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Abstract

Massively parallel architectures are proposed as a promising solution to speed

up data-intensive applications and provide the required computational power.

In particular, Single Instruction Multiple Data (SIMD) many-core architec-

tures have been adopted for multimedia and signal processing applications

with massive amounts of data parallelism where both performance and flex-

ible programmability are important metrics. However, this class of proces-

sors has faced many challenges due to its increasing fabrication cost and

design complexity. Moreover, the increasing gap between design productiv-

ity and chip complexity requires new design methods. Nowadays, the recent

evolution of silicon integration technology, on the one hand, and the wide

usage of reusable Intellectual Property (IP) cores and FPGAs (Field Pro-

grammable Gate Arrays), on the other hand, are attractive solutions to meet

these challenges and reduce the time-to-market. The objective of this work is

to study the performances of massively parallel SIMD on-chip architectures
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with current design methodologies based on recent integration technologies.

Flexibility offered by these new design tools allows design space exploration

to search for the most effective implementations. This work introduces an

IP-based design methodology for easy building configurable and flexible mas-

sively parallel SIMD processing on FPGA platforms. The proposed approach

allows implementing a generic parallel architecture based on IP assembly

that can be tailored in order to better satisfy the requirements of highly-

demanding applications. The experimental results show effectiveness of the

design methodology as well as the performances of the implemented SoC.

Keywords: Field Programmable Gate Arrays, Intellectual Property, Single

Instruction Multiple Data, System-on-Chip, intensive signal processing.

1. Introduction

Modern embedded systems tend to be more and more sophisticated with

the integration of multiple functionalities in the same system, often imple-

mented on a single chip, called System-on-Chip (SoC). Adding to that, the

wide spread of data-intensive applications, such as multimedia applications,

medical imaging, numerical filtering, radar or sonar signal processing, etc.,

requires powerful architectures with higher execution performances. With

the huge number of transistors available in today chips, and the stagna-

tion of clock frequencies due to power dissipation issues, chips with multiple

processor cores are becoming more commonplace, in particular Single In-

struction Multiple Data (SIMD) on-chip architectures with intensive parallel

computations are possible. SIMD architectures are widely recognized as be-

ing well-suited for media-centric applications like image and video processing
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applications [2] because they can efficiently exploit massive data parallelism

available with minimal energy [1]. As most multimedia algorithms operate

on relatively independent groups of data, such as sound frame samples, rows

of pixels, or video frames, it is often easier to use a data-oriented perspective

to parallelize these algorithms. SIMD on-chip systems offer many advan-

tages. The SIMD processing presents a computational efficiency originating

from the reduced overhead of control operations. The cost of instruction

and address decoding is amortized over the many processing elements [34].

Adding to that, the SIMD parallel architecture enables higher performance

for intensive data-parallel applications at lower power consumption [3, 33].

The design of these high-performance embedded systems for signal processing

applications is facing the challenges of not only increased computational de-

mands but also increased demands for adaptability to different requirements

for these applications.

Various SIMD on-chip implementations have been proposed. Most of

them are dedicated solutions for a specific application (many processors with

short memory/small amount of processor with large memory/a given inter-

connection network). This normally results in good performance for the

targeted application; however the performance of other applications may not

be so good due to the diversity of parallel application requirements. Their

design approaches also necessitate a long development time if some optimiza-

tions or modifications need to be made.

From the above observations, there is clearly a need of a generic SIMD

prototype that can satisfy different application requirements. The proposed

design methodology is based on IP assembly to easily and rapidly imple-
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ment different SIMD configurations. The provided parallel architecture is

programmable, parametric, extensible and configurable; presenting high per-

formances for data-parallel algorithms. FPGA (Field Programmable Gate

Arrays) are targeted devices to implement the proposed design. Compared

to ASIC (Application Specific Integrated Circuit), FPGA requires much less

implementation costs and offers more flexibility. FPGA can also be re-wired

and remotely reconfigured at any time. The inflexible and costly ASICs give

FPGA-based solutions an upper hand in terms of implementation flexibility

and cost effectiveness.

This paper presents an SIMD massively parallel processing System-on-

Chip. This system is an FPGA IP-based programmable system. Its ar-

chitecture is flexible and can be customized to satisfy the requirements of

data-intensive parallel applications. This opens a rich design space to the

user and allows greater area/performance tradeoffs. We propose a hierarchi-

cal design implemented at Register Transfer Level (RTL) using the VHDL

(VHSIC Hardware Description Language) language.

The remainder of this paper is organized as follows. The next Section

presents some significant work related to the design issues of SIMD par-

allel on-chip architectures. It also deals with some proposed IP-based de-

sign frameworks. Section 3 introduces the SIMD massively parallel platform

model. Section 4 describes the IP assembly approach. Section 5 highlights

the data-parallel programming. In Section 6, performance evaluation is given

through prototype implementation and video processing computations. Sec-

tion 7 discusses the efficiency of the proposed SIMD on-chip system and gives

comparisons with other implementations. Finally, Section 8 concludes this
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paper with a brief outlook on future work.

2. Related work

SIMD architectures have been proposed, implemented, and thoroughly

studied for almost 50 years [4]. Early SIMD machines were designed to pro-

vide supercomputing levels of performance [5, 14, 6, 7, 8]. However, the end

of the 90s saw the decline of SIMD machines due to their high fabrication

cost, the impossible instruction broadcast at a high clock frequency and their

scalability limits in terms of clock distribution and synchronous communica-

tions. Recently, the increase in the integration density and the use of novel

design approaches as IP reuse [9] make possible the implementation of com-

plex systems with reduced cost. Advances in technology have led to a wide

range of SIMD systems: from SIMD arrays integrated into memory chips

[10] to SIMD arrays exploiting sub-word parallelism in multimedia instruc-

tion set enhancements [11, 12] (Intel SSE, AMD 3dNOW, Motorola AltiVec).

In this work, we focus on FPGA-based massively parallel architectures. Some

proposed examples are presented in the next paragraphs.

A scalable streaming-array (SSA) architecture is presented in [19]. SSA

is an unidirectional linear array of pipelined-stage modules (PSMs), imple-

mented on multiple FPGAs. Each PSM, implemented as an independent

SIMD processing unit, consists of programmable simple PEs connected with

a bi-directional 1D torus network. The PE’s implementation is tailored to

perform stencil computations. This work proposes a dedicated architecture

for high-performance stencil computations on FPGAs. Moreover, a multi-

chip solution would mean higher developmental effort and a larger power
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expenditure by the system compared to single-chip. In [20], an FPGA-based

pixel array processor is presented. The hardware architecture comprises of

primitive pixel processors that use bit-serial arithmetic to compute. Each

processor processes a single pixel and is connected in a 2-dimensional mesh

topology to form the overall array processor. The carried implementation is

dedicated to perform Laplacian filtering on a 40 by 40 pixel gray scale video.

Tanabe et al. [24] propose an FPGA-based SIMD processor. An opencore

processor that belongs to SuperH processor series was modified to include

more number of computation units and then performs SIMD processing. A

JPEG case-study was presented however no idea about programming was

given. The achieved clock frequency of the SIMD processor is too low (55

MHz) while many soft CPUs run faster these days. An SIMD architecture

with 31 processing elements (PEs) is implemented on Xilinx FPGA [25]. It

is dedicated to run a motion estimation application. Another FPGA-based

SIMD architecture with 30 PEs is proposed [26]. It is specific for edge de-

tection performing the convolution of a mask over an image. An SIMD pro-

grammable processor dedicated to image processing sensors is implemented

on FPGA, based on a self designed soft IP processor cell PicoBlaze [27]. The

1-bit PEs can only execute simple computations on binary images. These

work remain appropriate solutions. While these application specific systems

deliver good performance and efficiency, they lack the programmability and

versatility required to support the changing standards of multimedia. Their

design is also time consuming, and costly process, increasing the overall pro-

duction costs. Although some implementations are based on IP design, the

designers do not always find the suitable IPs that match the application.
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Some IPs have excess performance and some do not have enough perfor-

mance.

Many researchers propose soft vector processor architectures to accelerate

data parallel applications. Yiannacouras et. al. [16] described an implemen-

tation of the VESPA FPGA-based vector processor. The proposed processor

can be customized in terms of vector chaining and vector lanes. It consists of

a scalar MIPS-based processor coupled with a parameterized vector copro-

cessor based on the VIRAM vector instruction set. In [17] a new soft vector

architecture, named VEGAS, is presented. VEGAS consists of a standard

NiosII/f processor, a vector core, a DDR2 controller plus external memory,

and a DMA engine. Vector and DMA instructions are implemented as cus-

tom instructions in the regular Nios II instruction stream. For programming,

the programmer needs to manually manage vector address registers, which

is error-prone. In [18], a soft vector processor for FPGA applications, named

VENICE, is presented. VENICE can be used to accelerate tasks that fit the

SIMD programming model. It is implemented as an accelerator to the Nios

II fast processor. In this case, the Nios executes all control flow instructions

and issues instructions to the VENICE vector core as one or two tandem

Nios custom instructions. The drawback of the VENICE implementation is

its dependency on the Nios processor and hence can only be exploited in

Altera FPGAs. The design isn’t so flexible to fit various processor archi-

tectures. Generally, the disadvantages of vector processing is its inefficiency

when dealing with irregular parallelism and the memory can easily become a

bottleneck especially if data is not mapped appropriately to memory banks.

Our work considers SIMD on-chip implementation more generally and
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thoroughly explores a large design space. The proposed massively parallel

SoC extends these work since it provides a configurable and parametric ar-

chitecture in order to be suited to a wide range of data-parallel applications.

The IP-based methodology followed to generate one configuration provides a

short development time and enough flexibility. An IP library is provided with

the RTL design to help the designer selecting the suitable IP that delivers the

highest performance for his targeted application. The proposed implementa-

tion is parametric and hierarchical making any modification and regeneration

of the hardware parallel configuration easy. This design methodology pro-

vides lots of flexibility and enables to explore SIMD architectures. In the

next section, the basic SIMD SoC platform model is described.

3. SIMD Parallel SoC Model

In this section, the basic SIMD parallel SoC model is exposed. The work

deals with the very typical and simple SIMD model inspired from tradi-

tional SIMD systems mainly the famous MasPar [28]. The parallel system

is designed for FPGA prototyping. Based on FPGA programmability and

by using replication of IPs effectively, massively parallel architectures can

achieve high performance at low cost. The proposed system supports the

following features:

• a main processor, the Array Controller Unit (ACU), connected to

instruction ACUIns and sequential data memory ACUData. It syn-

chronously controls the whole system.

• a parametric set of elementary processing elements (PEs), each one
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connected to a local data memory PEM (each PE has its own private

memory). All PEs perform parallel computations.

• ACU/PE interface: this interface is devoted to send control/execution

orders to all PEs. It is modeled as a bus connecting the ACU with all

PEs.

• a configurable neighboring interconnection network to connect PEs

with their neighbors.

• a Network-on-Chip (NoC), working as a global router to perform point-

to-point communications through different types of connections.

• PE activity mechanism: each PE executes the parallel instruction if

its activity bit is set to ’1’. This bit is controlled by the ACU via

control instructions. This is especially useful in the case of conditional

instructions.

• OR Tree: it computes logic global OR of all PE activity bits to test the

status of PEs. It allows the ACU to know if at least one PE is active.

Figure 1 highlights the proposed parallel platform with a focus on its IP-

based design. The used IPs are mainly memories (RAM, ROM), processors

and routers. The SIMD model is flexible and can be customized to target

diverse applications.

The whole system is synchronously controlled by the ACU, which is re-

sponsible for fetching and decoding instructions, computing addresses and

scalar data values, issuing control signals to the PE array, and monitoring

the status of the PE array. A data-parallel program is composed of sequential
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Figure 1: IP-based SIMD SoC platform

as well as parallel instructions. The ACU executes any sequential instruction

and transfers parallel instructions to the PE array. The ACU occupies in fact

two main roles: a processor to execute sequential instructions and a controller

to control the whole system. It has also to decode parallel instructions when

PEs are reduced processors. It cannot be implemented by a simple Finite

State Machine (FSM). The ACU can be replaced with a full complex FSM.

However, our aim in this work is to reuse available IPs to facilitate the design

process and not to implement the component from scratch. So, a simple way

is to use a simple processor to implement the ACU as well as the PE. Using

the same IP for both ACU and PE facilitates the interconnection between

the two components and guaranteed the fact that both processors use the

same instruction set.
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Figure 2: Simple example of NoC configuration

Masking schemes and activity states are used to control the status of each

PE during the execution of an instruction. Each PE, identified in the system

by a unique number, may be either enabled or disabled; only enabled PEs

perform computation.

The problem of several massively parallel architectures is their inabil-

ity to respond the need of a high bandwidth of input/output. To face this

problem, the proposed parallel SoC contains a point-to-point communication

network, which is a multi-purpose NoC component in the architecture. Fig-

ure 2 illustrates a simple example of the NoC architecture in a 2-PE SIMD

SoC configuration. This network is able to connect many I/O devices to the

ACU and PEs. It has three functions: connecting in parallel any PE with

another one (global router), connecting the PEs to the hardware devices

offering parallel I/O transfers and connecting the ACU to any PE.

The contribution of this paper is to design an SIMD architecture con-

formed to the generic model and adapted to the application. A paramet-

ric component-based approach is proposed to design flexible SIMD system

at RTL level. The architecture is based on IP assembly mainly processor,
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memory and network IPs. The modular architectural model can include

only the needed components to execute a given application. It alleviates the

complexity of the system, in particular in the case of on-chip implementa-

tion. This programmable FPGA-based parallel system offers productivity

and time-to-market advantages, and allows algorithms to be easily modi-

fied without changing the FPGA bitstream, which could otherwise lead to

convergence issues such as timing closure.

The following section details the parallel SoC implementation.

4. IP-based massively parallel SIMD design

The proposed massively parallel RTL implementation is hierarchical and

parametric, allowing the designer to build different SIMD SoC hardware ar-

chitectures, in order to select the best configuration with the highest perfor-

mances for a given data-parallel application. This implementation is based

on IP assembly. For this purpose, an IP library is provided with the de-

sign, containing different IPs that can be used to generate different SIMD

configurations.

4.1. IP-Library

The following paragraphs detail the provided IPs. While some IP con-

struction, such as memories, does not require much attention, some others,

such as processors, are much more complex. The following paragraphs deal

with particularities of each IP block and its integration into the SIMD SoC.
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Table 1: Consumed logic of the miniMIPS processor and the reduced miniMIPS processor
Processor ALUTs Registers

miniMIPS 3339 1936

reduced miniMIPS 1265 1318

4.1.1. Processor IP

The proposed design is based on Open hardware concept. So, open-

source processor IPs are mainly chosen to implement SIMD configurations.

To build ACU and PE processors, two methodologies are proposed. The first

one, called the processor reduction methodology, is based on refining the main

processor in order to obtain a small reduced one. In the second methodology,

called the processor replication methodology, the PE is chosen to be the same

processor as the ACU to reduce the design time and facilitate the architecture

building.

Processor reduction methodology

The PE is a reduced processor derived from the same ACU processor and

only responsible of executing instructions. It receives decoded instruction

from the ACU, thus its instruction memory is eliminated. The reduction

simplifies the PE by eliminating its instruction logic and instruction memory,

and thus saves millions of gates and hundreds of megabytes of memory in

the overall system. As example, Table 1 compares between the processor

miniMIPS and its reduced version in terms of consumed logics.

It is clearly shown that the reduced miniMIPS occupies smaller area (ap-

proximately the half surface) than the miniMIPS. Thus, integrating reduced

processors allows to gain surface in order to implement a massively parallel

system.
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Figure 3: Processor reduction methodology applied on miniMIPS processor

The connection between ACU and PEs is a bus of micro-instructions

delivered from the ACU decode stage to the input of the PE execute stage

[32]. The reduction methodology was tested on the miniMIPS processor

(Fig 3) [35] and on the OpenRisc processor [36, 29]. It enables to construct

smaller and less complex PE based on IP reuse, and so integrate a large

number of PE on a single chip.

Processor replication methodology

In this methodology, ACU and PE are similar (the same processor IP)

in order to facilitate and accelerate their design. Compared to the reduction

methodology, each PE receives parallel instructions from the ACU (Fig 4).

The replication methodology offers a large gain in the development time.

However, we are unable in this case to integrate a large number of PEs in a

single chip. In this case, we have to choose a smaller processor that can be

fitted in large quantities into the FPGA.
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Figure 4: Processor replication methodology applied on miniMIPS processor

4.1.2. Memory IP

Two memory components are distinguished in the proposed SIMD sys-

tem: the sequential memory that contains data and instructions, attached

to the ACU and the data memory attached to each PE. The memory size

is a parametric value in the architecture. The user can set the needed size

according to the application requirements. High bandwidth is achieved by

accessing the memory structures in parallel.

4.1.3. Network IPs

The massively parallel system integrates two communication networks:

a regular one to connect each PE to its neighbors, and an irregular one

to assure point-to-point communications [30]. The designer can use none,

one or both routers to build the needed parallel configuration depending on

the application requirements. The communications are managed through

communication instructions that will be described later.
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Global network

The global network is designed to perform any communication pattern be-

tween hardware components (PE-PE, ACU-PE, PE-I/O device). It provides

global communication between all PEs and forms the basis for the parallel

I/O system. It mainly consists of a communication mode manager and an

interconnection network IP. The mode manager is responsible of establishing

the needed communication mode.

The internal interconnection network transfers data from sources to des-

tinations and can have different types (shared bus, full crossbar, Delta Multi-

stage Interconnection Network). The NoC IP is parametric (in terms of size

and internal network) to offer powerful integration in various systems [31].

Neighborhood regular network

This network performs neighbor communications between PEs and can

have different topologies (linear array, ring, mesh, Torus, and Xnet (a two-

dimensional mesh with extra diagonal links)). It may connect the data in a

specific direction depending on the destination as well as the distance, which

defines the number of paths between every couple of PE sender and PE re-

ceiver. It is composed of a controller and several routers (equal to the number

of PEs in the system). The architecture of the router IP is depicted in Fig 5.

The data communicated through the router are not stored in FIFO registers

since the neighborhood communications are synchronous and all performed

in a single direction at a given time. An SIMD interconnection function is a

bijective function, thus the data transfer occurs without conflicts. In every

communication, each router only activates the required link to the needed

direction. The other links will be disabled, reducing the power consumption.
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Up to this point, we can see that one of the great properties of the pro-

posed SIMD parallel SoC platform is that the same architectural model can

satisfy the requirements of various applications. The proposed VHDL imple-

mentation is hierarchical, modular and parametrized in terms of the number

of PEs and their arrangement, the amount of local PE memory as well as the

ACU memory, the neighborhood network topology and the type of the in-

terconnection network in the global NoC. The following Section gives a brief

overview of how to execute a data-parallel program on the designed parallel

system.

5. Data-Parallel programming

The SIMD SoC is programmed by a single instruction stream partitioned

into sequential and parallel instructions. It is programmed in a manner

similar to inline assembly in C. However, C macros are used to simplify

programming and make instructions look like C functions without any run
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time overhead.

A sequential instruction is carried out by the ACU as in the usual se-

quential architecture. A parallel instruction is executed in a synchronous

manner by all active PEs, each PE taking its operands from its local mem-

ory and storing the result in this same memory (or may be in its own local

registers). The massively parallel system instruction set is derived from the

processor IP’s instruction set used in the design. We distinguish different

instructions classified into five main groups: arithmetic (add/sub/mul/div),

memory access, communications, jump and branch, and system control. The

first three types are executed both by ACU and PE, whereas the two oth-

ers are only executed by the ACU. The arithmetic and memory instructions

are duplicated for the PE. So that, in the instruction set we distinguish for

example between a sequential addition and a parallel addition. This is ac-

complished through implementing the parallel instruction in the processor

instruction table while modifying its decoding. Communication instructions

are encoded from the processor instructions mainly load LW and store SW

instructions. Other system control instructions are also added and rely on

LW and SW instructions too. These instructions consist on storing/loading

data to/from special registers or memory addresses to accomplish their func-

tions. Examples of these instructions control the NoC’s switching mode, the

PE’s activity state, etc. Table 2 details these instructions’ coding.

6. Experiments: video processing-based algorithms

In this section, different massively parallel on-chip configurations are de-

signed and tested to run video processing-based algorithms. Performance

18



Table 2: New instructions
Macro ASM Description Coding

miniMIPS OpenRisc

SET MODE NOC (reg) NoC mode instruction: select comm. SW reg,0x9003(r0) l.addi r1,r0,0x9003

mode (reg value). l.sw 0x0(r1),reg

Modes 0,1 and 4: NoC SEND instruction: transfer p addi r1,r0,dest l.addi r1,r0,dest

P NOC SEND data reg to the needed p addi r1,r1,adr l.addi r1,r1,adr

(reg,dest,adr) destination specified by dest. p SW reg,0(r1) l.sw 0x0(r1),reg

Modes 2 and 3: p addi r1,r0,adr l.addi r1,r0,adr

P NOC SEND (reg,adr) p SW reg,0(r1) l.sw 0x0(r1),reg

Modes 0,1 and 4: NoC RECEIVE instruction: read p addi r1,r0,src l.addi r1,r0,src

P NOC REC (reg,src,adr) data from appropriate sender. p addi r1,r1,adr l.addi r1,r1,adr

p LW reg,0(r1) l.lwz reg,0x0(r1)

Modes 2 and 3: p addi r1,r0,adr l.addi r1,r0,adr

P NOC REC (reg,adr) p LW reg,0(r1) l.lwz reg,0x0(r1)

P REG SEND Neighboring SEND instruction: transfer p addi r1,r0,dir l.addi r1,r0,dir

(reg,dir,dis,adr) data (of reg) from source to p addi r1,r1,dis l.addi r1,r1,dis

destination. p addi r1,r1,adr l.addi r1,r1,adr

p SW reg,0(r1) l.sw 0x0(r1),reg

P REG REC (reg,dir,dis,adr) Neighboring RECEIVE instruction: p addi r1,r0,dir l.addi r1,r0,dir

read data from appropriate p addi r1,r1,dis l.addi r1,r1,dis

sender. p addi r1,r1,adr l.addi r1,r1,adr

p LW reg,0(r1) l.lwz reg,0x0(r1)

P GET STATUS (reg,ident) read activity bit of the PE identified p lui r1,0x9 l.movhi r1,0x9

by ”ident”. p ori r1,r1,0 l.addi r1,r1,ident

p addi r1,r1,ident l.lwz reg,0x0(r1)

p LW reg,0(r1)

P SET STATUS (val,ident) modify activity bit of the PE p lui r1,0x9 l.movhi r1,0x9

(identified by ”ident”) p ori r1,r1,0 l.addi r1,r1,ident

by ”val” value. p addi r1,r1,ident l.addi r2,r0,val

p addi r2,r0,val l.sw 0x0(r1),r2

p SW r2,0(r1)

P GET IDENT (reg) get identity p lui r1,0x2 l.movhi r1,0x2

p ori r1,r1,0 l.lwz reg,0x0(r1)

p LW reg,0(r1)

GET OR TREE (reg) read the value of the OR Tree addi r1,r0,0x9005 l.addi r1,r0,0x9005

LW reg,0(r1) l.lwz reg,0x0(r1)
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Figure 6: FPGA-based Video Processing Chain

results, observations and detailed analysis are reported. Through experi-

mental results, the designer can choose the adequate SIMD configuration.

The parallel SoC performs parallel pixel processing on a captured video

sequence obtained from a video camera driver. In fact, video is captured

by an analog camera then digitized by a video decoder. The data from the

video decoder is stored in an SDRAM memory and then processed using the

FPGA-based massively parallel system. Computed results are then stored

in an SRAM memory to be transmitted to a LCD displayer. The design is

implemented on the Altera DE2 70 development board [37] equipped with a

Cyclone II FPGA (EP2C70F896C6) with 68416 Logical Elements (LE) and

250 M4K RAM blocks. It is equipped with two 32 Mbytes SDRAM and 2

Mbyte SSRAM. Briefly, the design is composed of a camera TRDB D5M

equipped with 5 Mega-Pixel CMOS sensor and working with 15 frames per

second, an SDRAM to store pixel data coming from the camera, the parallel

architecture to process the pixels, an SRAM to store computed data and the
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800×RGB×480 LCD TRDB LTM displayer working at 33.2 MHz (Figure 6).

6.1. Capturing and displaying video

In this design, the video processing system carries out the capture, buffer-

ing and video display. The SIMD parallel architecture is configured and ex-

plored with different number of PEs and with the global NoC to manage the

needed I/O communications since I/O transfers present a performance chal-

lenge for this kind of high performance computing systems. To validate the

configurability of the processor IP, two processors are chosen: miniMIPS [35]

and OpenRisc [36]. The two processor design methodologies (reduction and

replication) are also tested. The NoC is implemented based on a crossbar

interconnection network in order to assure a rapid data-parallel transfer to

all PEs. It is chosen because it is a non blocking fully connected network

in comparison with a multi-stage network, which is blocking and to the bus

that has a limited bandwidth. Based on the parametric VHDL implemen-

tation, it was easy to generate and synthesize these different parallel VHDL

configurations. The FPGA based synthesis results are presented in terms of

consumed LEs as well as total memory bits in the case of the two method-

ologies. The consumed power and the maximum obtained frequency are also

illustrated (Table 3 and Table 4).

Tables 3 and 4 show, as expected, that the processor reduction method-

ology allows implementing a large number of PEs on a single chip. With

the processor replication methodology we can not put 16 miniMIPS PEs

on the CycloneII FPGA, whereas with the reduction methodology up to

32 miniMIPS reduced PEs can be integrated on the same FPGA device.

Comparing between the two used processors, we notice that the miniMIPS
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Table 3: Synthesis results - Processor reduction methodology
Nb Processor Logic Utilization Total memory Power Fmax

PEs IP Comb. registers % ACU PE % cons.

functions LE (bytes) (bytes) Mem (mW) (MHz)

4 miniMIPS 14176 4762 23 4096 4096 24 852 89.21

8 miniMIPS 21425 6006 34 4096 4096 33 940 87

16 miniMIPS 35673 8366 55 4096 4096 52 1296 85.82

32 miniMIPS 61130 13006 93 4096 2048 66 1969 83.04

4 OpenRisc 19674 7678 30 4096 4096 15 911 188.61

8 OpenRisc 34667 13534 53 4096 4096 22 1205 186.06

16 OpenRisc 64270 25160 98 4096 4096 36 1999 185.22

Table 4: Synthesis results - Processor replication methodology
Nb Processor Logic Utilization Total memory Power Fmax

PEs IP Comb. registers % ACU PE % cons.

functions LE (bytes) (bytes) Mem (mW) (MHz)

4 miniMIPS 21971 9243 37 4096 1024 11 1207 93.12

8 miniMIPS 42059 16863 71 4096 1024 18 1799 90.91

4 OpenRisc 18491 10229 41 4096 1024 13 1298 192.52

8 OpenRisc 40185 23966 91 4096 1024 22 1921 189.97

occupies smaller area than the OpenRisc and slightly has a reduced power

consumption. Another important issue is the consumed memory. From Ta-

ble 4, we notice that when doubling the number of integrated PEs, the total

memory blocks will be 1.6% higher. The major SoC constraint is the limited

amount of on-chip memory. Results also show that the power consumption

slightly increases when doubling the number of integrated PEs because the

consumed power depends on the number of components in the architecture

as well as the interconnection node capacitance, circuit voltage and switching

frequency [39].

In this design, each PE reads one pixel at a time from the SDRAM

through the global network, then sends it in the same manner to the SRAM.

This NoC performs the PE-I/O communication mode: PE-SDRAM(I/O)

and PE-SRAM(I/O). The displayer is directly connected to the SRAM to
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Figure 7: Experimental results to process one image of size 800×480 pixels

read and display pixels. The video camera and LCD displayer drivers are

implemented in full hardware, using VHDL language.

The execution time results as well as the speed up are presented in Fig-

ure 7 depending on the number of PEs, the used processor IP and the applied

design methodology. While increasing the number of PEs, we demonstrate

the parallel SoC’s scalability since it refers to the ability of the I/O band-

width to increase as the number of processors participating in I/O activities

grows. It is shown that the SIMD system achieves good performances when

increasing the number of PEs working in parallel. As expected, the reduction

methodology allows reducing execution times comparing to the replication

methodology. A 4-PE configuration based on reduced miniMIPS is approx-

imately 1.5x faster than the same configuration based on replicated min-

iMIPS. This is due to the complexity of the processor replication, induced by

the extra decoding charge added in all PEs. We clearly face a compromise

between design/execution time when choosing the processor design method-
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ology. The obtained execution times show that the OpenRisc achieves good

results. A speed up of 7.49 can be reach with 8 PEs. The miniMIPS based

configurations can also have the same performances when integrating more

reduced PEs with lower power consumption. It is clear from Figure 7 that

the speed up follows the increasing number of PEs in the SIMD SoC. The

better speed up is achieved using the reduced miniMIPS.

According to previous results, the reduced miniMIPS is chosen to build

hardware SIMD configurations for the following experiments.

Figure 8 shows the processing time results obtained on reduced PEs (8

and 16) with different image sizes. Figure 8 highlights that the processing

time scales with the image size. For example, the time needed to process one

image of size 640×480 is 2.6 higher than the time spent to process an image

of size 320×240. This demonstrates the performance and the scalability of

the system since it depends on the number of processors and the size of the

data being worked on.
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6.2. RGB to YIQ color conversion

RGB to YIQ color conversion is used in many encoders where the RGB in-

puts from the camera are converted to a luminance (Y) and two chrominance

information (I,Q). This algorithm explores multiply/accumulate capability,

which is especially dedicated to SIMD and VLIW architectures. This con-

version’s type can be accomplished using the following equations:

(
Y
I
Q

)
=

(
0.299 0.587 0.114
0.596 −0.275 −0.321
0.212 −0.523 0.311

)(
R
G
B

)
(1)

For this application, SIMD configurations with many PEs working in

parallel are needed to assure real-time processing. We also need to integrate

the global NoC to perform I/O data transfers. Based on the parametric RTL

implementation, SIMD configurations are easily built. They contain the

following features: many PEs (8, 16 and 32), miniMIPS processor, reduction

methodology, ACU with a memory of 4096 bytes and each PE with a memory

of 128 bytes, and a crossbar based NoC.

The execution time results as well as the speed up values are presented

in Figure 9 depending on the number of PEs. The number 1 in the x-

axis means that the SIMD configuration only contains the ACU to measure

the sequential execution time. As shown in the previous experiment, the

time reduces when increasing the number of PEs. Compared to the first

application, only computing operations are added while maintaining the same

communication transfers through the NoC. Thus, we clearly notice that the

speed up is almost the same. To reach real-time, a minimum of 8 PEs is

needed in this application. Each pixel processing should not exceed 30.12 ns.

An image filter convolution is tested in the following subsection.
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Figure 9: Color conversion experimental results

6.3. Image filter convolution

An image’s convolution with a mask is tested. As a case study, a sharpen

filter (3x3 kernel) is selected:
(

0 −1 0
−1 5 −1
0 −1 0

)
. The convolution of the mask

can be done in parallel following the SIMD functioning so that multiple

pixels can be processed at a time. The image convolution algorithm is quite

similar to the color conversion algorithm since they perform image processing

computations. Therefore, according to previous results we consider that we

need more than 16 PEs to assure real-time processing.

The two tested parallel SIMD configurations are composed of an ACU,

32 PEs (each PE is connected to its local data memory) and a crossbar

based NoC. The second configuration also integrates a 2D torus neighboring

interconnection network compared to the first one. Table 5 shows the needed

FPGA resources for the two designs obtained via Quartus tool. It is clear

that the second parallel configuration couldn’t be fitted on the Cyclone II

FPGA.

To compute N convolved pixels at a time, each PE reads five pixels at

26



Table 5: Synthesis results for the convolution SIMD designs
Neighb. Logic Utilization Total memory

network Combin. reg % ACU PE %
functions (bytes) (bytes)

none 61130 13006 93 2048 600 22

configured 2D Torus 81796 22478 119 2048 600 25

a time (corresponding to the 5 non-zero filter coefficients), does the same

computations and stores the resultant pixel. Each PE needs to have at least

a local memory with 150 words (600 bytes). The LCD displayer begins

reading the resultant data from the SRAM after the initialisation phase and

the processing of the 32 first pixels in order to assure real-time processing.

The processing of one pixel doesn’t exceed 30.12 ns since it is the elapsed

time to read one pixel by the LCD. In this algorithm, to process one pixel

each PE does 5 memory loads, 1 multiplication, 4 negations, 4 additions and

1 memory store. Through prototyping, a pixel-processing time equal to 28.75

ns < 30.12 ns is reached.

This implemented algorithm doesn’t consider the neighboring pixels be-

tween PEs. So, a second algorithm version is implemented to take into

account these pixels. In this case, the design can not be fit in the FPGA

(table 5). The simulation results have shown a pixel-processing time equal to

47.5 ns > 30.12. Thus, an SIMD SoC integrating more than 32 PEs and an

FPGA with more resources than the Cyclone EP2C70 are needed to respond

to real-time constraints.

All these experiments show the scalability of the proposed parallel system,

demonstrates that its peak performance scales linearly with the number of

PEs and proves the efficiency of the proposed design methodology to explore

different parallel configurations in order to choose the best one.
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Table 6: Comparison between SIMD SoC and 2D systolic architectures
System Image size Number of rows Processing Time

processed in parallel (Ms)

SIMD SoC 512x512 15 3

(32 PEs) (gray-level)

2D systolic 512x512 15 5

(49 processors) (gray-level)

Table 7: Comparison between SIMD SoC and C2H HW acceleration
System Speed up Frequency (MHz)

SIMD SoC 17x 184

C2H 13.3x 95

7. Performance

For performance comparisons, we adopted the image filter convolution

benchmark. The tested parallel SoC is based on replicated NiosII processors,

running at 200 MHz. Our system is firstly compared to a special purpose

FPGA-based 2D systolic architecture dedicated to implement window-based

image processing algorithms [13]. Table 6 summarizes the obtained results.

Results show the efficiency of the proposed system since it achieves better

processing time results compared to a 2D systolic architecture even with

smaller number of PEs (32 compared to 49).

The SIMD system is then compared to hardware acceleration based on

the C-to-HW (C2H) acceleration compiler of the Nios processor [23]. We ran

the application on the NiosII/f processor at 200 MHz to establish the baseline

performance. The two executions are compared in Table 7. Compared

to a dedicated HW acceleration, the proposed parallel and programmable

SIMD system achieves a better speed up. This demonstrates the efficiency

of the SIMD SoC with the advantage of flexibility compared to a HW based

implementation.
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Table 8: Comparison between SIMD SoC and SIMD instruction extension
SIMD instructions CPP SIMD system CPP

extension

C version 34.7 ACU version 62.66

C version with SIMD instructions 17.4 SIMD version 12.85

Speed up 2 Speed up 4.8

Table 9: Comparison between SIMD SoC and [24]
Proposed SIMD SoC Fmax Power (mW) [24] Fmax Power (mW)

4 PEs 89.21 852 4 CUs 56.2 1149

8 PEs 87 940 8 CUs 55.3 1233

16 PEs 85.82 1296 16 CUs 52.7 1385

We also compare our system to the NIOS implementation based on cus-

tomized SIMD instruction extension [21]. Table 8 shows experimental results.

The results are presented with the Cycle per Pixel metric (CPP), which is

the total number of clock cycles divided by the number of pixels, running

the convolution on 256x256 gray image. The results clearly demonstrate

that our SIMD system achieves a speed up equal to 4.8 compared to the

sequential execution performed by the ACU. This speed up is more than 2

times greater than when using customized SIMD instructions with the NiosII

processor.

Table 9 compares between our system composed of miniMIPS reduced

PEs and the FPGA-based SIMD processor described in [24] composed of

one control unit and a number of computation units (CU) in terms of power

consumption and frequency. As illustrated, our system achieves good

results since it presents a higher frequency and a lower power consumption

compared to the SIMD processor. The proposal processor reduction method-

ology is easier to design the SIMD architecture with a parametric number of

PEs compared to the used dedicated implementation [24] that makes adding
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more computational units to the SIMD processor a heavy task.

The preceding performance comparison confirms the promising advan-

tages of the proposed FPGA-based SIMD architecture. Its performance has

been evaluated for image convolution benchmark with good results that val-

idate the proposed high performance architectural model. In this paper, we

have shown that an FPGA-based SIMD design built with soft-core processors

is powerful to compute image processing. One of the main advantages of the

proposed architecture is its configurability. The architecture is scalable and

flexible enough to support several applications.

Considering multimedia applications that comprise not only SIMD oper-

ations but also operations suitable for exploiting task parallelism too, we can

benefit from the proposed system. In fact, in vision algorithms for example,

some tasks are performed on the objects found to analyse their quality or

properties in order to make decisions on the image contents. It appears that

SIMD type of architectures is not very efficient for this treatment. A DSP is

often more appropriate. So, we can replace the ACU by a DSP. Our proposed

system can also assure task parallelism by parallelizing the program between

the ACU and one PE. The proposed many-core SIMD system can also work

as an accelerator for another system (which can be a unique processor or an

MPSoC) or as a coprocessor of the main CPU reducing its workload and ac-

celerating the data-parallel expensive computation. In this case, it executes

the data-parallel parts of the program, and the ACU can process any task of

the program (while the PEs are working). This manner may introduce some

control and communication overhead, which can be ameliorated via tailored

components. As example, to reduce data access latency, we can integrate a
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DMA controller between the memories of the PEs and the main memory.

Some work have been proposed to exploit SIMD architectures for com-

puter vision algorithms like the SIFT (Scale-invariant feature transform) al-

gorithm. In [40], authors propose a novel parallel approach for SIFT algo-

rithm implementation using a block filtering technique in a Gaussian convo-

lution process on the SIMD Pixel Processor. They demonstrate that their

system can perform real-time processing with good performance. In [41],

authors propose a hybrid SIMD/MIMD architecture for image processing.

The architecture is composed of a signal-processing CPU and an image co-

processor. This latter supports two working modes SIMD and MIMD. In [42]

authors demonstrate that the interconnection network used in the SIMD ar-

chitecture influences the performance of computer vision applications. Con-

sidering a set of basic vision tasks namely convolution, histogramming, hough

transform, extreme point identification, etc. authors show the performance

and the advantages of the polymorphic torus communication when executing

these tasks. In [43], a parallelization of SIFT using multi-core architecture

with per-core SIMD support is shown. Authors present good results com-

pared to the State-of-the-Art parallel SIFT algorithms.

So, we conclude from the aforementioned implementations that we can

use a pure SIMD system while optimizing/modifying the algorithm to take

benefit from the HW architecture, or tailor the architecture to the require-

ments of the algorithm.
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8. Conclusion

This work presents an SoC platform to facilitate generating SIMD mas-

sively parallel on-chip architectures. It proposes an IP-based implementa-

tion to build these architectures leading to the design of large and complex

architectures with lower costs and higher performance. Different SIMD con-

figurations can be derived from the generic SIMD SoC model. The proposed

massively parallel system is characterized by its flexibility allowing match-

ing the design with the application as well as improving its performances

and satisfying its requirements. This flexibility allows a designer to choose

the area/performance of a parallel system without laborious hardware design,

and can better meet application requirements. The proposed RTL implemen-

tation makes any hardware modification easy in order to adapt the system to

a wide range of data dependent algorithms. All these features strongly con-

tribute to the increase of the designer’s productivity. Through prototyping

results, the user is able to choose the appropriate SIMD SoC configuration

satisfying his needs and meeting performance requirements.

This work opens an interesting topic for future research and development

on parallel applications. Future work will be to provide a high-level design

framework. An automatic exploration level can help the designer to generate

the most appropriate and efficient massively parallel configuration for a given

application. Another future work is to study the dynamic runtime use of

reduction and replication proposed methodologies.
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