
Microprocessors and Microsystems xxx (2015) xxx–xxx
Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro
ParaDIME: Parallel Distributed Infrastructure for Minimization of Energy
for data centers
http://dx.doi.org/10.1016/j.micpro.2015.06.005
0141-9331/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: BSC-Microsoft Research Centre, Nexus I Building,
Office 303, Campus Nord UPC, Gran Capita 2-4, 08034 Barcelona, Spain. Tel.: +34 93
4054062; fax: +34 93 413 77 21.

E-mail address: santhosh.rethinagiri@bsc.es (S.K. Rethinagiri).

Please cite this article in press as: S.K. Rethinagiri et al., ParaDIME: Parallel Distributed Infrastructure for Minimization of Energy for data centers,
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.06.005
Santhosh Kumar Rethinagiri a,⇑, Oscar Palomar a, Anita Sobe b, Gulay Yalcin a, Thomas Knauth c,
Rubén Titos Gil a, Pablo Prieto a, Malte Schneegaß d, Adrian Cristal a,f, Osman Unsal a, Pascal Felber b,
Christof Fetzer c, Dragomir Milojevic e

a Barcelona Supercomputing Center – Centro Nacional de Supercomputación (BSC), Spain
b Université de Neuchâtel (Unine), Switzerland
c Technische Universität Dresden, Germany
d Cloud & Heat Technologies GmbH, Germany
e Interuniversitair Micro-Electronica Centrum (IMEC), Belgium
f IIIA – CSIC – Spanish National Research Council, Spain
a r t i c l e i n f o

Article history:
Received 23 December 2014
Revised 1 May 2015
Accepted 5 June 2015
Available online xxxx

Keywords:
Low power
Runtime energy optimization
Programming models
Error recovery
Approximate computing
Message passing accelerators
a b s t r a c t

Dramatic environmental and economic impact of the ever increasing power and energy consumption of
modern computing devices in data centers is now a critical challenge. On the one hand, designers use
technology scaling as one of the methods to face the phenomenon called dark silicon (only segments
of a chip function concurrently due to power restrictions). On the other hand, designers use
extreme-scale systems such as teradevices to meet the performance needs of their applications which
in turn increases the power consumption of the platform. In order to overcome these challenges, we need
novel computing paradigms that address energy efficiency. One of the promising solutions is to
incorporate parallel distributed methodologies at different abstraction levels.

The FP7 project ParaDIME focuses on this objective to provide different distributed methodologies
(software–hardware techniques) at different abstraction levels to attack the power-wall problem. In par-
ticular, the ParaDIME framework will utilize: circuit and architecture operation below safe voltage limits
for drastic energy savings, specialized energy-aware computing accelerators, heterogeneous computing,
energy-aware runtime, approximate computing and power-aware message passing. The major outcome
of the project will be a noval processor architecture for a heterogeneous distributed system that utilizes
future device characteristics, runtime and programming model for drastic energy savings of data centers.
Wherever possible, ParaDIME will adopt multidisciplinary techniques, such as hardware support for
message passing, runtime energy optimization utilizing new hardware energy performance counters,
use of accelerators for error recovery from sub-safe voltage operation, and approximate computing
through annotated code. Furthermore, we will establish and investigate the theoretical limits of energy
savings at the device, circuit, architecture, runtime and programming model levels of the computing
stack, as well as quantify the actual energy savings achieved by the ParaDIME approach for the complete
computing stack with the real environment.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

The growing popularity of cloud computing has greatly
increased the scale of data centers resulting in significant increase
in power dissipation. We have identified several issues at different
levels (programming model, runtime, hardware and device) that
need to be addressed in order to reduce the power consumption
and increase the energy efficiency of data centers.

The first issue is that modern servers suffer from the vivid
power fluctuations due to sudden changes in workload. This is
attributed to lower utilization of processor power for running the
software. In real scenarios, the processor needs only 20% of its
processing power to execute the application. When scaling beyond
Micro-

http://dx.doi.org/10.1016/j.micpro.2015.06.005
mailto:santhosh.rethinagiri@bsc.es
http://dx.doi.org/10.1016/j.micpro.2015.06.005
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro
http://dx.doi.org/10.1016/j.micpro.2015.06.005


2 S.K. Rethinagiri et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx
the computing node to the data center, power consumption is
independent of the computing load of the system. The nodes keep
state in memory and on local disk which means that they cannot
be turned off even if the load is low. For this issue, we need to pro-
pose a novel scheduling policy between the computing nodes to
raise work load at the same time adhering to Service Level
Agreements (SLAs).

The second issue is the trend in technology minimization and
the associated gains in performance and productivity. On the one
hand, we expect technology scaling to finally come face-to-face
with the problem of dark silicon [1] (only segments of a chip can
function concurrently due to power restrictions), which will push
us to use devices with completely new characteristics that must
be studied. On the other hand, as core counts increase, the shared
memory model based on cache coherence will severely limit code
scalability and increase energy consumption. Therefore, to over-
come these problems, we need new computer architectures that
are radically more energy efficient.

The third issue is related to the programming model for the data
center applications. It must provide interface such as annotations
with the applications to maximize the utilization of resources dur-
ing runtime. It also must interact with the hardware to provide
information that can be used to apply aggressive energy saving
techniques. Moreover, it should not rely on the shared-memory
paradigm to enable scaling to a high number of cores.

The ParaDIME project addresses these issues to minimize
energy consumption of data centers. The high level objectives of
the ParaDIME Project can be summarized as follows:

� Objective 1: To build a reference Individual and Multiple Data
Center Infrastructure that incorporates new energy conscious
workload scheduling techniques utilizing information from
the runtime to radically decrease energy consumption; to quan-
tify the energy savings from employing these techniques by
running multiple applications to stress test this Data Center
platform.
� Objective 2: To develop an energy-aware programming model

driving an associated ecosystem, the ParaDIME Computing
Node (applications, runtime and architecture based on existing
Hardware) that showcases energy-efficient SW programming
methodologies that radically decrease energy consumption; to
quantify the energy savings from employing these methodolo-
gies by running multiple applications to stress test this
Computing Node.
� Objective 3: To simulate a Future Computing Node based on

novel HW design techniques and new emerging devices that
function at the limit of CMOS scaling to radically decrease
energy consumption; to quantify the energy savings from
employing these methodologies.

The main outcomes of the project will be:

� Outcome 1 (Objective 1): A reference Individual and Multiple
Data Center Infrastructure that will help European companies
develop beyond green technology product offerings based on
the most promising energy-efficient computing methodologies.
� Outcome 2 (Objectives 2 and 3): A roadmap that indicates the

most promising individual or combination of energy-efficient
SW and HW methodologies by quantifying the energy cost/ ben-
efit for the Computing Node and (possibly) the Data Center mak-
ing use of both novel configurations of existing HW as well as
forward-looking architectures based on emerging devices.

The rest of the paper is organized as follows. Section 2 presents
the proposed ParaDIME project flow and methodologies. Selection
of the benchmarks is given in Section 3. Section 4 illustrates the
Please cite this article in press as: S.K. Rethinagiri et al., ParaDIME: Parallel Dis
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.06.005
preliminary results of methodologies proposed. Finally, we con-
clude in Section 5.
2. ParaDIME project flow and methodologies

ParaDIME stands for Parallel Distributed Infrastructure for
Minimization of Energy. As the name states, this project focuses
on the minimization and optimization of energy consumption for
the data center. Fig. 1 presents an overview of the project which
is based on several energy minimization methodologies. Before
discussing the ParaDIME Approach in detail, we must first intro-
duce the ParaDIME Infrastructure, which is shown in Fig. 1. There
are two types of computing nodes in ParaDIME. The one used in
the Data Center which is build using existing hardware and the
ParaDIME Future Computing Node that represents the prototype
developed with the simulator at the architectural-level as shown
in Fig. 1. The various energy efficient methodologies, which are
proposed in this project at different level are as follows:

At the highest level, the ParaDIME Infrastructure (initially based
on existing Hardware) consists of the ParaDIME Computing Node,
the Individual Data Center as well as Multiple Data Centers. The
Infrastructure relies on the Scala Programming Model and thus
natively supports programming languages running in the Java
Virtual Machine as well as their external components and their
associated runtimes and real hardware. It consists of the following
basic components:

� The existence of applications is critical to showing
proof-of-concept for our energy-efficient programming
methodologies. Moreover, it provides the programming com-
munity as well as system integrators with an example as to
how our programming model may be employed.
� Language extensions and programming language constructs

also referred to as APIs are the most visible aspects of the
ParaDIME Approach to the programmers. While it may be pos-
sible to add support to applications via explicit library calls, this
approach is not satisfactory for large systems as it relies on cod-
ing conventions, leads to unnecessarily complex code and is
typically error prone. The addition of new language constructs
with well-defined semantics is the soundest approach to import
support into existing languages.
� The runtime is the central component of the Computing Node,

the Individual and Multiple Data Center Infrastructure as it
implements the scheduling logic. It consists of several sched-
ulers in order to orchestrate message passing at the Node level
as well as to schedule jobs between nodes (Intra Data Center
Scheduling) and between Data Centers (Multi- Data Center
Scheduling).
� At both the Individual and Multiple Data Center level, the

ParaDIME Infrastructure uses real hardware which allows us
to analyze trade-offs with respect to current hardware as well
as provides initial insight as to where the bottlenecks may be
in the hardware of the future.

The ParaDIME Future Computing Node consists of the
following:

� A simulated hardware platform is used expressly to verify new
ideas for hardware support to increase energy efficiency.
� Finally, we will simulate at the Computing Node using inputs

for the near- and far-future devices to provide initial insight
into their behavior.

In the upcoming subsections, we will describe the different
methodologies based on which this project is built upon.
tributed Infrastructure for Minimization of Energy for data centers, Micro-

http://dx.doi.org/10.1016/j.micpro.2015.06.005


Fig. 1. ParaDIME project flow with two computing nodes (simulated and real hardware).

S.K. Rethinagiri et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx 3
2.1. Device-level

2.1.1. Emerging devices
The geometric scaling has been the driving force during the past

decades of CMOS dominance, which is losing steam, we expect the
device scaling in the next decade to be tougher, relying on material
science and engineering. Fig. 2 shows the logic Vdd scaling trend
over different technology nodes. As is evident from the figure,
the diminishing difference between Vdd and Vt results in perfor-
mance degradation as well as induces more variability in the
design. To balance this problem, commensurate electrostatic and
mobility scaling is necessary. In the near future FinFET devices
seem plausible as an effective means to extend MOS scaling for
high-performance or low-power technologies at 20 nm and
beyond. They provide sufficient protection against short-channel
effects, especially ‘‘off-state’’ leakage current. Fig. 2 shows the
device roadmap in the upcoming years. It is widely expected that
around 11 nm and beyond, strained silicon may run out of steam
and alternative channel materials will be required to achieve the
performance targets at low power. As a result, III–V MOS devices
have established itself as a viable candidate for technology nodes
of 10–14 nm.
Fig. 2. Logic Vdd Scaling Trend-Asymmetric Vdd and Vt scaling trend hampers the
required voltage headroom to maintain the performance scaling in advanced nodes.
This headroom control with Vdd is viable to maintain energy-scalable architectures.

Please cite this article in press as: S.K. Rethinagiri et al., ParaDIME: Parallel Dis
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.06.005
As we go beyond 10 nm scaling, the III–Vs are promising succes-
sors of MOSFETs due to their potential for sub-60 mV
sub-threshold swing. Such a reduced swing will be a requirement
for the ultra-low voltage operation of future generation of transis-
tors. For the near future, the behavior of these devices is expected
to follow past patterns, however the emerging devices for the mid
to far future will require new logic cell concepts that steer us
towards the energy-efficient operation and yield-aware design.
ParaDIME will develop functional blocks such as adders, multipli-
ers, register file as well as virtual prototypes of different ARM pro-
cessors cores to enable architectural-level designers to predict the
performance for both near and far-future technology devices to
minimize the energy consumption.

2.1.2. Voltage limits
Due to the recent issues impacting device scaling as we approach

the end of the CMOS roadmap, safe operation margins have been
increasing. In particular, there is a substantial ‘‘tax’’ in the case of
guard-bands for supply voltage. This guard-band is increasing due
to systematic and random variability, increased thermal stresses
and noise margins;. If we go below the safe limit and the associated
guard-band, one might encounter sporadic errors while simultane-
ously saving energy dramatically. As an example, decreasing the
supply voltage from 1.2 V to 0.7 V will lead to 3� dynamic energy
savings. This will require support from other levels, for example
using selective duplex replication at the architectural and program-
ming model levels for driving the chip below safe Vdd.

2.2. Architectural-level

2.2.1. Efficient message passing
At the microarchitecture level, we have two goals for efficient

message passing: (1) to leverage message passing to implement
an efficient and scalable architecture and (2) to reduce the energy
consumption of delivering messages. We will achieve the first goal
by eliminating the structures and overhead required for
cache-coherent shared-memory systems, thus improving the over-
all energy-efficiency of the system. We are aware that
tributed Infrastructure for Minimization of Energy for data centers, Micro-

http://dx.doi.org/10.1016/j.micpro.2015.06.005


4 S.K. Rethinagiri et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx
cache-coherency is the state-of-the-art for chip multiprocessors,
and that it is very convenient for the programmer as data commu-
nication between cores is hidden. However, scaling to higher core
counts is not trivial and alternatives are already being explored
for many-core architectures [2]. We will address our second goal
of reducing the energy consumption of delivering messages by pro-
viding two relatively simple mechanisms: including instructions to
send messages to a particular level of the cache hierarchy of the
destination core and avoiding copying data when sending messages
to the same core.

On the top of that, we propose to use a message passing
co-processor that accelerates the processing of messages by
offloading the it to the co-processor and avoiding the OS/runtime
software. One step on the road to achieving this accelerated pro-
cessing of message is to have fast-task switching between the
threads in the processor. The cost of spawning a thread can be very
high and it is not cost effective if the task to execute is small. This
would typically prevent programmers to specify small tasks, with
the consequence of not expressing part of the available parallelism.
We envision a system where the main core can spawn threads in a
co-processor with much reduced cost, enabled by a very simple
interface based on full/empty bits.

2.2.2. Operation below safe Vdd
Reducing the supply voltage of a circuit (Vdd) is a well-known

technique for making trade-offs between performance and power
[3]. Many commodity processors implement Dynamic Voltage
and Frequency Scaling (DVFS) and offer a number of power modes
that use different levels of supply voltage. However, the applicabil-
ity of Vdd reduction is limited by safeguard bands that are neces-
sary to ensure correctness of execution. Redundancy can be used to
detect and correct errors, but full replication incurs significant
energy overhead if not used carefully. In ParaDIME, we investigate
techniques to lower the Vdd below the safe limits that only result
in an overall reduction in energy consumption. We assume that the
programmer indicates when performance can be aggressively
traded off for reduced power dissipation (e.g., with the help of
annotations at the programming level).

2.2.3. Reduced precision computing
In ParaDIME, we will approximate floating point computation

by reducing the precision whenever the programmer indicates that
computation does not require high precision, e.g. using the IEEE
standard 754 format for floating point. Thus, floating point data
will use fewer bits than standard format (e.g. 16), and both the
floating point unit that operates them and the register file can be
considerably smaller [4]. We will also implement a similar mecha-
nism for integer values that are known to be narrow, i.e. that are
inside a small range of values [5]. In a similar fashion, data caches
and memory will be modified to exploit the smaller size of data,
either by powering down some blocks or packing more data in
the same capacity. This can also be leveraged to reduce the amount
of data sent in messages.

2.2.4. Heterogeneous computing
In ParaDIME, we propose to implement different strategies that

incorporate heterogeneity at two levels: architecture and device.
At the architecture level, one promising way to deal with the dark
silicon issue is to use heterogeneous processors, for example with
several accelerators, where only a small number of them is pow-
ered on simultaneously. In ParaDIME, we will use specialized
accelerators such as vector co-processors and heterogeneous CPU
cores/processor in the same system such as ARM (big.LITTLE)1
1 http://www.arm.com/products/processors/technologies/biglittleprocessing.php.

Please cite this article in press as: S.K. Rethinagiri et al., ParaDIME: Parallel Dis
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.06.005
and NVIDIA’s Quadro.2 We will evaluate the power, performance
and energy characteristics of common existing hardware accelera-
tors, such as FPGAs, GPUs or DSPs and heterogeneous CPUs. At the
device level, we will introduce heterogeneity to reduce energy con-
sumption and to maintain the CPU performance without any
degradation.
2.2.4.1. Architecture-level heterogeneity. In the context of ParaDIME,
we will use the Power Estimation Tool at System-level (PETS) [6],
for estimating and optimizing power. This tool simplifies applica-
tion porting as well as enables the user to choose the processor
architecture upon which to perform hardware/software
co-simulation. PETS was initially developed for the evaluation of
MPSoC systems [7–9]. In ParaDIME, we have extended it to model
a variety of other systems, including GPUs [10], DSPs, FPGAs [11]
and multi-core (dual- and quad- core) ARM processors [12].
Fig. 3 shows our architectural simulator for heterogeneous
platforms.
2.2.4.2. Device-level heterogeneity. The main challenge is to reduce
power consumption by reducing the supply voltage due to con-
cerns of either reducing performance (due to reduced drive cur-
rents) or increasing leakage (when reducing threshold voltage
simultaneously). The sub-threshold slope of the transistor is a
key factor in influencing the leakage power consumption. In this
work, we propose the use of III–V [13] devices that exhibit
sub-threshold slopes steeper than the theoretical limit of
60 mV/decade found in CMOS devices. Consequently, III–Vs can
provide higher performance than FinFETs [14] based designs at
lower voltages. However, at higher voltages, the Ion of FinFETs is
much larger than can be accomplished by the flushing mechanism
employed in existing III–V devices. This trade-off enables architec-
tural innovations through use of heterogeneous systems that
employ both III–V and FinFET based circuit elements.
Heterogeneous chip-multiprocessors that incorporate cores with
different frequencies, micro-architectural resources and
instruction-set architectures are already emerging. In all these
works, the energy-performance optimizations are performed by
appropriately mapping the application to a preferred core.
2.3. Programming-level

The programmer can influence software helping the overall sys-
tem to be more energy-efficient. In this project, we focus on the
interaction of applications with the hardware as well with the
runtime.

The interface to the hardware can be seen as an extension of the
programming model (API), which allows the programmer to indi-
cate safe sections for lowering Vdd, as well as marking types and
methods for calculating and storing values with reduced precision.
For efficient message passing, we rely on the actor model.

The interface to the runtime (at data centers) provides dis-
tributed communication for enabling energy-efficient allocation
and scheduling of resources (= static energy profiles). The defini-
tion of static energy profiles are configuration-based indications
by the user for the runtime.

For ParaDIME, we decided to use Scala [15], a general-purpose
language, that runs on top of the JVM and combines functional
and object-oriented programming patterns. Since the release of
Scala V2.10,3 Scala includes the Akka framework, a library with actor
model support.
2 http://www.nvidia.com/object/tegra.html.
3 http://www.scala-lang.org/news/2013/10/01/release-notes-v2.10.3.html.

tributed Infrastructure for Minimization of Energy for data centers, Micro-

http://www.arm.com/products/processors/technologies/biglittleprocessing.php
http://www.nvidia.com/object/tegra.html
http://www.scala-lang.org/news/2013/10/01/release-notes-v2.10.3.html
http://dx.doi.org/10.1016/j.micpro.2015.06.005


Fig. 3. Heterogeneous architectural simulation environment.

Listing 1. Annotations for lowering Vdd .

S.K. Rethinagiri et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx 5
2.3.1. API: general ParaDIME annotation design
In addition to Scalas being compatible with the Java API, it is

also possible to write a part of the code using other languages such
as C or CUDA and then integrate these into the main Scala applica-
tion rather easily. We have used this capability to define low-level
annotations for indicating data types with reduced precision, and
safe regions for operations below safe Vdd. For low-level annota-
tions we use Scala annotation macros, which allow us to define
annotations and with them linked macros that will be executed
at compile time.

We define two general annotations (@AlterMethod,
@AlterType) that can be applied to the definition of types as well
as methods and are fairly generic, which allows us to adapt to the
provided features in the course of the project. We do not support
annotations that target method calls to avoid errors if the program-
mer forgets to reset the voltage or precision. With the annotations
it is possible to add a variable amount of arguments in the form of
key = value pairs, which can be combined as necessary.

To simplify the usage for the programmer, we define three pro-
files (nominal, safe and unsafe) for interacting with the hardware
related to lowering the Vdd. The programmer can choose three
types of annotations as specified in the following Listing 1.
Although it is possible to define low Vdd also for types using the
@AlterType annotation, it is not recommended to actually use
them, since the change of voltage requires several instruction
cycles (a compiler warning will be raised in such a case).

An annotation consists of the key-value pair lowVdd =

hnominal, safe, unsafei. We chose these simple types to be
independent from the supplied voltages of the hardware. Note that
the nominal value represents the default case and does not have to
be necessarily used yet. However, we leave it open to extend the
annotations scope away from definition of methods and types to
calls depending on the future development of ParaDIME.

Safe means that the hardware chooses reduced voltage, but
above safe limits, whereas unsafe lowers the voltage radically such
that errors are very likely and might have to be handled and error
detection and recovery mechanisms are required. Which error
detection and recovery mechanism is appropriate will be chosen
by the hardware, the programmer only indicates whether a relia-
bility mechanism is required.

Similarly to lowering the Vdd, a programmer can annotate types
and methods for using reduced precision. Again, we provide three
profiles, the programmer can choose from the following key-value
pairs: precision = hstandard, reduced, radicali. The hard-
ware chooses the appropriate values linked to these profiles,
Please cite this article in press as: S.K. Rethinagiri et al., ParaDIME: Parallel Dis
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.06.005
whereas standard means full precision. As specified by the hard-
ware it is possible to add type annotations to Float and Double def-
initions. In all cases the hardware will use fewer bits to represent
data with reduced precision.

Open questions to consider include (1) the specifics of annota-
tions at method declaration, (2) the effects of calculations with val-
ues on reduced precision and (3) the effects of annotations on
definition of variables with custom types. The second point might
be handled under the hood.

2.3.2. Efficient message passing: actor model and Scala STM extension
We proposed several extensions for improving the efficiency of

the actor model that are more or less visible to the programmer.
We first introduced concurrent message processing by encapsulat-
ing each processing within an actor in a transaction (using
Transactional Memory (TM)) [16]. With sequential processing,
access to the state will be suboptimal when operations do not con-
flict (e.g., modifications to disjoint parts of the state, multiple read
operations). TM can guarantee safe concurrent access in most of
these cases and can handle conflicting situations by aborting and
restarting transactions. However, we noticed that in cases of high
contention, the performance of parallel processing dropped close
to or even below the performance of sequential processing.
Hence, we need to reduce the contention. We presented an exten-
sion of this work [17], which is in contrast to the other extensions
visible to the programmer because we introduce a new method call
to Scala STM. We propose a combination of two approaches: (1)
relaxing the atomicity and isolation for some read-only operations
and (2) determining the optimal number of threads, executing
transactional operations dynamically throughout the execution of
the algorithm.

2.3.3. Static energy profiles
In this section, we define static energy profiles, which will be

extended in the course of the project. As an example, the profiles
can be low energy, economy, and high performance (similar to bat-
tery usage modes on a PC). If the programmer indicates that the
application should run in low energy mode, the ParaDIME
tributed Infrastructure for Minimization of Energy for data centers, Micro-

http://dx.doi.org/10.1016/j.micpro.2015.06.005


6 S.K. Rethinagiri et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx
framework can make decisions on allocating the required
resources: e.g., low number of Virtual Machines (VMs) on
low-performance CPUs, limited parallelization, low number of
actors, etc.

In ParaDIME, we target the static energy profiles towards
data-centers, i.e., we can use the energy profiles for managing
the allocation of VMs and any runtime-level decision. We plan to
use performance counters as well as power estimation to validate
energy profiles.

2.4. Runtime-level

2.4.1. Operation below safe Vdd
We want to increase the energy-efficiency at the CPU level by

decreasing the CPUs supply voltage. Modern CPUs already incorpo-
rate energy-efficiency measures. The processor supports several
power states in the real machine. The ACPI standard defines
exactly four different power states: C0–C3. Besides power states,
the processor may also support different performance states. The
number of performance states differs between processors. They
are numbered P0, P1, . . . , Pn. Each successively higher state
reduces the processor’s performance, because the voltage and/or
frequency are reduced.

Based on the application annotations the Vdd can be lowered.
This is achieved, for example, by annotating non-critical sections.
The runtime also provides automatic voltage and frequency scaling
and allows for low and near threshold operation. It will provide the
current state information to the application.

2.4.2. Energy-efficiency at the data center level
To increase the energy efficiency at the data center, we plan to

increase average utilization levels. By pushing utilization levels up,
the comparatively high baseline power consumption is compen-
sated for. We plan to combat the previously mentioned drawbacks
of high utilization levels by executing a mix of compute tasks on
each server. We distinguish between two types of tasks: interac-
tive and batch. Interactive tasks have stringent performance
requirements expressed as service level agreements (SLAs).

Batch tasks, on the other hand, have turnaround times 2–3
magnitudes larger than interactive tasks, i.e., hours or days. This
flexibility allows us to achieve utilization values of 90% and higher.
Each server executes a mix of interactive and batch tasks. We have
to ensure that interactive jobs never account for more than, say,
50% of the load. Additional capacity is consumed by batch tasks.
Whenever there is a spike in interactive load, batch tasks will yield
their resources to the interactive tasks. As soon as the surge in
interactive load subsides, the batch tasks will continue executing,
occupying all available spare resources. In ParaDIME, we propose
energy efficient scheduling decisions for runtime based on the
information given to it by the hardware and application.

We also propose mechanism to support for migrating applica-
tions between physical servers if it deems this beneficial with
respect to energy efficiency and also a mechanism to swiftly reac-
tivate suspended virtual machines.

2.4.3. Energy-proportionality at the data center level
Energy-proportional computing is a concept where the power

required by a computing system is directly proportional to the
work performed. A standard commodity server is typically not
energy-proportional. An energy-proportional server would draw
0 W at 0% utilization. The power drawn would increase linearly
with utilization. Even though individual components, here servers,
may not be energy proportional, it has been shown that
energy-proportionality can be approached at the aggregate level.
A server with close to 0% utilization can be switched off, while
the work is taken over by the remaining servers. We propose a
Please cite this article in press as: S.K. Rethinagiri et al., ParaDIME: Parallel Dis
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.06.005
novel energy-proportional placement decisions of virtual machines
and also a mechanism to switch off and which workloads must be
moved between servers. Migration decisions follow a cost/benefit
analysis.

2.4.4. Carbon-aware scheduling between multiple data centers
Energy efficiency is less important if sufficient cheap and car-

bon emission-free energy sources are available. Because energy is
a growing cost factor for data center operators, reducing the overall
consumption in turn reduces the overall operating expenditures.
Coupled with penalties for carbon emissions the urge to cut energy
consumption is even stronger. If, however, a cheap and green
energy source is available, the overall consumption may suddenly
be secondary. When data centers have access to alternative energy
sources, say solar and coal, the question of where to process a task
is then also dependent on where energy is cheap, plentiful, and
green. Within ParaDIME, we propose making scheduling decisions
across data centers to select the ‘‘greenest’’ data center among
those available. The placement decision is based on information
about projected energy availability, cost, and heat demand.

2.4.5. Heterogeneous computing
CPUs are general purpose microprocessors. But even they have a

multitude of special purpose circuitry to help with, e.g., floating
point operations and streaming data manipulation (SSE1/2/3/4).
Besides the CPU, there are other components, which take over spe-
cialized tasks. The most prominent example is the graphics pro-
cessing unit (GPU). The GPU is an accelerator for graphics
processing. Rendering 3D scenes is a complex task which can, how-
ever, be sped up significantly with special-purpose hardware. The
idea of accelerators is to implement certain functionality in hard-
ware instead of executing it in software on a general purpose pro-
cessing unit. By offloading tasks to the accelerator, the CPU is free
to do alternative work, or sleep if there is nothing else to do. The
accelerator, because it is specialized, will perform the same task
more efficiently. The runtime proposes mechanisms to indicate
when a task can be sent/offloaded to an accelerator and also a
mechanisms to turn accelerators off.

2.4.6. Energy-efficient storage
The energy-efficient storage system is an object store with a

simple interface to get, put, update, and delete objects. Objects
are binary data blobs as far as the storage system is concerned.
Each object is replicated R times, where R is the replication factor.
The replication factor is tunable. It allows different trade-offs for
data availability and storage overhead. Besides the minimum repli-
cation factor R, there exist additional copies of popular objects.
These exist solely to cope with increased read requests.
Whenever the aggregated client read throughput exceeds the
available bandwidth of live replicas, additional copies are brought
online. This ensures that the storage system only consumes energy
in proportion to the client demands. In ParaDIME, we propose an
interface to the application to persistently store data. The interface
is linked to the application in the form of a library. The library pro-
vides the basic primitives to create, read, update, and delete data
objects. To the library each object is an opaque binary string. The
storage library provides an additional level of encapsulation: the
details of accessing the storage system can be changed without
re-writing the dependent applications.

2.5. Communication across the layers

Several tasks developed in ParaDIME involve cooperation
between several layers, sharing information using
Look-Up-Tables or annotations among others. There are two tasks
that put together the device and hardware layers: lowering the
tributed Infrastructure for Minimization of Energy for data centers, Micro-

http://dx.doi.org/10.1016/j.micpro.2015.06.005


S.K. Rethinagiri et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx 7
Vdd for the future node and heterogeneous devices. We use a
look-up table that characterizes the processor components for a
specific technology and Vdd. The values of the table are fed to
the simulator at the hardware layer in order to model the future
nodes. Between the Hardware and the programming model layers
and between the programming model and the runtime layers, we
use annotations developed at the programming model level for
the future data center node level prototype and for the current data
centers respectively in order to implement the lowering of the Vdd,
recovery mechanism and fixation of the actor models for the par-
ticular core. From the runtime layer to multi-data center layer,
the communication is performed by using annotations based
workload partitioning and VMs deployment across the geographi-
cally distributed data centers. Furthermore, we also work on the
compiler (KEMU) based optimization techniques that will enable
the data centers to run with better energy efficiency.
3. Benchmarks

We began our selection process by surveying a wide range of
algorithms and their available implementations (as benchmarks)
with respect to a set of high level, ‘‘nonstarter’’ criteria. In other
words, we would not further consider any benchmark that did
not meet these initial criteria, which can be summarized as fol-
lows: (1) The algorithms (implemented as benchmarks) and appli-
cations must be parallelizable while at the same time easily
implementable in shared memory. (2) The benchmark must have
few enough dependencies in order to be able to apply message
passing or the actor model. (3) Energy must be a key factor; the
benchmark must be deployable on an energy-aware platform that
would allow us to clearly measure and demonstrate an energy/per-
formance trade-off. (4) The benchmark allows for approximate
data types (necessary for approximate computing). Having
selected the initial candidate benchmarks, we next worked with
representatives from the other parts of the ParaDIME infrastruc-
ture to define a set of additional requirements based on the
methodologies that we hoped to implement and test.
3.1. K-means benchmark

The K-means algorithm groups objects in an N-dimensional
space into K clusters. This algorithm is not embarrassingly parallel
and may benefit from optimistic concurrency. In first year of the
ParaDIME, we released several versions of K-means. The first ver-
sion that we released is our research baseline which is a reimple-
mentation of the sequential K-means application as found in
STAMP [18] using Scala. Second, we implemented a
multi-threaded shared memory version of K-means. Finally, we
released an actor-based implementation to show the performance
differences for message passing. Our proposed actor implementa-
tion of K-means consists of two types of actors: the (a) (always
one) coordinating actor and the (b) (many) worker actors.
Worker Actors (WAs) claim responsibility for processing a disjoint
chunk of the input dataset and executing the multi-threaded
shared memory K-means algorithm. Further, we provide a simple
heterogeneous implementation, in which some actors can run on
the CPU while others are executed on a GPU. With Akka actors it
is easy to separate K-means tasks and to connect the GPU part
written in CUDA with the CPU part written in Scala with the help
of JNI.

In ParaDIME, we have started to provide support for low-level
annotations (Reduced precision computing, Operation below safe
Vdd) and their integration into K-means. In this implementation,
we have finalized the definition of annotations for the usage in
applications. While on a semantic level these annotations and
Please cite this article in press as: S.K. Rethinagiri et al., ParaDIME: Parallel Dis
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.06.005
macros have been tested, we will focus on integrating K-means
with the simulator focusing on Low Vdd. Furthermore, we will
investigate the different trade-off by lowering the Vdd (by altering
the frequency of a CPU) on current hardware platform.

3.2. Hydraulic sub-surface simulation (Hydra) application

Multiple-point geostatistics [19] is a prominent tool that has
proven effective for performing geostatistical simulations. At its
core, the technique analyzes the relationships between multiple
variables in several locations at a time. In general, the cost associ-
ated with the deterministic determination of the hydraulic proper-
ties of the subsurface is prohibitively high. Hence, the aim of
multiple-point geostatistical simulation is to simulate the hydrau-
lic properties of the subsurface based on a given number of sam-
ples. A simulation consists of a Training Image (TI) and a
Simulation Grid (SG). To simulate an unknown point in the SG,
the algorithm locates n informed (or known) points in the SG,
which are located closest to the unknown point. We then record
all the offsets from the unknown point to the known points as well
as the values found at these offset locations. Then, for each of the
points in the TI, we compute the values located at recorded offset
locations and compare them to the values we observed in the SG.
Using a domain specific distance criteria, we find the distance
between both sets of values. If the distance falls below some pre-
defined threshold, we stop the search and fill the unknown point
on the SG using a value from the TI. Hydra is already implemented
in CUDA and has a graphical user interface that allows for execut-
ing a mixture of batch and interactive tasks. Additionally, the base
implementation of Hydra is of the appropriate size and complexity.
Finally, it lends itself to possible use in a data center, making it par-
ticularly desirable for testing the storage API that will be provided
by the runtime. This is particularly important, because none of the
other applications to which it was compared were suitable for test-
ing this aspect of the infrastructure.

In ParaDIME, we have released a sequential version of Hydra
and started with the implementation of the shared-memory ver-
sion and the actor-based version. The parallelization of the imple-
mentation has two flavors, one parallelizing the SG and one
parallelizing the TI. While the parallelization of the TI can be done
implicitly, the parallelization of the SG is a bit harder as the num-
ber of dependencies is higher. Finally, we ported the TI paralleliza-
tion version to also run partly on a GPU using CUDA.
4. Preliminary experimental results

In this section, we will present our preliminary results based on
the previously proposed methodologies.

4.1. Device-level results

For given lithography assumptions (typically geometrical dis-
tances for the patterns that can be effectively printed out on an
ASIC), we are now able to produce a usable standard cell technol-
ogy library. By usable, we mean that the library is compatible with
industry EDA flow tools technology library set. For a feasible
lithography assumptions for the n10 technology, such technology
library has been generated for a fixed temperature but targeting
different corners (slow–slow, typical–typical, fast–fast) for a 4 dis-
crete values of the Vdd (0.4, 0.5, 0.6 and 0.7 V). All these technology
libraries have been used to characterize a 64-bit adder circuit in
terms of: area, delay, leakage and total power. Out of all the data
points typical circuit is selected and different performance indica-
tors extracted. Using the distribution information of the delay on
the critical path, the probability of the path failure has been
tributed Infrastructure for Minimization of Energy for data centers, Micro-

http://dx.doi.org/10.1016/j.micpro.2015.06.005


8 S.K. Rethinagiri et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx
extracted. The output of this step will now serve for
architectural-level simulations. Once these are established, other
circuits will be considered to provide a finer grain view.

In order to allow the below safe Vdd assessments, a complex
flow has been set-up to span the complete IC integration life cycle
starting with lithography assumptions, passing though device
modeling, to standard cell generation and RTL circuit level analysis.

The whole flow is divided in 3 consecutive steps:

� Technology generation enables creation of the technology used
as input for circuit synthesis and characterization.
� Circuit characterization provides a gate-level netlist for a given

RTL and set of technologies (different Vdd and process variation
corners).
� Below Vdd assessment produces the probability of the failure

for a given critical path in the design.

We will now detail each step.
4.1.1. Step 1 – Technology generation
The automated technology generation framework is finalized

(depicted on Fig. 4). For a given lithography assumptions (typically
geometrical distances for the patterns that can be effectively
printed out on an ASIC), we are now able to produce a usable stan-
dard cell technology library. By usable we understand an industry
EDA flow tools compatible technology library set, typically
exported in the form of.LIB (defines logic functionality timing,
power, area and used for gate-level synthesis and place route)
and.LEF (defines geometry used for place and route to generate
the final circuit layout).

Based on lithography assumptions, we first build transistor
device models. Once these models are stable (validated), we can
proceed with the design of a reduced set of standard cells. Using
advanced interpolation techniques this information is used to gen-
erate more exhaustive set of standard cell libraries in both :LIB and
:LEF flavors.
Fig. 4. Device charac

Please cite this article in press as: S.K. Rethinagiri et al., ParaDIME: Parallel Dis
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.06.005
For feasible lithography assumptions and for the n10 technol-
ogy node, corresponding technology libraries have been generated
for a fixed temperature but targeting different process corners
(slow–slow, typical–typical, fast–fast) and for a 4 discrete values
of the Vdd (0.4, 0.5, 0.6 and 0.7 V). All these technology libraries
can be then used to characterize any design in terms of area, delay,
leakage and total power, providing that we have a complete set of
synthesizable RTL descriptions.
4.1.2. Step 2 – Circuit characterization
For the circuit characterization, we use a traditional design flow

composed of usual synthesis, place and route steps. In the context
of this work the circuit characteristics will be extracted post syn-
thesis. The gain in accuracy using post placement and route circuit
model would not be justified.

The synthesis process is being repeated for a different set of
timing constraints supplied to the tool at each synthesis run for
all Vdd targets and three process corners. For each of these runs,
after synthesis the gate-level netlist is characterized in terms of
area, critical path timing and power (total, dynamic, switching,
leakage). The whole process is fully automated so that each new
design requires very little manual intervention and some CPU time
to produce all the necessary data.

For 4 voltages and 3 corners, even relatively simple design
would take couple of hours to complete, namely due to numerous
timing constraint targets. The synthesis tool assembles gates so
that the constraints are met, with minimum total area.

Typical area curve exhibit three zones:

� Flat-least effort, reaches the objective easily.
� Exponential rise-area goes up, tool is using faster cells.
� Flat-Max F is reached, no point in adding extra cells, constraints

are not met most likely.

The results that we obtain for a 64-bit adder are shown in Fig. 5
below:
terization flow.

tributed Infrastructure for Minimization of Energy for data centers, Micro-

http://dx.doi.org/10.1016/j.micpro.2015.06.005


Fig. 5. Device characterization flow.

S.K. Rethinagiri et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx 9
4.1.3. Step 3 – Below Vdd assessment
In order to generate the critical path failure probability, we take

as input the delay information found after gate-level circuit char-
acterization for different corners. Three corners slow–slow, typi-
cal–typical, fast–fast define �3 sigma, average and +3 sigma
points of a normal distribution curve. For a:

� Given reference point (Max F/Max Vdd) we pick an operating
point (F).
� We then look for the intersection of this F with the bell shaped

curves for different Vdd.

The whole process of the normal distribution curve generation
and the corresponding area (i.e. probability generation) is illus-
trated in Fig. 6.

4.2. Architectural-level results

4.2.1. Below safe Vdd
In this section, we analyze the feasibility of applying the error

detection schemes with TM-based error recovery. We are specifi-
cally interested in how much we can lower the voltage while still
providing high error detection capability. For the evaluation we
consider the following two scenarios: (1) We investigate the
energy overhead of the error detection schemes and the combined
error detection and recovery and (2) combination of different error
detection schemes. Our preliminary results are shown in Figs. 7
and 8.

In Fig. 7, we summarize the performance of all applications in
the SPLASH benchmark by averaging their energy consumption.
The energy consumption is normalized to the error-free base case
in which 2 V supply voltage is used. From this graph (Fig. 7), we
can observe that when a transaction consists of 100 instructions,
Double Modular Redundancy (DMR) starts to outperform the
base-case, when Vdd is 1.4 V (up to 28% reduction) or 1.2 V (up
Please cite this article in press as: S.K. Rethinagiri et al., ParaDIME: Parallel Dis
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.06.005
to 54% reduction). Due to the increase in the fault rate, the proba-
bility of faults causing rollbacks repeatedly becomes significantly
high. Thus, the energy consumption of DMR increases drastically
after this voltage level.

There is a trade-off between energy efficiency and reliability, as
we can see for DMR and symptom-based error detection and TM
recovery. Thus, we can for example combine symptom-based error
detection and DMR for consuming less energy, but providing full
reliability for critical parts. In Fig. 8, we analyzed the energy over-
head of this combination in comparison to the base case and DMR
only for a transaction size of 100 instructions. We assume that 30%,
50% or 70% of the application are only secured by symptom-based
error detection. With this combination it is possible to lower the
Vdd to 1 V (in comparison to 1.2 V with DMR only) and still be
more efficient than the base case. Specifically, we reduce the
energy consumption by 66% in comparison to the base case.

Aging of the circuit can heavily modify its behavior. In
ParaDIME, one of the objectives is defining the feasibility of lower-
ing supply voltage for future devices under the effect of aging.
Aging has an important role on voltage scaling since number of
timing errors increases when the circuit gets older. A similar aging
effect can be observed on NAND flash memories in which when the
circuit gets older, the number of programming and retention errors
increases. These errors are well researched and modeled in the lit-
erature [20]. We have studied these existing models and presented
architectural mechanisms to correct programming errors so that
we increase the lifetime of NAND flash memories [21]. The
Neighbor-Assisted Error Correction (NAC) increases the lifetime
of NAND flash memories. In Fig. 9, the extended lifetime due to
NAC is divided into three regions based on NAC strength: stage 1,
stage 2, and stage 3. To guarantee system reliability, the raw Bit
Error Rate (BER) must be less than the acceptable raw BER (i.e.,
103) of the baseline ECC. Thus, the maximum P/E cycle lifetime
of the baseline flash memory without NAC is only 18 k P/E cycles,
as shown in Fig. 9. NAC increases the P/E cycle lifetime by 22% (22 k
tributed Infrastructure for Minimization of Energy for data centers, Micro-

http://dx.doi.org/10.1016/j.micpro.2015.06.005


Fig. 6. Failure probabilities.

Fig. 7. Energy for transactions with 100 instructions.

Fig. 8. Combination of different error detection schemes.

Fig. 9. NAND flash memory aging.

10 S.K. Rethinagiri et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx
P/E cycles), 33% (24 k P/E cycles) and 39% (25 k P/E cycles) respec-
tively for different strengths. We conclude that NAC is effective in
improving flash memory lifetime and as NAC strength is increased
lifetime improvement increases.
Please cite this article in press as: S.K. Rethinagiri et al., ParaDIME: Parallel Dis
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.06.005
4.2.2. Multicore and heterogeneous computing at the architectural-
level

As we mentioned in Section 2.2.4, we used PETS tool to estimate
power for multi-core and heterogeneous processor at the
architectural-level. The processor architecture which we use in this
project for heterogeneous computing are DSP C64x [22], GPU
Tegra3 [10], FPGA Xilinx Zynq 6951910 and Multi-core Cortex-A9
[23]. All the cores/processors execute the same workload. Fig. 10
shows the total energy consumption in mJ for K-means application
which is one of the selected benchmarks for this project. In terms
of energy consumption, we observe that until a certain number of
cores, the total system energy consumption decreases as the num-
ber of execution cycles is reduced and then it tends to stabilize as
the system performance improves. But increasing the number of
processors over a certain limit tends to be futile, as it just adds
new conflicts at the bus level, leading to more waiting cycles.
When comparing the energy consumed by each of the systems to
perform the same task, we observe that FPGA is more efficient
compared to the other but programming using HDL is tedious.
tributed Infrastructure for Minimization of Energy for data centers, Micro-

http://dx.doi.org/10.1016/j.micpro.2015.06.005


Fig. 10. Energy estimation of Kmeans for different hardware architecture implementation.

S.K. Rethinagiri et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx 11
GPU is second most energy efficient surpassing DSPs and multi-
cores. If we couple a low power arm with GPU then it will be more
energy efficient than have big INTEL or AMD cores.

We have also completed the implementation of the vector pro-
cessor on an FPGA [24]. We have implemented the open-source
VESPA [25] soft vector processor on an Altera board, and we have
extended the design to implement a new memory architecture
(PVMC, a novel Memory Controller that is optimized for vector
architectures). We have vectorized several application kernels
and results have shown that our design has higher performance
and consumes small time than VESPA and that both vector designs
outperform and consume lesser execution time than the baseline
scalar processor as shown in Fig. 11.

4.2.3. Reduced precision computing
We evaluated the improvement on performance and power dis-

sipation of the reduced precision solution applied to the floating
point operations. The analysis has been made in two phases: first,
on the core side, the floating point unit has been modified to operate
with reduced precision values, the same has been done with the reg-
ister file. Then, the solution has been applied to the cache storage,
Fig. 11. Speed up in terms of clock cycles comparison between scalar the Nios proc

Please cite this article in press as: S.K. Rethinagiri et al., ParaDIME: Parallel Dis
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.06.005
for this analysis we choose to virtually increase the cache size allow-
ing multiple reduced blocks to be stored in the same cache block.
System modeled has a single core with out-of-order execution,
and two levels of cache of 64 KB and 2 MB respectively. In Fig. 12,
we can see the impact in performance of the reduced precision com-
puting for a couple of SPEC2006 floating point applications,
cactusADM and zeusmp. We can observe how the solution manages
to obtain up to 13% speed-up. The percentage of floating point oper-
ations in these applications are 43% (cactusADM) and 35% (zeusmp),
and most of these operations are double precision (64 bits), while
the reduced precision values use 16 bits. Also, the significant
amount of multiplications and divisions in these applications help,
as these are the operations where the improvements in perfor-
mance are higher. In Fig. 13, the reduction in dynamic power con-
sumption of the chip can be observed. As can be seen, most of the
dynamic power consumption benefits come from the processor
side, specially from the floating point unit, which is an important
power consumer in this kind of applications. On the other hand,
the cache solution obtains a more humble improvement, although
the number of main memory accesses decreases by almost 10%,
which also implies lower pressure on the memory bandwidth.
essors, the VESPA and the proposed vector processor with an PVMC extension.

tributed Infrastructure for Minimization of Energy for data centers, Micro-

http://dx.doi.org/10.1016/j.micpro.2015.06.005


Fig. 12. Reduced precision speed-up results.

Fig. 13. Reduced precision dynamic power optimization.

12 S.K. Rethinagiri et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx
4.3. Programming-level results

Experiments in this section were executed on an i3 machine
with 2 cores and 4 threads, using 16 clusters. Intel(R) Core(TM)
i3-2120 CPU @ 3.30 GHz. We estimate the power consumption
on process level using PowerAPI [26].
Fig. 14. (a) Power consumption comparison of running on 4 threads and

Please cite this article in press as: S.K. Rethinagiri et al., ParaDIME: Parallel Dis
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.06.005
Considering power estimation, we see in Fig. 14(a) that the
sequential implementation requires the lowest power. The reason
is that only one of the cores is occupied. The other implementa-
tions use all of the cores; this fact is reflected by almost doubled
power consumption. However, with parallel systems, we can con-
siderably improve the performance, having impact on energy con-
sumption of the application (energy = power ⁄ time). In Fig. 14(a)
shows that actors and thread implementations can reduce the exe-
cution time, but the execution consumes around the same amount
of energy. To actually gain from concurrent executions it is neces-
sary to scale more as shown in Fig. 14(b). For these results, we exe-
cute the same experiment with an increasing number of threads on
a 48-core AMD Opteron. Starting from similar numbers with 4
threads, it can be seen that the actor implementation scales better
than the lock-based implementation. Additionally, from 8 threads
the improvement of execution time is high enough to save energy,
leading to a final improvement of 90% points over the sequential
execution considering execution time.

Another interesting research work is about programming model
support for parallelism. Currently, it is done either with control
structures or abstractions. Control structures like threads and pro-
cesses are used to explicitly control parallelism and the access to
shared data. Abstractions realized with paradigms such as message
passing (e.g., using actors), tasks and dataflow graphs provide
implicit parallelism and simplicity to the programmer.
Abstractions keep the typical concurrency hazards away from the
programmer, who can develop his or her applications in a purely
sequential manner.

In classic dataflow programming [27,28], we differentiate
between nodes and arcs that are organized within directed graphs.
Nodes are state-less sequential functional code-blocks that commu-
nicate through input and output arcs with other nodes. The actor
model (specifically Akka as part of Scala) can be compared to data-
flow programming, as actors are working independently and
exchange messages. However, actors are able to keep state although
in an isolated fashion. This makes the actor model rather comparable
to flow-based programming [29], a particular form of dataflow pro-
gramming. Flow-based programming also shares principles with the
MapReduce [30] model. Here, data is broken into chunks and implic-
itly processed in parallel in a map phase and later merged in a reduce
phase. To show the capability of Akka to express flow-based pro-
gramming, we implemented the K-means benchmark using the
MapReduce programming model. The implementation comprises
map-actors that work on their part of the input independently in
parallel and forward their results to the reduce actor.
(b) execution time comparison with increasing number of threads.

tributed Infrastructure for Minimization of Energy for data centers, Micro-

http://dx.doi.org/10.1016/j.micpro.2015.06.005


Fig. 15. Power, energy and execution time comparison.

S.K. Rethinagiri et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx 13
MapReduce usually expects stateless tasks however, when
expressing iterative algorithms like K-means, some data might
have to be copied multiple times. Hence, the map actors are reused
in the next iteration and keep state (the initial input). The reduce
actor merges the results and decides whether a new iteration is
necessary.

We implemented K-means once using threads and shared
memory and once using actors. We compare the execution time
and power consumption with the sequential K-means implemen-
tation. The experiments are done on an i3-2100 having 3.1 GHz,
2 cores and 4 threads (hyperthreading), 6 GB RAM, using a recent
Ubuntu setup and Java 1.7.

We also implemented 2 actors/2 threads to match the number
of cores. To investigate scaling and scheduling we increased the
number of threads/actors to 12. We further investigated what the
impact of core-pinning has on the execution, hence, we used task-
set to pin the threads to specific cores. For the power consumption
measurement we relied on a power meter (PowerSpy 2.04) that
reports power values every second. The energy consumption is then
calculated as the average power multiplied by the execution time. As
we can see in the following Fig. 15, the sequential implementation
requires the least power, but the highest execution time, resulting
in rather high energy consumption. In comparison, the multi-
threaded implementations require more power, as they use more
CPU resources but less execution time. If the performance is
increased enough as in the case of 12 threads and 12 actors, the
resulting energy consumption is lower than for the sequential execu-
tion. In general, however, the actor-based MapReduce performs
worse than the shared memory version. The reason is the require-
ment of immutable messages, leading to overheads. Note that opti-
mizations of the actor model, e.g., by providing mutable access for
read-only data would reduce this overhead.
4 http://www.alciom.com/en/products/powerspy2.html.

Please cite this article in press as: S.K. Rethinagiri et al., ParaDIME: Parallel Dis
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.06.005
Another point is the scheduling impact. We can see the influ-
ence on execution time and power consumption becomes evident
depending on which cores the tasks are scheduled. While the typ-
ical load balancing is trying to fill all cores equally, for lower power
consumption it would be better to fill the cores one after another.
However, in the total energy consumption (at least in this case) the
results barely differ.
4.4. Data center-level results

4.4.1. Fast virtual machine resume
As outlined in Section 2.4, one aspect of ParaDIME is to increase

the energy efficiency of a single data center. In this context, we
identified a previously neglected class of applications with only
sporadic resource requirements, for example, a web server which
only answers a few requests per hour. For this class of infrequently
accessed services, it makes sense to suspend the services while it is
idle and only resume it when a new request arrives. While sus-
pending idle services helps the resource provider to reduce its
required capacity, it is important to reactivate the service swiftly
once more work arrives. We have modified the open-source virtual
machine emulator qemu/kvm, to resume virtual machines almost
instantly. To evaluate our modifications, we performed bench-
marks with different applications, storage technologies (HDD vs
SSD), and storage locations (direct-attached vs networked).
Fig. 16 illustrates the results for resuming a virtual machine from
a checkpoint stored on a network-accessible SSD.

While Fig. 16 presents data for three different resume strategies,
we focus on the hybrid resume variant. Depending on the applica-
tion, it is possible to resume a virtual machine over the network
in 1.0–2.8 s. While some applications, notably Mediawiki, take
longer to resume, because they access more memory during the
resume, other applications, e.g., Django and Rubis, take less time.
This is the worst case delay only experienced on the first request.
tributed Infrastructure for Minimization of Energy for data centers, Micro-

http://www.alciom.com/en/products/powerspy2.html
http://dx.doi.org/10.1016/j.micpro.2015.06.005


Fig. 16. Virtual machine resume times from remote SSD over a gigabit Ethernet
network.

14 S.K. Rethinagiri et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx
For subsequent requests, when the VM is already running again,
will be answered much faster. Further measurements and a more
detailed explanation are available in the original publication [31].
4.4.2. Periodic state synchronization
The goal to power off servers is complicated by directly

attached storage, because as soon as server is offline, the stored
data becomes inaccessible. In this context we developed a system
named dsync to efficiently synchronize gigabytes of data between
two machines. Fig. 17 compares the synchronization time taken
for different synchronization methods. We observe that dsync is
among the fastest methods, while referring the interested reader
to the original publication [32] to learn more about the exact dif-
ferences between the various methods. The wall-clock time taken
to synchronize is only one aspect in which the methods differ.
Resource consumption, such as disk I/O and computational over-
head, are also important metrics to consider in this context.

Furthermore, ParaDIME project targets a geographically dis-
tributed infrastructure where tasks, in the form of virtual machi-
nes, are migrated between data centers. The excess heat each
data center produces is used for secondary purposes, such as gen-
erating warm water and heating residential buildings. Hence, the
decision when and where to migrate is mainly influenced by exter-
nal factors such as the demand for more or less excess heat.

Moreover, virtual machine migration typically requires to send
multiple gigabytes of data over the network. We minimize the data
Fig. 17. The time to synchronize grows with the data set size. rsync is by far the
slowest method while dsync is on par with copy and ZFS.

Please cite this article in press as: S.K. Rethinagiri et al., ParaDIME: Parallel Dis
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.06.005
transfer by keeping a checkpoint of the VM at each data center the
VM visits. A migration to a data center with an existing checkpoint
must only copy the updates from the migration source to the des-
tination. This reduces the migration traffic to only 40% of the orig-
inal unoptimised case in a typical scenario.

5. Conclusions

The ParaDIME project targets minimization of energy by
proposing different distributed methodologies at different
abstraction-levels for data centers. The first phase of this project
(October 2012–June 2013) ‘‘Requirement specifications and con-
cepts’’ has been successfully completed. This project is currently
in the start of the final phase (October 2014–September 2015)
‘‘Full specification and Implementation’’.

From the device-level, we are currently investigating on 14 nm
and 7 nm nodes of FinFET and III–V devices and exploring the
stacking concept for data centers (2.5D and 3D). We also examine
the concept of lowering the VDD and the delay error rates for those
device specifications.

At the architectural-level, we have started to implement tech-
niques to improve the efficiency of message passing and lowering
the VDD for ARM and Intel processors. We have successfully imple-
mented the heterogeneous part of this project with FPGA, DSP and
GPU. Currently, we are exploring the device-level heterogeneity at
the architectural-level.

At the programming-level, we have released the K-means
implementation of scala code. Now, we are working on program-
mer friendly annotations by which software developers can men-
tion and implement, in which part of the code, lowering of the
VDD and error recovery concept can be introduced.

At the run-time, we are now implementing below safe VDD con-
cept and trying to explore various other methods to promote green
computing such as an energy efficient storage facility.

The outcome of this project will serve as a roadmap for future
data center processors, will promote green computing and will
serve as a example for the programmer to develop energy efficient
software for data centers.

After completion of the project, most of the tools and the tech-
nologies developed within this project will be released to the
research community as open-source.

Acknowledgment

The research leading to these results has received funding from
the European Community’s Seventh Framework Programme
[FP7/2007–2013] under the ParaDIME Project (www.paradime-
project.eu), Grant agreement No. 318693.

References

[1] H. Esmaeilzadeh, E. Blem, R.St. Amant, K. Sankaralingam, D. Burger, Dark
silicon and the end of multicore scaling, in: Proceedings of the 38th Annual
International Symposium on Computer Architecture, ISCA ’11, ACM, New York,
NY, USA, 2011, pp. 365–376. http://dx.doi.org/10.1145/2000064.2000108, URL
http://doi.acm.org/10.1145/2000064.2000108.

[2] M. Baron, The single-chip cloud computer, Tech. rep., Microprocessor Report,
June 2010.

[3] G. Yalcin, A. Cristal, O. Unsal, A. Sobe, D. Harmanci, P. Felber, A. Voronin, J.-T.
Wamhoff, C. Fetzer, Combining error detection and transactional memory for
energy-efficient computing below safe operation margins, in: 22nd Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing (PDP), 2014, 2014, pp. 248–255, http://dx.doi.org/10.1109/PDP.
2014.61.

[4] J. Tong, D. Nagle, R. Rutenbar, Reducing power by optimizing the necessary
precision/range of floating-point arithmetic, IEEE Trans. Very Large Scale Integ.
(VLSI) Syst. 8 (3) (2000) 273–286, http://dx.doi.org/10.1109/92.845894.

[5] O. Ergin, O. Unsal, X. Vera, A. Gonzalez, Reducing soft errors through operand
width aware policies, IEEE Trans. Depend. Sec. Comput. 6 (3) (2009) 217–230,
http://dx.doi.org/10.1109/TDSC.2008.18.
tributed Infrastructure for Minimization of Energy for data centers, Micro-

http://www.paradime-project.eu
http://www.paradime-project.eu
http://dx.doi.org/10.1145/2000064.2000108
http://doi.acm.org/10.1145/2000064.2000108
http://dx.doi.org/10.1109/PDP.2014.61
http://dx.doi.org/10.1109/PDP.2014.61
http://dx.doi.org/10.1109/92.845894
http://dx.doi.org/10.1109/TDSC.2008.18
http://dx.doi.org/10.1016/j.micpro.2015.06.005


S.K. Rethinagiri et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx 15
[6] S.-K. Rethinagiri, O. Palomar, O. Unsal, A. Cristal, R. Ben-Atitallah, S. Niar, Pets:
power and energy estimation tool at system-level, in: 15th International
Symposium on Quality Electronic Design (ISQED), 2014, 2014, pp. 535–542,
http://dx.doi.org/10.1109/ISQED.2014.6783373.

[7] S. Rethinagiri, R. Ben Atitallah, S. Niar, E. Senn, J. Dekeyser, Fast and accurate
hybrid power estimation methodology for embedded systems, in: 2011
Conference on Design and Architectures for Signal and Image Processing
(DASIP), 2011, pp. 1–7, http://dx.doi.org/10.1109/DASIP.2011.6136852.

[8] S. Rethinagiri, R. Atitallah, J. Dekeyser, A system level power consumption
estimation for mpsoc, in: 2011 International Symposium on System on Chip
(SoC), 2011, pp. 56–61, http://dx.doi.org/10.1109/ISSOC.2011.6089692.

[9] S.K. Rethinagiri, R. Ben Atitallah, J.-L. Dekeyser, E. Senn, S. Niar, An efficient
power estimation methodology for complex risc processor-based platforms,
in: Proceedings of the Great Lakes Symposium on VLSI, GLSVLSI ’12, ACM, New
York, USA, 2012, pp. 239–244. http://dx.doi.org/10.1145/2206781.2206839,
URL http://doi.acm.org/10.1145/2206781.2206839.

[10] S. Rethinagiri, O. Palomar, J. Arias Moreno, G. Yalcin, O. Unsal, A. Cristal,
System-level power & energy estimation methodology and optimization
techniques for CPU–GPU based mobile platforms, in: 2014 IEEE 12th
Symposium on Embedded Systems for Real-time Multimedia (ESTIMedia),
2014, pp. 118–127, http://dx.doi.org/10.1109/ESTIMedia.2014.6962352.

[11] S. Kumar Rethinagiri, O. Palomar, J. Arias Moreno, O. Unsal, A. Cristal, Vppet:
Virtual platform power and energy estimation tool for heterogeneous MPSoC
based FPGA platforms, in: 24th International Workshop on Power and Timing
Modeling, Optimization and Simulation (PATMOS), 2014, 2014, pp. 1–8, http://
dx.doi.org/10.1109/PATMOS.2014.6951910.

[12] S.K. Rethinagiri, O. Palomar, R. Ben Atitallah, S. Niar, O. Unsal, A.C. Kestelman,
System-level power estimation tool for embedded processor based platforms,
in: Proceedings of the 6th Workshop on Rapid Simulation and Performance
Evaluation: Methods and Tools, RAPIDO ’14, ACM, New York, NY, USA, 2014,
pp. 5:1–5:8. http://dx.doi.org/10.1145/2555486.2555491, URL http://doi.acm.
org/10.1145/2555486.2555491.

[13] C. Kang, R.-H. Baek, T.-W. Kim, D. Ko, D.-H. Kim, T. Michalak, C. Borst, D.
Veksler, G. Bersuker, R. Hill, C. Hobbs, P. Kirsch, Comprehensive layout and
process optimization study of Si and III–V technology for sub-7 nm node, in:
2013 IEEE International Electron Devices Meeting (IEDM), 2013, pp. 5.3.1–
5.3.4, http://dx.doi.org/10.1109/IEDM.2013.6724566.

[14] P. Magnone, A. Mercha, V. Subramanian, P. Parvais, N. Collaert, M. Dehan, S.
Decoutere, G. Groeseneken, J. Benson, T. Merelle, R. Lander, F. Crupi, C. Pace,
Matching performance of FinFET devices with fin widths down to 10 nm, IEEE
Electron Dev. Lett. 30 (12) (2009) 1374–1376, http://dx.doi.org/10.1109/
LED.2009.2034117.

[15] S. Papadimitriou, K. Terzidis, S. Mavroudi, S. Likothanassis, Exploiting java
scientific libraries with the Scala language within the ScalaLab environment,
IET Softw. 5 (6) (2011) 543–551, http://dx.doi.org/10.1049/iet-sen.2010.0135.

[16] Y. Hayduk, A. Sobe, D. Harmanci, P. Marlier, P. Felber, Speculative concurrent
processing with transactional memory in the actor model, in: R. Baldoni, N.
Nisse, M. Steen (Eds.), Principles of Distributed Systems, Lecture Notes in
Computer Science, vol. 8304, Springer International Publishing, 2013, pp. 160–
175. http://dx.doi.org/10.1007/978-3-319-03850-6_12, URL http://dx.doi.org/
10.1007/978-3-319-03850-6_12.

[17] Y. Hayduk, A. Sobe, P. Felber, Dynamic concurrent message processing with
transactional memory in the actor model, in: 9th Workshop on Transactional
Computing (co-located with ASPLOS 2014), ACM SIGPLAN, ACM SIGPLAN, Salt
Lake City, Utah, USA, 2014.

[18] C.C. Minh, J. Chung, C. Kozyrakis, K. Olukotun, Stamp: Stanford transactional
applications for multi-processing, in: IEEE International Symposium on
Workload Characterization, 2008, IISWC 2008, 2008, pp. 35–46, http://
dx.doi.org/10.1109/IISWC.2008.4636089.

[19] U.S. Ofterdinger, P. Renard, S. Loew, Hydraulic subsurface measurements and
hydrodynamic modelling as indicators for groundwater flow systems in the
Rotondo granite, Central Alps (Switzerland), Hydrol. Process. 28 (2) (2014)
255–278, http://dx.doi.org/10.1002/hyp.9568. http://dx.doi.org/10.1002/hyp.
9568.

[20] Y. Cai, E. Haratsch, O. Mutlu, K. Mai, Error patterns in MLC NAND flash
memory: measurement, characterization, and analysis, in: Design, Automation
Test in Europe Conference Exhibition (DATE), 2012, 2012, pp. 521–526, http://
dx.doi.org/10.1109/DATE.2012.6176524.

[21] Y. Cai, G. Yalcin, O. Mutlu, E.F. Haratsch, O. Unsal, A. Cristal, K. Mai, Neighbor-
cell assisted error correction for MLC NAND flash memories, SIGMETRICS
Perform. Eval. Rev. 42 (1) (2014) 491–504, http://dx.doi.org/10.1145/
2637364.2591994. http://doi.acm.org/10.1145/2637364.2591994.

[22] S. Kumar Rethinagiri, O. Palomar, J. Arias Moreno, O. Unsal, A. Cristal, M.
Biglari-Abhari, System-level power and energy estimation methodology for
open multimedia applications platforms, in: IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2014, 2014, pp. 442–449, http://dx.doi.org/10.
1109/ISVLSI.2014.38.

[23] S. Kumar Rethinagiri, O. Palomar, A. Cristal, O. Unsal, M. Swift, Dessert: Design
space exploration tool based on power and energy at system-level, in: 27th
IEEE International System-on-Chip Conference (SOCC), 2014, 2014, pp. 48–53,
http://dx.doi.org/10.1109/SOCC.2014.6948898.
Please cite this article in press as: S.K. Rethinagiri et al., ParaDIME: Parallel Dis
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.06.005
[24] T. Hussain, O. Palomar, O. Unsal, A. Cristal, E. Ayguade, M. Valero, PVMC:
Programmable vector memory controller, in: IEEE 25th International
Conference on Application-Specific Systems, Architectures and Processors
(ASAP), 2014, 2014, pp. 240–247, http://dx.doi.org/10.1109/ASAP.2014.
6868668.

[25] P. Yiannacouras, J. Steffan, J. Rose, Portable, flexible, and scalable soft vector
processors, IEEE Trans. Very Large Scale Integ. (VLSI) Syst. 20 (8) (2012) 1429–
1442, http://dx.doi.org/10.1109/TVLSI.2011.2160463.

[26] A. Noureddine, A. Bourdon, R. Rouvoy, L. Seinturier, A preliminary study of the
impact of software engineering on greenit, in: First International Workshop on
Green and Sustainable Software (GREENS), 2012, 2012, pp. 21–27, http://
dx.doi.org/10.1109/GREENS.2012.6224251.

[27] M. Flynn, O. Pell, O. Mencer, Dataflow supercomputing, in: 22nd International
Conference on Field Programmable Logic and Applications (FPL), 2012, 2012,
pp. 1–3, http://dx.doi.org/10.1109/FPL.2012.6339170.

[28] Arvind D.E. Culler, Annual Review of Computer Science, vol. 1, 1986, Annual
Reviews Inc., Palo Alto, CA, USA, 1986, Ch. Dataflow Architectures, pp. 225–253
<http://dl.acm.org/citation.cfm?id=17814.17824>.

[29] W.M. Johnston, J.R.P. Hanna, R.J. Millar, Advances in dataflow programming
languages, ACM Comput. Surv. 36 (1) (2004) 1–34, http://dx.doi.org/10.1145/
1013208.1013209. http://doi.acm.org/10.1145/1013208.1013209.

[30] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters,
Commun. ACM 51 (1) (2008) 107–113, http://dx.doi.org/10.1145/
1327452.1327492. http://doi.acm.org/10.1145/1327452.1327492.

[31] T. Knauth, C. Fetzer, DreamServer: Truly On-Demand Cloud Services, in:
International Systems and Storage Conference, ACM, 2014.

[32] T. Knauth, C. Fetzer, dsync: efficient block-wise synchronization of multi-
gigabyte binary data, in: Large Installation System Administration Conference,
2013.

Dr. Santhosh Kumar Rethinagiri received his Bachelor
of Engineering degree from the Anna University,
Chennai, India, in 2006, the Master of Science degree in
electrical engineering from KTH, Stockholm, Sweden in
2009 and the Ph.D. in computer science from the INRIA
Lille Nord Europe in 2013. He worked with Synopsys for
a year in Germany before getting into his PhD. He is
currently working as a senior researcher with the
Microsoft research group in Barcelona Supercomputing
center, Spain. His research interests involve minimiza-
tion of energy for data centers, power reduction for
supercomputers with mobile computing chips and also

FPGA based acceleration for data bases.
Dr. Oscar Palomar received his degree on Computer
Sciences on 2002 from the Universitat Politècnica de
Catalunya and his Ph.D. on Computer Architecture in
2011 from the same university. Since 2010 he has been
working on the Barcelona Supercomputing Center in the
Computer Architectures for Parallel Paradigms group.
His research interests involve low-power vector archi-
tectures and energy minimization.
Dr. Anita Sobe received her Ph.D. in Computer Science
at Alpen-Adria Universität Klagenfurt, Austria in 2012
with distinction. She was lecturer at the FH Kärnten,
Austria as well as senior researcher at the networked
and embedded systems group at Alpen-Adria
Universität Klagenfurt, Austria. Currently, she is
post-doctoral research fellow at the University of
Neuchâtel, Switzerland working in the ParaDIME (EU FP
7 FET proactive project) targeting software–hardware
solutions for energy-efficient data centers. Her research
interests include parallel and distributed systems,
energy-efficiency, self-organization in networked sys-

tems, virtualization, applications of transactional memory. She has been member of
several program committees, including IEEE SASO, IEEE CCNC, WISES, TRANSACT,
IEEE PerEnergy. She is a member of IEEE.
tributed Infrastructure for Minimization of Energy for data centers, Micro-

http://dx.doi.org/10.1109/ISQED.2014.6783373
http://dx.doi.org/10.1109/DASIP.2011.6136852
http://dx.doi.org/10.1109/ISSOC.2011.6089692
http://dx.doi.org/10.1145/2206781.2206839
http://doi.acm.org/10.1145/2206781.2206839
http://dx.doi.org/10.1109/ESTIMedia.2014.6962352
http://dx.doi.org/10.1109/PATMOS.2014.6951910
http://dx.doi.org/10.1109/PATMOS.2014.6951910
http://dx.doi.org/10.1145/2555486.2555491
http://doi.acm.org/10.1145/2555486.2555491
http://doi.acm.org/10.1145/2555486.2555491
http://dx.doi.org/10.1109/IEDM.2013.6724566
http://dx.doi.org/10.1109/LED.2009.2034117
http://dx.doi.org/10.1109/LED.2009.2034117
http://dx.doi.org/10.1049/iet-sen.2010.0135
http://dx.doi.org/10.1007/978-3-319-03850-6_12
http://dx.doi.org/10.1007/978-3-319-03850-6_12
http://dx.doi.org/10.1007/978-3-319-03850-6_12
http://dx.doi.org/10.1109/IISWC.2008.4636089
http://dx.doi.org/10.1109/IISWC.2008.4636089
http://dx.doi.org/10.1002/hyp.9568
http://dx.doi.org/10.1002/hyp.9568
http://dx.doi.org/10.1002/hyp.9568
http://dx.doi.org/10.1109/DATE.2012.6176524
http://dx.doi.org/10.1109/DATE.2012.6176524
http://dx.doi.org/10.1145/2637364.2591994
http://dx.doi.org/10.1145/2637364.2591994
http://doi.acm.org/10.1145/2637364.2591994
http://dx.doi.org/10.1109/ISVLSI.2014.38
http://dx.doi.org/10.1109/ISVLSI.2014.38
http://dx.doi.org/10.1109/SOCC.2014.6948898
http://dx.doi.org/10.1109/ASAP.2014.6868668
http://dx.doi.org/10.1109/ASAP.2014.6868668
http://dx.doi.org/10.1109/TVLSI.2011.2160463
http://dx.doi.org/10.1109/GREENS.2012.6224251
http://dx.doi.org/10.1109/GREENS.2012.6224251
http://dx.doi.org/10.1109/FPL.2012.6339170
http://dl.acm.org/citation.cfm?id=17814.17824
http://dx.doi.org/10.1145/1013208.1013209
http://dx.doi.org/10.1145/1013208.1013209
http://doi.acm.org/10.1145/1013208.1013209
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://refhub.elsevier.com/S0141-9331(15)00084-8/h0155
http://refhub.elsevier.com/S0141-9331(15)00084-8/h0155
http://refhub.elsevier.com/S0141-9331(15)00084-8/h0155
http://dx.doi.org/10.1016/j.micpro.2015.06.005


16 S.K. Rethinagiri et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx
Dr. Gülay Yalçin holds BS degree in Computer
Engineering from Hacettepe University and MS degree
in Computer Engineering from TOBB University of
Economics and Technology. Between 2009 and 2014,
she pursued his Ph.D. degree in the Computer
Architecture department at University Politècnica de
Catalunya as a scholar of FI (Research Personal) while
she was doing research in reliability at the Barcelona
Supercomputing Center.
Thomas Knauth received his diploma in computer sci-
ence from Technische Universitaet Dresden in 2008. He
took a one-year break to work and travel in Australia,
and rejoined the group in 2009. In 2014 he received his
PhD degree also from TU Dresden.
Rubén Titos-Gil received the MS and Ph.D. degrees in
Computer Science from t he University of Murcia, Spain,
in 2006 and 2011, respectively. Between 2012 and 2014,
he held a postdoc position at Chalmers University of
Technology, Sweden. In April 2014, he joined B.Sc. and
began working for the ParaDIME project. His research
interests lay on the fields of parallel computer archi-
tecture and programming models, including synchro-
nization, coherence protocols and memory hierarchy.
Dr. Pablo Prieto received the BS, MS, and Ph.D. degrees
from the University of Cantabria, Spain, in 2006 and
2014, respectively, where he teached as assistant at the
Department of Computers and Electronics. Now he
colaborates at the BSC as senior researcher in the
ParaDIME project. His research interests are focused on
on-chip cache hierarchies, network on-chip and mem-
ory controller design.
Malte Schneegaß received his Diploma of Engineering
degree from the University of Applied Science, Dresden,
Germany, in 2009. From 2009 until 2011 he worked for
a consulting company that is specialized in advising and
planning building technologies for offices and muse-
ums. His main field was automation of buildings and
HVAC devices. Since 2012 he is working for Cloud and
Heat Technologies, Dresden as a research & develop-
ment engineer. His work involves minimization of
energy for data centers and the control design of C&H’s
innovative server rack.
Please cite this article in press as: S.K. Rethinagiri et al., ParaDIME: Parallel Dis
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.06.005
Dr. Adrián Cristal is co-manager of the Computer
Architecture for Parallel Paradigms research group at
BSC. His interests include high-performance microar-
chitecture, multi- and many-core chip multiprocessors,
transactional memory, and programming models. He
received a Ph.D. from the Computer Architecture
Department at the Polytechnic University of Catalonia
(UPC), Spain, and he has a BS and an MS in computer
science from the University of Buenos Aires, Argentina.
Dr. Osman Unsal received the BS, MS and Ph.D. degrees
in Electrical and Computer Engineering from Istanbul
Technical University (Turkey), Brown University (USA)
and University of Massachusetts, Amherst (USA)
respectively. Together with Dr. Adrian Cristal, he
co-manages the Computer Architecture for Parallel
Paradigms research group at BSC. His current research
interests include many-core computer architecture,
reliability, low-power computing, programming models
and transactional memory.
Prof. Pascal Felber received his M.Sc. and Ph.D. degrees
in Computer Science from the Swiss Federal Institute of
Technology (EPFL). He has then worked at Oracle
Corporation and Bell-Labs in the USA, and at Institut
EURECOM in France. Since 2004, he is a Professor of
Computer Science at the University of Neuchâtel,
Switzerland, working in the field of dependable, dis-
tributed, and concurrent systems. He has published over
120 research papers in various journals and confer-
ences.
Christof Fetzer received his Ph.D. from UC San Diego
(1997). As a student he received a two-year scholarship
from the DAAD and won two best student paper awards
(SRDS and DSN). He was a finalist of the 1998 Council of
Graduate Schools/UMI distinguished dissertation award
and won an IEE mather premium in 1999. Dr. Fetzer
joined AT&T Labs-Research in August 1999 and was a
principal member of technical staff until March 2004.
Since April 2004, he is head of the Systems Engineering
Chair in the Computer Science Department at the
Dresden University of Technology. He is the chair of the
Distributed Systems Engineering International Masters

Program at the Computer Science Department. Prof. Dr. Fetzer has published over
130 research papers in the field of dependable systems.
Dr. Dragomir Milojevic received his Ph.D. in Electrical
Engineering from Université libre de Bruxelles (ULB),
Belgium. He joined IMEC in 2004 where he first worked
on multi-processor and Network-on-Chip architectures
for low-power multimedia systems. Today, part of the
INSITE program at IMEC, he is working on methodolo-
gies and tools for technology aware design of 3D inte-
grated circuits. Dragomir Milojevic is associate
professor at Faculty of Applied Sciences, ULB, where he
co-founded Parallel Architectures for Real-Time
Systems – PARTS research group. He authored or
co-authored more than 50 journal and conference arti-

cles, and served as technical program committee member to several conferences in
the field.
tributed Infrastructure for Minimization of Energy for data centers, Micro-

http://dx.doi.org/10.1016/j.micpro.2015.06.005

	ParaDIME: Parallel Distributed Infrastructure for Minimization of Energy for data centers
	1 Introduction
	2 ParaDIME project flow and methodologies
	2.1 Device-level
	2.1.1 Emerging devices
	2.1.2 Voltage limits

	2.2 Architectural-level
	2.2.1 Efficient message passing
	2.2.2 Operation below safe Vdd
	2.2.3 Reduced precision computing
	2.2.4 Heterogeneous computing
	2.2.4.1 Architecture-level heterogeneity
	2.2.4.2 Device-level heterogeneity


	2.3 Programming-level
	2.3.1 API: general ParaDIME annotation design
	2.3.2 Efficient message passing: actor model and Scala STM extension
	2.3.3 Static energy profiles

	2.4 Runtime-level
	2.4.1 Operation below safe Vdd
	2.4.2 Energy-efficiency at the data center level
	2.4.3 Energy-proportionality at the data center level
	2.4.4 Carbon-aware scheduling between multiple data centers
	2.4.5 Heterogeneous computing
	2.4.6 Energy-efficient storage

	2.5 Communication across the layers

	3 Benchmarks
	3.1 K-means benchmark
	3.2 Hydraulic sub-surface simulation (Hydra) application

	4 Preliminary experimental results
	4.1 Device-level results
	4.1.1 Step 1 – Technology generation
	4.1.2 Step 2 – Circuit characterization
	4.1.3 Step 3 – Below Vdd assessment

	4.2 Architectural-level results
	4.2.1 Below safe Vdd
	4.2.2 Multicore and heterogeneous computing at the architectural-level
	4.2.3 Reduced precision computing

	4.3 Programming-level results
	4.4 Data center-level results
	4.4.1 Fast virtual machine resume
	4.4.2 Periodic state synchronization


	5 Conclusions
	Acknowledgment
	References


