hit (left) or miss (right) in the local
L2 bank.

for a shared block (Figure 16) RHM-Hammer behaves like RHM-Directory:
if the request hits in the local tile, the local L2 directly sends the data to
the requestor. If, however, the request misses in the local tile, a broadcast is
sent to all L2 banks and the block will be provided by the home bank.

In all other cases RHM-Hammer uses the GCN and the BCN to manage
the request. Figure 17 shows the case when a request hits in the local L2
bank. In case of read or write request for a private block (Figure 17.a), the
local L2 bank sends a broadcast through the NoC to all other L1 caches,
which answer acknowledging the broadcast through the GCN. The L1 which
owns the private copy is in charge of sending the block to the requestor.
In case of a write request on a shared block (Figure 17.b), the broadcast is
used to invalidate the sharers and the data is provided by the local L2 bank.
Notice that RHM-Directory can not use the GCN to collect the acknowl-
edgements since the invalidation message is only sent to the sharers, so some
nodes at leaves of the requestor’s AND tree would not send an ACK. The
acknowledgement phase is thus faster in RHM-Hammer.

Figure 18 shows how the previous cases are managed when the request
misses in the local bank. In case of read or write request for a private block
(Figure 18.a), the local bank starts the home search phase; during this phase,
all tiles, upon receiving the request, save in a private table, at the entry of
the requestor, the block address and the request type. This table will have
as many entries as IDs are supported by the BCN.

24

L2L2

GN

L1 REQ

LOCAL L2

L1 REQ

tile internalNoC

L1 REQ

LOCAL L2

L2L2L1 OWNER L1

L1 REQ
DATA

FWD
REQ

ACKs

broadcast

RHM-Directory

OWNER L1

DATA

RHM-Hammer

L1 REQ

LOCAL L2

L2
L1 sharer

L1 REQ

DATA

ACKs

invalidations

RHM-Directory

L1 REQ

LOCAL L2

L1

L1 REQ

DATA

ACKs

broadcast

RHM-Hammer

(a) R/W request, private block (b) W request, shared block

Figure 17: Request hit in the local L2 bank.

When the request is received by the home bank, a broadcast is sent
through the BCN to all the L1 caches: the ID of the requestor is broad-
casted through the BCN. Once an L1 cache receives the requestor ID, it
checks the table to know which address and access type are associated to
that ID and performs the actions established by the coherence protocol. If
the ID is received at the owner L1, it sends the block to the requestor and
invalidates its cache line (in case of write request) or changes the line state
from private to shared (in case of read request). In case of a write request
on a shared block (Figure18.b), the home bank must invalidate the sharers.
Again, this is done by broadcasting the request through the BCN and all
ACKs are collected through the GCN. Notice that in RHM-Directory both
the invalidation messages and the acknowledgements are sent through the
regular NoC.

Although RHM-Hammer seems to generate much more traffic than RHM-
Directory, all the additional traffic is actually sent through the GCN and
the BCN, which is faster and has much lower energy requirements than the
regular NoC. Furthermore, since in case of miss in the local L2 bank the
communication between the home bank and the L1s is done through the
BCN, it is faster than in the case of RHM-Directory, where the regular NoC
is used to forward the request to the owner or to invalidate the sharers of a
block.

25

L1 sh

ACKs

L1 REQ

LOCAL L2

L2L2L2 HOME L2

L1 REQ

LOCAL L2

DATA

ACKs

broadcast

L1 REQ

LOCAL L2

RHM-Directory RHM-Hammer

L1 REQ

LOCAL L2

RHM-Directory

L1 REQ

LOCAL L2

RHM-Hammer

OWNER L1

FWD
REQ

L2L2L2

L1 REQ

LOCAL L2

DATA

ACKs

broadcast

OWNER L1L1 shL1 shL1

HOME L2

broadcast

ACKs

L2L2L2

L1 REQ

LOCAL L2

D
A

T
A

ACKs

broadcast

L1 sh

HOME L2

in
v
a
lid

a
tio

n
s

ACKs

L2L2L2

L1 REQ

LOCAL L2

D
A

T
A

ACKs

broadcast

L1

HOME L2

b
ro

a
d
c
a
s
t

GN tile internalNoC BN

(a) R/W request, private block (b) W request, shared block

Figure 18: Request miss in the local L2 bank.

5. Performance Evaluation

In this section we evaluate RHM and compare it with other proposed
NUCA configurations. In the baseline (S-NUCA) blocks are statically mapped
to L2 banks using the less significant bits of the block address. In D-NUCA,
blocks are statically mapped to a bank-set depending on their addresses. The
matrix of L2 banks is divided in bank-sets, one per column of tiles. Blocks
are inserted in the L2 bank located in the same row of the requestor and then
can migrate within the bank-set, one hop each time a migration is triggered.
A third configuration uses private LLCs. Finally, we consider an S-NUCA
configuration in which the blocks are mapped to the L2 banks using a first
touch policy [29]. The first time a block is requested, the memory page
containing that block is mapped to the L2 bank in the requestor’s tile. We
assume 4KB as the page size.

These configurations assume a directory-based coherence protocol, and
are compared against four configurations of RHM. The first one (RHM) uses a
directory-based coherence protocol. In RHM M we enable private and shared
block migration. In RHM M+R we enable both migration and shared block
replication. In RHM HAMMER we use the Hammer coherence protocol.

The cache coherence protocol for each configuration, the NoC with broad-
cast support and the GCN/BCN networks have been implemented and sim-
ulated using our flit-level cycle-accurate network and cache hierarchy simula-
tor. Each protocol has been tested for deadlocks and race conditions with all

26

Routing XY Coherence protocol Directory / Hammer

Flow control credits L1 cache size 16 + 16 kB (I + D)
Flit size 8 byte L1 tag latency 1 cycle

Switch model 4-stage pipelined L1 data latency 2 cycles
Switching virtual cut-through L2 bank size 256 kB

Buffer size: 9 flit deep L2 tag latency 1 cycle
Virtual channels: 4 L2 data latency 4 cycles
GCN/BCN delay 1 cycle/hop Cache block size 64 B

Table 1: Network and cache parameters.

Figure 19: Organization of our cache hierarchy and NoC simulator.

the applications used in the simulation phase. Figure 19 shows the structure
of our simulator: L1 cache accesses, which may be read from a trace file or
generated by an external simulator into which our tool is embedded, are sent
to the memory model. This module performs a cycle-by-cycle simulation of
the cache hierarchy and the coherence protocol; if caches located at different
levels of the cache hierarchy or located at different tiles have to communicate,
a message is injected into the network model, which simulates cycle-by-cycle
the advance of the flits through the NoC. When a message reaches the switch
connected to the destination node (an L1 cache, an L2 cache or the memory
controller) it is delivered to the memory model, and the destination node will
evolve as established by the coherence protocol.

To evaluate our proposal with real applications, we captured the memory
accesses of Graphite [7] and Sniper’s [8] simulated cores and used our tool for
cache hierarchy and NoC timing. Different applications of the SPLASH-2 and

27

Figure 20: Avg hop distance between L1 requestors and the tile where the data is found.

PARSEC benchmark suites have been run on the 16-core system considered
throughout this paper. Network and cache parameters are shown in Table 1.
Cache latencies have been obtained using Cacti [9]. One memory controller
is placed at the top left corner of the chip. For the sake of fairness, ACKs
in D-NUCA are modeled with 2-cycle latencies (as when using the GCN).
Migration and replication thresholds have been chosen running different sets
of simulations with different threshold values and picking the value with the
best average performance.

Figure 20 shows the average hop distance from the requestor to the home
tile. For S-NUCA, the block is found on average at a distance of 2.85 hops.
This distance is roughly the same for most applications as blocks are uni-
formly distributed among the L2 banks. With other configurations, however,
since blocks are dynamically mapped and/or moved from a bank to another,
the distance is quite variable depending on the application. For Barnes, dy-
namic techniques are not so effective, and the average value is always higher
than 2 hops. The exception is for RHM M+R. This is due to the high sharing
of blocks between cores. Thus, RHM M+R adapts to this type of sharing.
For other applications, e.g. Ocean, those techniques achieve a large reduction
in the average number of hops.

On average, RHM locates the data closer to the requestor than the other
configurations, and this distance is further reduced if block migration is en-
abled. Indeed RHM M and RHM M+R achieve a locality close to that of
PRIVATE L2.

Figure 21 shows the percentage of requests which hit in the L2 bank
located in the same tile of the requestor. Again, results when using S-NUCA
do not depend on the application due to the uniform mapping of the blocks,
and this percentage is quite low (6% on average). This percentage increased

28

Figure 21: Percentage of hits in the L2 bank located in the tile’s requestor.

Figure 22: Execution time normalized to the S-NUCA case.

to 16% for D-NUCA, but is still much lower when compared to First Touch
(33%), RHM (49%), RHM HAMMER (49%), RHM M (56%), RHM M+R
(60%) and Private L2 (72%). Thus, RHM is the dynamic method which
achieves the highest percentage of hits in the local bank.

However, a high locality alone is not enough to improve the performance
of a system with a banked, distributed LLC: on-chip cache capacity is also
a crucial factor, since the cost of an off-chip access to main memory is much
higher than the cost of accessing a cached block located in a distant zone of
the chip. This motivates the common design choice of shared LLC banks,
since this configuration provides higher cache capacity than private LLCs,
reducing LLC misses in case the application’s working set does not fit in a
single LLC bank.

Figures 22 shows the normalized execution time with all the configura-
tions. We can observe how execution time is largely reduced with an average
factor of 12% when using FIRST TOUCH and ranging between 20% and 28%
when using the various configurations of RHM. RHM achieves lower execu-

29

Figure 23: Average load and store latency, normalized to the S-NUCA case.

tion time due to its achieved higher locality in L2. Also, the migration and
replication policy helps in further reducing execution time. Contrary to this,
D-NUCA is not able to achieve large reductions when compared to S-NUCA.
The use of private caches achieves large execution time reductions but its
effectiveness depends on the size of the working set of every application.
We can also see the on-par execution time benefits of the RHM-HAMMER
protocol.

Figure 23 shows the average load and store latency, respectively, for the
evaluated configurations, normalized to the S-NUCA approach. RHM config-
urations reduce these latencies by more than 25% on average and up to 75%
(FFT store latency). Again, the effectiveness of RHM in reducing the miss
latency depends on the memory access pattern of each application. Stream-
cluster shows a high percentage of blocks which are first accessed by a tile
and then by different tiles during different phases of the application. In this
case, a first touch policy has the negative effect of overloading the tile where
blocks are mapped, and the migration/replication mechanism can effectively
move the blocks to the correct tiles. RHM-HAMMER protocol also exhibits
low load and store latencies, as it benefits from the fast GCN and BCN
networks.

5.1. Performance Conclusions

When comparing results of different methods we can deduce some inter-
esting observations. First, The S-NUCA approach has the severe limitation
of its static mapping of L2 banks. This leads to the largest distances between

30

L1 requestors and L2 home banks (near 3 hops on average) and the lowest
rate in hits in local L2 banks (6% of hits). Execution time of applications
is the worst when compared to the other policies. The same occurs for the
average load latency and the average store latency.

The D-NUCA approach is a first step towards providing dynamism to the
placement policy of L2 homes. However, its static partitioning in bank sets
still forces poor results in terms of hop distance (2 hops on average) and hit
rate in local L2 bank (less than 20%). Execution time is improved, when
compared to S-NUCA because of the lower load and store latencies.

Private caches (PRIVATE L2) obviously achieve low hop distances and
the largest hit rate in local L2 banks. However, RHM M+R is able to reduce
further the hop distance but not the hit rate. Because of its cache privacy
policy, shared blocks impose an overhead which translates to larger execution
time and latencies when compared to RHM. Although PRIVATE L2 reduces
execution time of S-NUCA by 20%, an extra of 15% is obtained with RHM
with migration and replication support.

For FIRST TOUCH, locality is not correctly promoted (average of 2 hop
distance and 35% hit rate in local L2 banks). Execution time and average
latencies are similar to the ones achieved by D-NUCA. Although FirstTouch
is a simple mechanism not requiring any hardware assistance, it should be
noted RHM allows finer-grained assignments (blocks vs pages) and also more
effective thread migration as blocks can be effectively migrated along with
threads.

When analyzing RHM and RHM HAMMER we can see that they achieve
very close results. None of them use migration or partitioning support, thus
they only differ on the way of locating sharers and owners of blocks. This
impacts execution time. RHM HAMMER is able to run faster than RHM
(3% faster). This is due to the use of the BCN network. Average miss
latencies do not get significantly affected. Notice also that the main benefit
of RHM HAMMER is its reduced overhead in control structures.

Finally we can see how RHM M+R is the best RHM option, getting close
of the PRIVATE L2 results for hop distances and local hit rate. However, the
extra flexibility of moving blocks between L2s makes the solution the most
performant. Execution time of S-NUCA is reduced by 35% (execution time
of PRIVATE L2 is reduced by 15%).

31

Figure 24: NoC’s energy consumption

5.2. Energy

Figure 24 shows the normalized dynamic and total energy consumed by
the NoC with the six configurations. Resource access (input buffer read/write,
routing, switch allocation, crossbar traversal and link traversal) have been
accounted and fed into Orion 2.0 [10]. If the request misses in the local
L2 bank, RHM consumes more energy than the other schemes, due to the
broadcasts. However, the high percentage of hits in the local L2 leads to less
network activity compared to an S-NUCA. This, combined with the reduced
execution time, leads to average energy reductions of 32%. Energy consump-
tion is further reduced by 55% on average when migration is enabled (RHM
MIGR).

Figure 25 shows the normalized energy consumed by the L2 cache. We
used Cacti [9] to obtain the dynamic energy and the leakage per bank. Due
to the broadcast access, RHM consumes more dynamic energy than other
proposals (50% more energy on average), but the leakage component, reduced
by the lower execution time, dominates over the dynamic energy for the
configuration we choose. On average, energy consumption with RHM is
reduced by 29% without block migration and 31% when block migration is
enabled.

The area overhead and the power consumption of the LLC utilization
table at the memory controller are a minimal fraction of the overall chip area
and power requirement, due to its very small size compared to the on-chip
cache and to the limited number of accesses compared to L1 and L2 accesses

32

Figure 25: LLC’s energy consumption

(the table is only accessed in case of L2 miss).

6. Related Work

To overcome the wire-delay problem [11], the LLC in CMP systems is
usually banked, thus offering a wide spectrum of design choices: each bank
indeed can expand the private cache of a core or be part of a globally shared
LLC. The latter configuration is commonly called a Non-Uniform Cache Ac-
cess architecture (NUCA), initially proposed by Kim et al. for a single core
system [1] and then extended to many cores and CMPs [12], [13], and in turn
offers many options when implementing the mapping of the blocks on each
bank, the home bank search policy [14] [15] and the potential migration [1]
or replication [21, 16] of blocks.

Both private and shared LLCs have their advantages and drawbacks, so
hybrid configurations have been proposed to exploit the benefits of both de-
sign choices, such as ESP-NUCA [17] and CloudCache [18]. CMP-NuRAPID
[19] decouples tags and data to allow data placement and replication in
any LLC bank. Reactive-NUCA [16] also allows block replication. CMP-
NuRAPID however requires an additional bus, while Reactive-NUCA is based
on a 2D torus, so they can’t be implemented in a 2D mesh-based system.
With RHM the implementation of migration and replication mechanisms is
straightforward thanks to the totally dynamic mapping policy.

OS-based techniques to achieve a better mapping of the cache blocks to
the LLC banks have been proposed by Cho et al.[29], Ros et al. [20], Das et al.

33

[22] to achieve dynamic mapping through OS-level page allocation. Cuesta
et al. [23] deactivate the coherence protocol for blocks which are detected as
private by the OS. Compile-time and data-based techniques have also been
proposed in [24] and [25]. OS- and compiler-based techniques however rely
on static mapping at hardware-level and can’t support block migration or
replication.

Finally, Hammoud et at. [2] propose to implement blocks placement
strategies at the memory controller(s) to prevent placing a block at an ex-
ceedingly pressured local set. To locate cache blocks at the LLC a CTCT
[26] policy is assumed, which introduces 3-way communications in some cases,
thus increasing the latency of L1 misses.

RHM, differently from previous proposals, allows efficient block search
between L2 banks in the whole chip. The optimizations/support at the NoC
level allow for an aggressive data placement policy requiring only a small
table at the memory controller, and avoiding the 3-way communication of
some of the previous solutions, or the static assumption of private caches or
OS-level solutions.

7. Conclusions and Future Work

In this work we have proposed Runtime Home Mapping (RHM), a method
to perform bank allocation to blocks at runtime. The MC is responsible for
the allocation policy and the NoC is co-designed for the efficient support of
the coherence protocol.

Different improvements and designs at the NoC level enable fast and
efficient location of data. The aim is to allocate L2 home blocks as close
as possible to requestors. To find the home of a block, a dedicated control
network has been proposed. Also, to speed up broadcast-based protocols, a
broadcast network has been designed. Migration and replication of blocks
have been also provided.

Results indicate a large span of improvement both in execution time and
in reduced miss latencies. In general, RHM is able to achieve 35% lower
execution time when compared to S-NUCA approaches and 15% benefit when
compared to a private L2 cache organization.

The current work can be extended in many directions, potentially leading
to further improvements. Indeed, in this paper we applied baseline methods
for different critical design choices of the method. As a first thing, we have

34

plans to evaluate how the search phase behaves with different broadcast im-
plementations on the search method of home nodes and different network
topologies. A second direction, linked to the broadcast operation, is the defi-
nition of smart mapping strategies located in the memory controller. Finally,
we will evaluate the performance of dynamic home mapping combined with
virtualization where the memory controller is aware of the partition of chip
resources to applications. Also, we plan to improve the home search phase
and the migration/replication mechanism to reduce the dynamic energy.

References

[1] C. Kim, D. Burger, S. W. Keckler, An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches, in: Proc. of the 10th
Intl Conference on Architectural Support for Programming Languages
and Operating Systems, 2002.

[2] M. Hammoud, S. Cho, R. Melhem, A dynamic pressure-aware asso-
ciative placement strategy for large scale chip multiprocessors, IEEE
Computer Architecture Letters 9 (1) (2010) 29–32.

[3] M. Lodde, J. Flich, M. Acacio, Heterogeneous noc design for efficient
broadcast-based coherence protocol support, in: Proc. of the 6th Intl,
Symposium on Networks on Chip 2012, 2012.

[4] M. Lodde, T. Roca, J. Flich, Heterogeneous network design for effective
support of invalidation-based coherency protocols, in: Proc. of the 2012
Interconnection Network Architecture: On-Chip, Multi-Chip Workshop,
2012.

[5] M. Lodde, T. Roca, J. Flich, Built-in fast gather control network for effi-
cient support of coherence protocols, in: to appear in IET Computers
and Digital Techniques INA-OCMC 2012 Special Issue.

[6] The nangate open cell library,45nm freepdk,available at
https://www.si2.org/openeda.si2.org/projects/nangatelib/.

[7] J. E. Miller, H. Kasture, G. Kurian, C. G. III, N. Beckmann, C. Ce-
lio, J. Eastep, A. Agarwal, Graphite: A distributed parallel simulator
for multicores, in: The 16th IEEE Intl. Symp. on High-Performance
Computer Architecture, 2010.

35

[8] T. E. Carlson, W. Heirman, L. Eeckhout, Sniper: Exploring the Level of
Abstraction for Scalable and Accurate Parallel Multi-Core Simulations,
in: Intl. Conference for High Performance Computing, Networking, Stor-
age and Analysis, 2011.

[9] Cacti 5 technical report, available at
http://www.hpl.hp.com/techreports/2008/hpl-2008-20.html.

[10] A. Kahng, B. Li, l. Peh, K. Samadi, Orion 2.0: A power-area simulator
for interconnection networks, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 20 (1) (2012) 191–196.

[11] D. Matzke, Will physical scalability sabotage performance gains?, Com-
puter 30 (9) (1997) 37–39.

[12] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Bourger, S. Keckler, A nuca
substrate for flexible cmp cache sharing, in: Proc. of the 19th Intl Con-
ference on Supercomputing, 2005.

[13] B. Beckmann, D. Wood, Managing wire-delay in large chip-
multiprocessors caches, in: Proc. of the 37th Intl Symposium on Mi-
croarchitecture, 2003.

[14] J. Lira, C. Molina, A. Gonzales, Hk-nuca: Boosting data searches in
dynamic non-uniform cache architectures for chip multiprocessors, in:
Proc. of the 2011 IEEE Intl Parallel and Distributed Processing Sym-
posium, 2011.

[15] R. Ricci, S. Barrus, R. Balasubramonian, Leveraging bloom filters for
smart search within nuca caches, in: Proc. of the 7th Workshop on
Complexity-Effective Design, 2006.

[16] N. Hardavellas, M. Ferdman, B. Falsafi, A. Ailamaki, Reactive nuca:
near-optimal block placement and replication in distributed caches, in:
Proc. of the 36th Intl Symposium on Computer Architecture, 2009.

[17] J. Merino, V. Puente, J. Gregorio, Esp-nuca: A low cost adaptive non-
uniform cache architecture, in: Proc. of the Intl Conference on High
Performance Computer Architectures, 2010.

36

[18] H.Lee, S. Cho, B. Childers, Cloudcache: Expanding and shrinking pri-
vate caches, in: Proc. of 44th Int’l Symp on High-Performance Computer
Architecture, 2011.

[19] Z. Christi, M. Powell, T. Vijaykumar, Optimizing replication, commu-
nication and capacity allocation in cmps, in: Proc. of Intl Symposium
on Computer Architecture, 2005.

[20] A. Ros, M. Cintra, M. Acacio, J. Garcia, Evaluation of low-overhead
organizations for the directory in future many-core cmps, in: Proc. of
the Intl Conference on High Performance Computing, 2009.

[21] P. Foglia, C.A. Prete, M. Solinas and G. Monni. Re-NUCA: Boosting
CMP Performance Through Block Replication, in: Euromicro DSD 2010

[22] A. Das, M. Schuchhardt, N. Hardavellas, G. Memik, A. Choudhary, Dy-
namic directories: A mechanism for reducing on-chip interconnect power
in multicores, in: Proc. of Design, Automation and Test in Europe, 2012.

[23] B. Cuesta, A. Ros, M. Gomez, A. Robles, J. Duato, Increasing the
effectiveness of directory caches by deactivating coherence for private
memory blocks, in: Proc. of the 38th Intl Symposium on Computer
Architecture, 2011.

[24] Y.Li, A.Abousamra, R.Melhem, A. Jones, Compiler-assisted data dis-
tribution for chip multiprocessors, in: Proc. of 19th Intl Conference on
Parallel Architectures and Configuration Techniques, 2010.

[25] Y.Zhang, W.Ding, M.Kandemir, J. Liu, O. Jang, A data layout opti-
mization framework for nuca-based multicores, in: Proc. of 44th Intl
Symposium on Microarchitecture, 2011.

[26] M. Hammoud, S. Cho, R. Melhem, Acm: An efficient approach for man-
aging shared caches in chip multiprocessors, in: Proc. of the 4th High
Performance Embedded Architectures and Compilers Int’l Conference
(HiPEAC-09), 2009, pp. 355–372.

[27] J.M. Owen , M.D. Hummel , D.R. Meyer and J.B. Keller. United states
patent: 7069361 - system and method of maintaining coherency in a
distributed communication system. June 2006.

37

[28] P. Conway and B. Hughes. The amd opteron northbridge architecture.
IEEE Micro, 27(2):10–21, March 2007.

[29] Cho S. et al: Managing Distributed, Shared L2 Caches through OS-
Level Page Allocation MICRO 2006

38

