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With the rise of Big Data, providing high-performance query processing capabilities through the accelera-
tion of the database analytic has gained significant attention. Leveraging Field Programmable Gate Array
(FPGA) technology, this approach can lead to clear benefits. In this work, we present the design and im-
plementation of AxleDB: An FPGA-based platform that enables fast query processing for database systems
by melding novel database-specific accelerators with commercial-off-the-shelf (COTS) storage using modern
interfaces, in a novel, unified, and a programmable environment. AxleDB can perform a large subset of SQL
queries through its set of instructions that can map compute-intensive database operations, such as filter,
arithmetic, aggregate, group by, table join, or sort, on to the specialized high-throughput accelerators. To
minimize the amount of SSD I/O operations required, AxleDB also supports hardware MinMax indexing
for databases. We evaluated AxleDB with five decision support queries from the TPC-H benchmark suite
and achieved a speedup from 1.8X to 34.2X and energy efficiency from 2.8X to 62.1X, in comparison to the
state-of-the-art DBMS, i.e., PostgreSQL and MonetDB.
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Computing

1. INTRODUCTION
In the rapidly growing field of Big Data, as the amount of data to manage increases,
there is an increasing strain on Database Management Systems (DBMS) to meet high
throughput and low latency requirements. The first main point of concern is the over-
head of data movement that causes the throughput degradation, and decreasing the
cache memory utilization per query. Secondly, conventional control-flow-based query
processing engines can cause lower computational throughput compared to what can
be achieved by application-specific hardware. From one side, to alleviate the overheads
of data movement, one promising solution is to bring the computation closer to where
the data resides, so that more operations can be completed avoiding non-essential data
movement [1]. The gains are two-fold: easing the load on the host CPU for performing
database operations, and reducing the negative impact on the performance of high-
latency I/O operations. As a result, significant throughput improvements, as well as a
reduction of I/O overheads can be achieved. On the other hand, streaming data through
highly specialized hardware accelerators in a deeply pipelined fashion can significantly
improve the computational throughput of the query processing engine.

FPGAs provide a unique opportunity to build an efficient query processing platform,
by constructing a high-throughput execution engine with the additional aim of mini-
mizing overheads of data movement. It is mainly the consequence of; (i) the inherent
characteristics of massively parallel and configurable architecture of FPGAs, suitable
for data streaming in deep pipelined-style execution (ii) the rise of High-Level Syn-
thesis (HLS) technology, which makes FPGA applications relatively easier to develop
compared to low-level languages such as VHDL or Verilog, and (iii) the availability of
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soft cores that implement modern interfaces, such as PCIe 3.0 (Peripheral Component
Interconnect Express) or SATA-3 (Serial AT Attachment).

For the query processing, FPGAs have been utilized in two distinct approaches: (i)
traditional data offloading mechanisms, where data in the host-attached storage is of-
floaded towards external processing units or accelerators implemented in FPGA, or (ii)
placing the processing units directly in the datapath between the host machine and the
main storage units. The first approach could incur overheads stemming from the addi-
tional data movement since data needs to be offloaded through Operating System (OS)
and device driver layers [2], [3], [4]. In contrast, the second approach allows processing
units to get direct access to data blocks and facilitates low-latency data transmission
[5], [6]. Also, it can correspond to significant speedups in the query execution.

By introducing a novel architecture for managing data movement through hard-
ware accelerators and storage, in this work, we present the design and implementa-
tion of AxleDB. AxleDB is an FPGA-based engine that enables fast query processing
by melding highly-efficient accelerators with commercial-off-the-shelf (COTS) storage
using modern SATA-3, PCIe-3, DDR-3 (Double Data Rate) interfaces, in a novel, uni-
fied, and a programmable environment. Tightly coupled with a Solid State Disk (SSD)
that stores blocks of database tables, AxleDB is designed to execute complex Struc-
tured Query Language (SQL) queries in full by performing various time-consuming
query operations using specialized hardware accelerators, while the overhead of data
movement between storage and compute units is also minimized. Thanks to the mas-
sively parallel and pipelined architecture of FPGAs and efficiently exploiting its em-
bedded modules, i.e., low-latency on-chip RAM and DSP blocks, AxleDB provides a
diverse set of high throughput query processing units for performing filtering, arith-
metic, aggregation, group by aggregation, table join, and sorting operations. Also, to
reduce I/O transfers, AxleDB supports FPGA-based database indexing, which is an
efficient method to perform a quick scan of large database tables [7]. AxleDB is con-
nected through a fast PCIe-3 interface and managed by a host system. In the host
machine, PostgreSQL [8] runs as the host DBMS, which was enhanced to manage the
data and instruction flow. AxleDB can process complex SQL queries using an extensive
set of query-specific instructions, which can be generated from a given SQL query in
the host.

In a nutshell, the main objectives of AxleDB as a novel query processing engine,
are: (i) to provide an infrastructure that sits between host and data storage in SSD,
and utilizes PCIe-3 and SATA-3 interfaces to work directly with blocks of database
columns, (ii) to design a set of efficient query accelerators inside such an infrastructure
that can facilitate the query processing in a fully pipelined fashion (iii) to investigate
the efficiency of a database indexing method in the proposed FPGA-based platform
as a technique to I/O transmitting reduction, and (iv) to allow the DBMS to utilize
these accelerators by issuing AxleDB special instructions, exposing flexibility in data
movement and in enabling accelerators. More specifically, the contributions of this
paper are as follows:

— We describe the unified AxleDB platform that includes query processing-specific ac-
celerators that are coupled to the storage device. Also, the efficient data management
mechanism of the AxleDB to control the flow of data, which effectively enables rapid
query processing in the hardware.

— We present novel and efficient database query processing accelerators for filtering,
arithmetic, aggregation, groupby aggregation, table join, and sorting operations, as
well as a MinMax database indexing method to reduce the disk I/O transfer. Lever-
aging them in a pipelined fashion leads to a high throughput query processing. To
reduce the development time and to achieve more optimized designs we employed
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modern HLS tools in various parts of the AxleDB. We explain our design decisions in
detail while using Vivado HLS and Bluespec SystemVerilog.

— AxleDB is tailored for programmability and provides a diverse set of specific instruc-
tions for data movement and query execution. These query-specific instructions are
generated at the host and used to program the AxleDB to process any given SQL
query. For elaboration, we provide a step-by-step detailed query example from the
commonly-used TPC-H benchmark.

— We evaluate the performance and energy efficiency of the AxleDB under various con-
ditions, by running five decision-support TPC-H queries. We compare the AxleDB
against the query processing engines of the state-of-the-art software-based DBMS,
PostgreSQL, and MonetDB, in the single-threaded and multi-threaded modes. For
the various class of the SQL queries, i.e., I/O-intensive, process-intensive, and I/O-
process-balanced, we achieved speedups up to 34.2X and energy efficiency up to
62.1X, against the software DBMS.

The paper is organized into eight sections. Section 2 describes the architecture of the
AxleDB by describing its major components. In Section 3 we illustrate the AxleDB
by an example query to show how its components are utilized to process the exam-
ple query. Section 4 introduces the supported database accelerators and the proposed
database indexing method. The evaluation methodology is explained in Section 5. We
discuss the experimental results in Section 6. Section 7 reviews the previous state-
of-the-art query processing platforms, and finally, we conclude the paper in Section
8.

2. THE OVERALL ARCHITECTURE OF THE AXLEDB
In a relational DBMS, data is organized into tables, using a model of vertical columns
and horizontal rows. The columns have a data type and a name. The rows represent
entries in the database. The DBMS can store the data tables in two distinct models,
row or column oriented storage. In column-oriented storage, all of the fields of a col-
umn are serialized and stored together. As opposed to row-oriented storage, DBMS can
lead to higher I/O throughput as it would not need to load unnecessary columns of data
in a column-oriented fashion. Exploiting SQL queries, meaningful information can be
extracted by processing the data that is organized in tables. For this aim, the core
query processing engine, as the backbone of a DBMS, manages the actual processing
of SQL queries, following an established query plan. However, other functionalities of
DBMS such as user authentication, logging, security, concurrency, etc., can be handled
by other corresponding components rather than the core query processing engine. In
this work, we concentrate on the query processing part itself, by attacking the compu-
tationally intensive query processing. We leave the other essential DBMS functionality
for future work.

The main principle of the proposed database query processing platform, AxleDB, is
to essentially move database computations closer to where the data resides, to obtain
high performance in a flexible and programmable environment. Figure 1 shows the
overall architecture of AxleDB. AxleDB resides between the host machine that runs
the DBMS, and the database storage in an SSD. In the host, we primarily targeted to
use PostgreSQL [8], one of the most popular open source relational DBMS. However,
the infrastructure of AxleDB was designed to be software-agnostic and could be ported
to other DBMS, e.g., MonetDB [9].

The host communicates with AxleDB through an Application Program Interface
(API), to transfer data and instructions using the PCIe-3 interface. When the host ini-
tiates the query execution, the query plan needs to be converted into AxleDB instruc-
tions. Inside AxleDB, these instructions are managed and executed by the Data and
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Process Controller (DPC), which orchestrates the movement of data blocks between
SSD, DDR-3, host, and Accelerators. The query is effectively executed by streaming
blocks of data, from the storage, through the accelerators, and back. Finally, the result
of the query is returned to the software or stored back into the SSD. The architecture
of AxleDB is composed of five major components:

(1) Software Extensions for DBMS in the host, including the Data Address Table
(DAT) and the CStore Foreign Data Wrapper (FDW) extension of PostgreSQL, to
manage the transfer of instructions and data, respectively. We provide detail infor-
mation in Section 2.1.1.

(2) Data Storage Units, i.e., SSD, DDR-3, and host that are used as the primary or
secondary database storage units and device controller cores, i.e., SATA-3, DDR-3,
and PCIe-3 to manage the data transfer to/from storage units. We provide detail
information in Section 2.1.2.

(3) AxleDB Accelerators Unit (AAU), which is a set of efficient DBMS query acceler-
ators, i.e., filter, arithmetic, aggregation, group by, hash build, hash probe, and sort.
To transfer data, accelerators are organized inside a ring bus, RingBus of AxleDB
accelerators (RBAA), and a direct bus, DirectBus of AxleDB Accelerators (DBAA).
We provide detail information about their overall interconnection in Section 2.1.3.
Also, we introduce the internal structure of the accelerators in Section 4.

(4) Programmable Interconnection Unit (PIU) to set up a path to transmit the
data in a fully flexible fashion. The PIU is composed of i) a 4-port bidirectional
programmable data connection switch (PDCS) to exchange the data among SSD,
DDR-3, host, and RBAA, ii) an arbiter to control the bandwidth sharing of DDR-
3 by serializing its concurrent requests, and iii) a set of synchronizing First In
First Out (FIFO) buffers for each individual port, separately for read and write
directions, to cross the different clock domains. We provide detail information in
Section 2.1.4.

(5) Data and Process Controller (DPC) that is composed of an Instruction Cache
(IC) to locate the instruction set and an execute Finite State Machine (FSM) i) to
manage the accesses to the off-chip data sources and ii) to control the accelerators
to execute the corresponding query, by issuing the appropriate control signals to
the PIU and to the AAU, respectively. These signals are generated by translating
instructions of AxleDB. We provide detail information in Section 2.1.5.

We elaborate the aforementioned components in Section 2.1, individually.

2.1. Major Components of AxleDB
In this section, we elaborate the architecture of AxleDB and describe the role of each
constituting component, individually.

2.1.1. DBMS Software Extensions for AxleDB. The host communicates with AxleDB for
two purposes: i) to access the database tables that reside in the SSD, and ii) to pro-
gram AxleDB using query-specific instructions in order to execute the SQL queries. In
AxleDB, to process complex SQL queries, they first need to be translated to our specific
instructions.2 However, the certain currently unsupported operations, such as floating
point division (DIV), can utilize a fallback-to-host scheme, and instead be executed in
the software extension of AxleDB. We use the CStore FDW extension of PostgreSQL
to access the database tables [10], which we refer to as ’CStore’ for short. CStore man-
ages data in a column-oriented format [11] that cause discarding unnecessary loads
during the query processing and provides better I/O utilization. To transfer AxleDB

2The translation of SQL queries to AxleDB instructions is currently a manual process.
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Fig. 1: Overall architecture of AxleDB with its major components. (1) software exten-
sions for DBMS in the host, (2) Data storage units and device controllers, (3) a set
of efficient query processing accelerators, which is so-called AxleDB Accelerators Unit
(AAU), (4) Programmable Interconnection Unit (PIU) to manage the accesses to the
off-chip data storage units, in a fully flexible fashion, (5) Data and Process Controller
(DPC) to orchestrate the involved modules of AxleDB to process SQL queries.

instructions, we use a shared memory region between the host and FPGA, called Data
Address Table (DAT). DAT resides in the host memory and holds the list of instruc-
tions of AxleDB and addresses of database tables. It is updated when the data tables
are modified, or when a new query needs to be processed by AxleDB.

2.1.2. Data Storage Units and Device Controllers. AxleDB is connected to different sources
of data, i.e., SSD, DDR-3, and host. i) As explained, the software extension of AxleDB is
located on the host to initialize the configuration of the query execution, by issuing the
query-specific AxleDB instructions. Its physical connection is through an PCIe-3 inter-
face, with a maximum throughput of 8 GB/s. For this aim, we use Intellectual Prop-
erty (IP) cores of Xilinx as the PCI-3 device controller. ii) SSD is connected through
an SATA-3 interface, with a maximum throughput of 500 MB/s and is used as a pri-
mary storage to resides the database tables. Furthermore, we use a modified version
of Groundhog [12] as the SATA-3 device controller. iii) DDR-3 is used as the secondary
storage, with a maximum throughput of 15 GB/s. It is used to locate the input/output
data tables and the temporary tables, e.g., hash tables, during the query processing.
Also, we use the Memory Interface Generator (MIG) IP core of Xilinx as the DDR-3
device controller.

To reduce the overheads of data movement, in addition to the techniques as men-
tioned earlier, e.g., direct coupling of column-oriented SSD to the hardware accelera-
tors, AxleDB is equipped with a database indexing method that is explained in Section
4.5.

2.1.3. AxleDB Accelerators Unit (AAU). In this section, we explain the overall organiza-
tion and interconnection of AxleDB accelerators. AxleDB is equipped with a set of
hardware accelerators to carry out the query processing primitives, i.e., filter, arith-
metic, aggregation, groupby, hash build, hash probe, and sort units. Each accelerator
has i) an input data port to stream in input data (din), ii) an output data port to
stream out the result data (dout), iii) an input signal to determine the state of the
unit (state), which is elaborated later in this section, and iv) a set of inputs to define
the functionality of the given accelerator, e.g., to define the filtering qualifiers in the
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filtering unit. Also, some of them have additional ports to access the temporary data
during the processing, i.e., hash tables in the groupby, hash build, and hash probe
units, and partially sorted data set in the sort unit. For this aim, i) the groupby unit
has input/output ports (tin, tout) to read/write the hash table, ii) the hash build unit
has an output port (tout) to write into the hash table, iii) the hash probe unit has an
input port (tin) to read the hash table, and iv) the sort unit has input/output ports (tin,
tout) to access the partially sorted data set. Other accelerators, i.e., filter, arithmetic,
and aggregation units are inherently on-the-fly operations and do not need any access
to the temporary data during the query processing.

To interface AAU with data storage units to transfer the input/output and temporary
data set, the accelerators are connected through two distinct data buses, with respect
to their sequential and random data access types. More specifically, i) the input/output
data are usually accessed sequentially. Thus, the potential long latencies can be cov-
ered by streaming data in a pipelined schema. Accordingly, to access the input/output
data, our design decision is made due to providing a flexible schema. In contrast, ii)to
access the temporary data, we set a shortcut path to DDR-3 with a minimum latency.
Since the temporary data, i.e., hash table and partially sorted data, are accessed ran-
domly, thus, a low-latency path would be efficient. We elaborate the interconnections,
as below:

(1) RingBus of AxleDB Accelerators (RBAA): To build AxleDB flexible enough, we
organize the accelerators inside a unidirectional ring structure that is so-called
RBAA. We use the RBAA to only stream in/out the input/output data tables, and
not temporary data, from/to the data storage units, i.e., SSD, DDR-3, and host, in a
flexible schema. As it can be seen in Figure 1, the accelerators are chained to each
other with a specific order, as follows: filter, arithmetic, aggregation, groupby, hash
build, hash probe, and sort units. To set up the chain, we connect the dout port of
the earlier unit to the din port of the latter unit, consecutively. Also, the din port
of the filter unit and the dout port of the sort unit are used to externally interface
the RBAA. Also, currently, we design RBAA as a single-channel bus, which leads
to a single stream of data in the ring, at a time. Accordingly, to process an SQL
query, we need to break it into a set of data streaming paths. By streaming data
through the data paths, in a sequential order, as RBAA is a single-channel bus,
processing of the corresponding SQL query can be accomplished. We will elaborate
this process in Section 2.2 and also illustrate it for an example query in Section 3.

(2) DirectBus of AxleDB Accelerators (DBAA): As mentioned earlier, groupby, hash
build, hash probe, and sort units needs to be connected to an off-chip storage to ac-
cess their temporary data set. For this aim, we use a dedicated data bus that is
so-called DBAA. As it can be seen in Figure 1, the tin and/or tout ports of accel-
erators are connected to this data bus. It is worth noting that accessing random
data set, e.g., hash tables and partially sorted data set, under a long latency would
cause a significant throughput degradation. Although, some techniques such as
multithreading [22] can alleviate this issue, in the current version of AxleDB, our
sort and hash-based accelerators are single-threaded. Alternatively, in AxleDB, we
make some design decisions to decrease the latency of accessing the temporary
data, by dedicating a direct data bus, as:
— We believe that DDR-3 is the only promising accommodation among the avail-

able data storage units, i.e., SSD, DDR-3, and host, to cope with the temporary
data. Since, DDR-3 has the shortest latency, which qualifies it for random data
accesses such as hash tables and partially sorted data set. Thus, an intercon-
nection to DDR-3 is designed for providing quick temporary data access of the
aforementioned accelerators.
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— Accessing DDR-3 through the ring bus incurs an additional latency (at max 7
cycles for each data access), which as explained, may cause performance degra-
dation. Thus, to access the temporary data, we dedicate the direct bus, so-called
DBAA without any additional latency. Similar to the RBAA, the DBAA is also a
single-channel bus, which corresponds to transfer a single set of data, at a time.

Also, as it is explained in Section 4.3 and 4.4, we substantially optimize the archi-
tecture of the corresponding hardware accelerators by using the on-chip RAMs of
FPGA to discard the latency of the temporary data access during the query pro-
cessing.

In summary, we equip AxleDB with i) RBAA to provide flexibility to access the input
and output data tables from various data storage units, and ii) DBAA to quick access
to the DDR-3 for some of the costly query operations, i.e., group by, hash build, hash
probe, and sort units. The inherent advantage of having two distinct data buses is
maximizing the overall throughput when various storage units are exploited for each
data bus. For instance, by using SSD for the RBAA and DDR-3 for the DBAA, the
bandwidth of both SSD and DDR-3, can be utilized, at a time. On the other hand,
assuming that the RBAA is also connected to the DDR-3, the bandwidth of the memory
needs to be shared among RBAA and DBAA. To share the bandwidth of DDR-3, we
would need an arbiter that serializes the concurrent DDR-3 requests. The arbiter is a
part of PIU, which we give more details on Section 2.1.4.

Nevertheless, in accordance to the SQL queries, a subset of the hardware acceler-
ators are usually utilized at a time and not all of them. To meet this requirement in
the hardwired chain structure of the RBAA, we design the accelerators to work in two
distinct states: active or silent, which can be set by using an input signal. In the active
state, the accelerators normally work, as expected to carry out the expected function
of the query primitive, e.g., filtering, aggregating. In contrast, in the silent state, the
accelerators work as bypass buffers and only pass the incoming data to the next unit in
the ring (with a single-cycle latency), without applying any function. As a consequence
of this structure, depending on the SQL queries, we can utilize only the required subset
of the accelerators, by setting them to the active state and by setting other accelera-
tors to the silent state. Considering the architecture, to access data, the chain incurs a
latency of maximum 7 cycles. However, as mentioned earlier, we use it only for stream-
ing input and output data tables and not for temporary data, which does not cause any
throughput degradation. Because the additional latency is covered by streaming the
sequential data access.

Note that the structure of the AAU may constrain supporting the SQL queries or
achieving a fully optimal query plan of a given query. Below, we discuss the possible
constrains of AxleDB:

(1) RBAA as a Hardwired Chain of the Accelerators: Although, the accelerators
are chained inside a hardwired ring, the current order is viable enough to make
an efficient query plan. Performing a filtering operation at the beginning can sig-
nificantly reduces the size of the data for the next costly operations, i.e., group by,
hash build, hash probe, and sort units, as they need frequent accesses to the off-
chip DDR-3. In summary, by following this design point, the off-chip data accesses
can be decreased, which in turn, corresponds to a significant throughput. We show
more detail on this design point in Section 3.3 for an example query.

(2) DBAA as a Single-channel Data Bus: In the DBBA, only a single stream of data
can use the bus, at a time. In other words, at a time, one of the corresponding accel-
erators, i.e., group by, hash build, hash probe, and sort, can be active. Consequently,
in an AxleDB-specific query plan for a given SQL query, we need to be ensured that
each sub-query exploits only one of the aforementioned hardware units to access
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random temporary data in DDR-3. We elaborate the query planning of AxleDB for
an example query in Section 3.

However, this is not an optimal architecture, but it works for running complex queries
in a fast and flexible way. Also, for any unsupported SQL queries, we can either i) if
possible, rewrite the SQL query toward an equivalent and a more adapted version with
AxleDB or ii) call the software extension of AxleDB to process the query.

2.1.4. Programmable Interconnection Unit (PIU). PIU is designed to make AxleDB flexible
enough to exchange the data among SSD, DDR-3, host, and RBAA. Also, it synchro-
nizes the data movement among different clock domains and manages the bandwidth
sharing. The PIU is composed of the following components:

— A 4-port Programmable Data Connection Switch (PDCS) to exchange the data blocks
among SSD, DDR-3, host, and RBAA. To support all the possible data movement
cases among the data sources, its ports are designed to be bidirectional, whereas
each direction of each port can be utilized independently.

— The buffering and synchronizing FIFO modules to manage the data movement
among the various ports of the PDCS. For the data transfer, buffering and synchro-
nization is a crucial mechanism because, first, various data sources have different
latencies, and second, they work with different clock frequencies. For each read and
write direction, separate FIFOs are dedicated.

— An arbiter to manage the DDR-3 read/write requests, as DDR-3 has two distinct ac-
cess modes, first, a direct connection from some of the accelerators in the DBAA to
access their temporary data and second, an indirect connection through the PDCS
to access the input/out data tables. In the arbiter, among the aforementioned con-
current DDR-3 requests, we set the higher priority to the requests from direct con-
nection DBAA to quickly serve the requests for the temporary data.

In summary, PIU is designed to efficiently share the bandwidth of the data storage
units, while it can provide a fully flexible data movement schema.

2.1.5. Data and Process Controller (DPC) and AxleDB Instruction Set. DPC orchestrates the
involved modules of AxleDB to process the complex SQL queries in a fast, efficient, and
flexible schema. More specifically, it manages the movement of data and the activation
of hardware accelerators to execute an SQL query, by issuing the control signals to the
PIU and the AAU, respectively. Accordingly, the control signals from DPC, i) to the
PIU determine the source and the destination of the data movement, and ii) to the
AAU activate those accelerators that need to be utilized in the RBAA for any certain
SQL query. Also, the parameters of each accelerator are determined by DPC, e.g., the
filtering qualifiers for the filter unit.

The control signals are used by DPC to manage the query processing. They are gen-
erated based on instructions of AxleDB. The query-specific AxleDB instructions are
translated from the SQL queries in the host. Translation of the SQL queries to the
instruction set of AxleDB is currently a manual process. We introduce instructions of
AxleDB later in this section. As it can be seen in Figure 1, instructions are located in
a shared location in the host memory that is called DAT. Then, they are sent to the IC
that resides inside the DPC. The DPC fetches them from the IC, decodes, and executes
by the execution FSM. Consequently, the control signals are issued and sent to the PIU
and the AAU. Accordingly, the query execution is completed, when all the instructions
inside the IC are consumed. In the end, the results of the query can be either stored
back in the SSD or sent to the host. The DPC can now synchronize with the host and
wait for more instructions to process a new query.
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Table I: AxleDB instructions for data movement and query execution.

Data Movement Instructions (DMI) Query Execution Instructions (QEI)
Instruction Description Instruction Description
HOST-SSD# streaming data between

host and SSD
filter# a generic filtering
arith# an arithmetic op.

HOST-DDR# streaming data between
host and DDR

aggregate# an aggregation op.
groupby# hash-based groupby

SSD-DDR# streaming data between
SSD and DDR

hash build# building the hash table
hash probe# probing the hash table

HOST-DCU# sending instructions
from host to DCU

sort# sorting data
minmax index# index checking

Table I summarizes the instruction set of AxleDB for performing the tasks of data
movement and query execution. Data Movement Instructions (DMI) set up the PDCS
to exchange data blocks among the different sources of AxleDB, i.e., SSD, DDR-3, and
host, bidirectionally. Furthermore, depending on the query plan, Query Execution In-
structions (QEI) configure AxleDB to activate the corresponding accelerators in the
RBAA to start streaming the input data. QEI consist of filtering, arithmetic, aggrega-
tion, group by, hash probe, hash build, and sort instructions, as well as MinMax index
creation/deletion instructions. Following by this way, AxleDB supports a large subset
of the SQL queries, by mapping them to the architecture of AxleDB, which provided
by using AxleDB instruction set. However, as mentioned earlier, the unsupported op-
erations can be fallback to the software extension of AxleDB to accomplish the query
processing. DMI and QEI include parameters, e.g., source, destination, key columns,
carried column (payload), as well as accelerator-specific parameters, e.g., filtering op-
erations (<,>,<>) and its qualifiers for the filtering unit.

2.2. The Execution Model of AxleDB
To alleviate the common restrictions of classical processor-based systems, the execu-
tion model of AxleDB relies on the streaming of the data through the processing units.
For this aim, FPGAs provide a unique opportunity, whereas their programmable logic
blocks that are called LookUp Tables (LUT) can be chained together to construct deep
pipelines. In this model, each processing node in the pipeline can be enabled, whenever
the inputs are available.

To process an individual SQL query, we use AxleDB instructions to establish the
required data streaming paths. In other words, in AxleDB, each SQL query is defined
by a set of the data streaming paths. Source and destination of data, e.g., SSD, DDR-3,
host, together with the required processing units in the AAU constitute a data stream-
ing path. Accordingly, to process an SQL query, we need to make a query plan by
breaking the SQL query to a set of sub-queries, considering the constraints of AxleDB’s
structure that is discussed in Section 2.1.3. The generated sub-queries are one-by-one
mapped to data streaming paths that can be run in AxleDB. Later on, we generate the
required instructions and configure AxleDB to establish the corresponding data paths,
sequentially. And finally, by streaming the data through the established data paths,
the processing of the query can be accomplished. In the current version of AxleDB,
at a time, we can establish a single data streaming path. This property leads to a se-
quential, in order and one by one, execution model for the data streaming paths, which
lead to having single stream of data in components of AxleDB, at a time.3 Accordingly,

3However, we believe that by adding parallel channels of data sources in the second version of AxleDB, it
can also support the parallel data streaming paths. This is an ongoing work.
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Fig. 2: The flowchart of the execution model in AxleDB. (In this figure: H= Host, S=
SSD, and D= DDR-3.)

we elaborate the process of defining the data streaming paths by using instructions
of AxleDB, i.e. QEI, DMI. The simplified flowchart of the execution model is shown in
Figure 2. As it can be seen, first, the DPC is initialized by a set of AxleDB instructions
that are copied from DAT in the host to the IC in the FPGA (A). Depending on the type
of each valid instruction (B):

— DMI lead to exchange data among SSD, DDR-3, and host. Thus, after appropriately
configuring the PDCS to set up the required source, destination, and direction, (C)
the data are streamed in (F).

— QEI imply that data needs to be processed in the hardware accelerators, which lead
to access the AAU. In the AAU, the corresponding accelerators are activated, and
others are configured only to pass the data (E). Furthermore, for those QEI that
need to transmit data to/from SSD, DDR-3, or host, which is determined by the
parameters of the instructions, configuring the PDCS is also needed (D). Finally,
data streaming is started through the established data path. As mentioned, at a
time, we have a single stream of data in components of AxleDB. Thus, before reading
new instruction, the current stream needs to terminate executing (F). Later on,
we proceed to read the next instruction from IC (B) to start making the next data
streaming path.

This process continues until consuming all the instructions of the IC while updating
DAT with new instructions can restart the execution process of AxleDB.

3. ILLUSTRATING THE EXECUTION MODEL OF AXLEDB BY AN EXAMPLE QUERY
In this section, to demonstrate how AxleDB works, we illustrate the query processing
procedure for an example query. The example query is Q03 from TPC-H benchmark
[13]. AxleDB runs this query without any required modifications or code rewriting,
where most of the accelerators presented in this work, are utilized. Since AxleDB is
designed to be programmable, we can follow many different query plans to execute
the queries. However, in this example, to show a comprehensive execution model of
AxleDB, where input data is located in the SSD, we built a customized query plan.
Accordingly, we first, load the input data from SSD to the DDR-3, and then, start
query execution by retrieving data from DDR-3. In the rest of this section, we first,
introduce the example query. Later on, show how AxleDB processes this example query
by describing an optimal query plan, by introducing the list of the required AxleDB
instructions to run the query plan, and by explaining how these instructions program
the components of AxleDB to utilize the required modules.
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Fig. 3: (a) Example SQL query: Q03, (b) An example query plan of AxleDB to process
Q03. To have a simpler figure, i) we partition the tables of the DDR-3 memory into two
boxes at above and below of the FPGA, although, AxleDB is currently attached to a
single channel of DDR-3, and ii) we only show essential fields of the labels of arrows,
excluding the input parameters of accelerators, payloads, etc.

3.1. Elaborating the Example Query
The example query is shown in the Figure 3 (a). In a typical SQL query, several lan-
guage elements such as SELECT FROM, WHERE, GROUP BY, and ORDER BY
can exist. These operations can be semantically mapped to specialized hardware ac-
celerators. In this example, the SELECT statement fetches the desired data columns
(l orderkey, revenue, o orderdate and o shippriority) FROM the given tables (customer,
orders and lineitem). The WHERE statement is used to restrict the data in the tables
and includes operations such as logical comparisons and arithmetic operations that
filter the data relevant to the user (e.g. o orderdate < date 1995-03-17, l shipdate >
date 1995-03-17 and c mktsegment = FURNITURE). AxleDBs filtering units can be
exploited to handle the WHERE clauses of SQL queries. When multiple tables are in-
volved, the join statement (c custkey = o custkey and l orderkey = o orderkey) is used to
combine the data in these tables, based on a common field (custkey and orderkey). This
operation can be efficiently mapped to AxleDBs hash join accelerator. The GROUP
BY statement aggregates data into groups based on a given field (i.e. l orderkey,
o orderdate, o shippriority), which is mapped to AxleDBs hash-based groupby accel-
erator. The ORDER BY statement sorts the data in ascending or descending order
based on a given key (i.e. o orderdate, revenue), which can be performed using AxleDBs
sorter accelerator. The LIMIT statement causes to fetch a limited number of records.
As it is further explained in Section 4.4, this operation is currently melded inside of
AxleDBs sorter module.
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3.2. How does AxleDB Process the Example Query?
To process an SQL query in AxleDB; first, the host generates a set of DMI and QEI.
Currently, this is a manual process, but it can be automated by following a similar
approach with Glacier [14]. Figure 3 (b) shows a simplified diagram for one possible
query plan for processing the query Q03 on AxleDB, where the mapping from the key
operations of the query to AxleDBs accelerators is indicated by letters (from A to F).
To have a simpler figure, we did not show many details of AxleDB, i.e., RBAA, PDCS,
instruction parameters, etc. Also, as it can be seen, the execution is accomplished in
nine distinct steps. Each step is distinguished by using a set of arrows with its unique
numbers and colors in the figure. The label of each arrow shows the key columns that
are used in the corresponding part of the processing. Within each step, data can be
streamed in a pipelined fashion, and between steps, it is sequential (in order and one
by one), due to data dependencies.

Due to column-oriented data store format of AxleDB, only the 10 required columns
out of a total of 33 columns (of three input data tables) are loaded from SSD to AxleDB.
On the other hand, while loading data from SSD to DDR-3 memory, the columns of data
are converted into batches that are appropriate for the processing units. Also, during
the processing, different types of data can be stored in the DDR-3 memory, i.e., in-
put data tables (custT, ordersT, lineT), intermediate data tables (IMT1, IMT2, IMT3),
and temporary data tables, e.g., hash tables (HT1, HT2, and HT3). To access to the
aforementioned data tables from the DDR-3, the memory bandwidth is shared. As ex-
plained in Section 2.1.4, we manage bandwidth sharing by using an arbiter to serialize
the concurrent memory requests. We elaborate it in Section 3.3 for a sample data path,
step #7 as below, of the example query. In a nutshell, we perform the following steps
to run Q03 on AxleDB (The presented numbers are for the 1GB scale of the dataset.
However, more information about our benchmark environment is presented in Section
5.3.):

(1) Query processing starts by loading only the necessary columns of customer table to
DDR-3, using ’DMI: SSD-DDR#’. c mktsegment and c custkey columns are loaded
to DDR-3 and others are skipped.

(2) For customer table, first performing a filter on c mktsegment, using ’QEI: filter#’
reduces size of data from ≈ 150K to ≈ 30K records. Later on, for the filtered data,
a hash table (HT1) is built into the DDR-3 based on c custkey field, using ’QEI:
hash build#’.

(3) Query processing resumes by loading only the necessary columns of orders ta-
ble to DDR-3, using ’DMI: SSD-DDR#’. o custkey, o orderkey, o orderdate and
o shippriority columns are loaded to DDR-3, and the others are skipped

(4) For orders table, first performing a filter on o orderdate, using ’QEI: filter#’, reduces
the size of dataset from ≈ 1.5M to ≈ 725K records. Later on, HT1 is looked up based
on c custkey, using ’QEI: hash probe#’. The resulting joint table is stored into the
DDR-3 (IMT1) with ≈ 145K records of data.

(5) Applying a nested hash join process, IMT1 is used as the input table to build the
second hash table based on o orderkey, using ’QEI: hash build#’. The hash table is
stored into HT2.

(6) Query processing continues by loading the necessary columns of lineitem table,
using ’DMI: SSD-DDR#’. l orderkey, l extendedprice, l doscount and l shipdate
columns are loaded to DDR-3, and others are skipped.

(7) For lineitem table, first performing a filter on l shipdate, using ’QEI: filter#’, re-
duces the size of the input dataset from ≈ 6M to ≈ 3.2M records. Later on, in
a pipelined fashion the arithmetic unit is exploited to compute revenue, using
’QEI: arith#’. Probing the second hash table (HT2) based on l orderke, using QEI:
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hash probe#, it generates the resulting joint table into IMT2, with about 30K
records of data.

(8) In this step, data records of IMT2 are grouped into the new table (HT3), based on
a merged key (o orderkey, o orderdate, o shippriority). In addition, an aggregation
on revenue field is performed, using ’QEI: groupby#’. A total number of groups
(records) is ≈ 11K in HT3.

(9) The query processing is finalized by sorting all groups of HT3 based on a merged
key (revenue, o orderdate), using ’QEI: sort#’, and transferring top 10 records to
PostgreSQL, using ’DMI: DDR-HOST#’. (The host is not shown in the diagram, for
a clearer figure.) The final result in IMT3 can also be written into the SSD, using
’DMI:SSD-DDR#’.

Due to explained query plan of Q03, the required instruction set of AxleDB to process
the given query is summarized in Table II. They are composed of many parameters,
e.g., the operation (that defines the appropriate operation), the source (to determine
the source of the data and corresponding address), the destination (to determine the
destination of the data and the corresponding address), the key columns (the columns
that are used as key during the query execution) and the payload (the columns that are
only carried along). In summary, these instructions are used to establish the required
data streaming paths in AxleDB to process the example query Q03, by following the
query plan in Figure 3. Accordingly, as an example, in Section 3.3 we illustrate how
these instructions are used to establish one of the sample data streaming paths, #7, by
following the process in Figure 2.

3.3. Establishing a Data Streaming Path: Elaboration for a Sample Data Path
In this section, we explain how components of AxleDB are leveraged to process the ex-
ample query. As it can be seen in Table II, the processing of Q03 can be accomplished by
13 AxleDB instructions that lead to creating 9 distinct data streaming paths. Among
them, and as an example, we explain the required steps to create the sample data
streaming path #7, which is depicted in Figure 4. As it can be seen, to establish the
given data path #7, 3 QEI are used (#9, #10, and #11). Each QEI determines a specific
part of the data path #7 and finally, by the last instruction the path is established. Due
to each instruction, the DPC generates the necessary control signals to the PIU, to set
up the data movement path, and to the AAU, to activate and configure the required
hardware accelerators. Accordingly, to establish the given data path, steps as below
are proceeded:

(1) Instruction #9: As it can be seen in Figure 4(a), instruction #9 defines a filtering
operation for the data in the DDR-3. Thus, the required actions are i) configuring
the PDCS to stream in the data from the DDR-3, in this case lineT, to the AAU-
RBAA. For this aim, the appropriate ports of the PDCS are utilized. And, ii) acti-
vating the corresponding hardware accelerator, in this case filter unit, by setting it
to work in the active state (state=1). Also, the query-specific filtering parameters
are defined by DPC, ”l shipdate > 1995-03-10”.

(2) Instruction #10: As it can be seen in Figure 4(b), instruction #10 defines an arith-
metic operation for the filtered data. Thus, the only required action is to activate
the arithmetic accelerator by setting it to work in the active state (state=1). Also,
the convenient parameters of the arithmetic unit need to be set. For this aim, the
DPC generates the required control signals to carry out the corresponding arith-
metic operation, ”l extendedprice*(1-l discount)”. It is worth noting that for this
instruction, as it does not have any valid source or destination parameters, we do
not need to modify the PDCS configuration.
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Table II: AxleDB instructions to process the example query, according to the query
plan in Figure 3 (some of the fields such accelerator-specific parameters are omitted in
this table.) The size column shows the size of the data stream for each data path, in
terms of the number of rows, in 1 GB scale dataset.

#path #instr Instruction Fields
operation src dest key cols payload size

(1GB)
1 1 SSD-DDR customer

(SSD)
custT
(DDR)

c mksegment,
c custkey —- 150K

2 2 filter custT
(DDR) — c mksegment c custkey

3 hash build — HT1
(DDR) c custkey —- 30K

3 4 SSD-DDR orders
(SSD)

orderT
(DDR)

o custkey,
o orderkey,
o orderdate,

o shippriority

—- 1.5M

4 5 filter orderT
(DDR) — o orderdate

o custkey,
o orderkey,

o shippriority

6 hash probe — IMT1
(DDR) o custkey

o orderkey,
o orderdate,

o shippriority
0.72M

5 7 hash build IMT1
(DDR)

HT2
(DDR) o orderkey o orderdate,

o shippriority 0.14M

6 8 SSD-DDR lineitem
(SSD)

lineT
(DDR)

l orderkey,
l discount,
l shipdate,

l extendedproce

—- 6M

7
9 filter lineT

(DDR) — l shipdate
l orderkey,
l discount,

l extendedproce

10 arith — — l extendedprice,
l discount l orderkey 30K

11 hash probe — IMT2
(DDR) l orderkey

Revenue,
o orderdate,

o shippriority

8 12 groupby IMT2
(DDR)

HT3
(DDR)

l orderkey,
o orderdata,

o shippriority
Revenue 11K

9 13 sort HT3
(DDR)

IMT3
(DDR)

revenue,
o orderdate

l orderkey,
o shippriority 11K

(3) Instruction #11: As it can be seen in Figure 4(c), instruction #11 completes the es-
tablishing of the data path #7, as it needs to write data into one of the data sources,
DDR-3. Thus, data streaming will be started after this final step. Instruction #11
requires utilizing the hash probe accelerator by setting its state to active (state=1).
Consequently, the other accelerators in the AAU including aggregation, group by,
hash build, and sort units are configured to work in the silent state to only pass the
incoming stream of data to the next unit in the RBAA. Also, the hash probe key, in
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Fig. 4: Establishing the data streaming path #7 by composing together different
AxleDB instructions #9, #10, and #11. The detailed connections between DPC, AAU,
and PIU are shown. Among them, the highlighted components/connections represent
the corresponding parts that are utilized by each AxleDB instruction to set up the
given data streaming path. The control signals for the PIU and the AAU are gener-
ated by DPC.

this case l orderkey, is determined by the DPC. The hash probe unit needs another
DDR-3 memory access to read the hash table, in this case HT2. For this aim, the
corresponding port of the DBAA is activated to access the hash table from DDR-3.

In summary, the data streaming path #7 leads to i) read the lineT table from DDR-3,
ii) filter the incoming data stream based on l shipdate item, iii) apply an arithmetic
function for the filtered data, iv) probe the stream of the data based on the l orderkey
in the HT2 hash table., and finally, v) write the probed data into the DDR-3 in the
index IMT2. In total, there are 3 distinct DDR-3 data access paths in this data path,
i.e., i) to stream in the input data (as explained above in the part of instruction #9)
through RBAA, ii) to access the hash table in the hash probe unit (as explained above
in the part of instruction #11) through a direct DBAA bus, and finally, iii) to stream
out the result data (as explained above in the part of instruction #11) through RBAA.
As mentioned in Section 2, to manage the concurrent DDR-3 requests and optimally
share its bandwidth, the arbiter in the PIU is exploited, which allows the priority to
the DBAA requests to quickly serve the hash table accesses.

4. QUERY PROCESSING ACCELERATORS
In this section, we go through the architecture of the proposed accelerators that are im-
plemented to perform efficient query processing in AxleDB. We proposed query execu-
tion units including filtering, arithmetic, aggregation, sorting, hash join, and groupby,
as well as the MinMax indexing mechanism for I/O optimization.4

For developing, leveraging HLS tools, we have designed the filtering and aggrega-
tion accelerators in Vivado HLS [15], where we have been able to exploit the data
parallelism via Vivados compiler directives. For task-parallel and control-oriented ac-
celerators, such as the hash join and sort engines, Bluespec SystemVerilog [16] is used.

4In the rest of the paper, we assumed input data table as a set of tuples, pairs of key and value. key refers to
the column(s) of data, used for performing the main query operation, e.g., sorting key in a sorter unit. Value
refers to the other columns that need to be carried to make the final resulting data.
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Verilog RTL code is employed for the integration of interface controllers. We select to
employ these HLS tools as a result of our previous empirical analysis of a representa-
tive set of HLS tools for database acceleration [17].

4.1. Filtering Operations, Arithmetic, and Logic Unit
Database filtering is relational operations that test the numerical or logical relations
between columns, in the form of numerical and/or Boolean values. The key importance
of filtering operations in an SQL query is to reduce the amount of data for further
processing [18], [19]. For this purpose, we designed a compile-time parameterizable,
variable width, n-way compute engine that takes in rows of data as inputs, applies a
filtering operation to the desired fields and produces an output bitmap. This bitmap de-
termines the resulting rows for further processing. Similarly, we designed arithmetic,
and logical compute engines. The arithmetic engine supports the integer Add, Sub, and
Mult operations5, whereas the logical engine supports the NOT, AND, OR, NOR and
NAND operations. Also, keywords such as IN, SOME, and EXISTS can also be mapped
to multiple logical operations. The design behind the filtering, arithmetic and logical
blocks encapsulates three major decisions:

– Width of key: In this work, we explored 32-bit and 64-bit data widths for filtering,
arithmetic, and logical operations. There are no limitations regarding custom data
width selection; since Vivado HLS supports it. Nevertheless, using larger data widths
means utilizing more LUT resources. This becomes specifically critical for low-cost
FPGAs because they include LUTs with fewer inputs. Overprovisioning data widths
can result in area utilization problems and decreased computational power by failing
to meet the timing constraints.

– Number of parallel units: The number of units determine how much data-
parallelism can be supported. For this purpose, the approach we followed is to de-
termine the data widths according to the width of DDR-3 RAM line. Thus multiple
blocks can process a memory line that is composed of multiple elements of data. In
this work, one line of DDR-3 RAM is 512-bits and data widths could be either 32 or
64-bits. Thus, 512/32 =16 or 512/64 = 8 units are instantiated in parallel. It is worth
noting that in the TPC-H benchmarks that we looked into, we havent hit to the cases
where the required data width is more than 512 bits. Since the 512-bit data width is
a property of the DDR-3 interface itself, for more data width, the requirements would
be to either (i) use a newer/different technology (High Bandwidth Memory(HBM), 3D
stacking, hybrid memory cube, etc.) that supports a wider memory interface, or to (ii)
lay the data out in parallel DDR-3 channels. In either case, the AxleDB architecture
does not have any inherent limitations regarding the bandwidth to memory.

– Pipelining: We designed all supported filtering, arithmetic and logical operations
of AxleDB to be fully pipelined, with an initiation interval of 1 cycle. Thus, all query
plans that allow pipelining can be fully supported by our filtering, arithmetic logical
and aggregation blocks.

For a given filtering, arithmetic or logical operation, each input data can either be
compared with another input data from another table, or it can be compared with a
constant. For this purpose, scratchpad registers (SPR) are utilized. These registers
hold values and allow the aforementioned operators to be applied to the input data
and the SPRs. Our filter unit is capable of performing numerous logical operations,
including the BETWEEN operator. As an example, in Figure 5(a), the input data array

5The DIV operator (for floating point) can be configured to be included in the AxleDB architecture, it is quick
to implement it using Vivado HLS, but it requires a large area and latency. Since we only needed to use this
operator only a single time in Q14, we decided not the include the hardware for this operator, and to perform
this operation in software (on the host) instead.
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Fig. 5: (a) Filtering blocks that apply the BETWEEN operation to input data using
scratch-pad registers (b) SUM aggregation using binary fan-in technique.

holds the column values that require filtering. SPR 0 and SPR 1 hold the filtering
qualifiers, the values that input data must be compared against. Thus, input data and
SPRs are forwarded to the filters and output are generated. For instance, to perform
date 1996-01-11 < l shipdate < date 1995-01-11 BETWEEN operation, SPR 0 holds
date 1995-01-10 and SPR 1 holds date 1996-01-12 in 32-bit POSIX time format. For
other operations, SPRs work the same way.

4.2. Aggregation Unit
Aggregation operations reduce an input set to a single value. In AxleDB, we provide
an n-way aggregator engine that supports MAX, MIN, COUNT, SUM and AVERAGE.
Aggregation units are designed with the same three design decisions in mind, which
were explained in Section 4.1. They are also fully pipelined with an initiation interval
of 1 clock cycle. Similar to the filtering unit, aggregation units are designed to take
columns as inputs and to finally combine the results to calculate the final aggregate
value. All aggregation operations are implemented in Vivado HLS using the binary
fan-in technique. Based on the input array, the size n binary fan-in depth is log2n,
and n-1 operators are necessary to form the operator tree. An example is presented in
Figure 5(b), where for 8 input elements, 7 sum operators are instantiated to generate
a single pipelined result.

Multiple filtering/aggregation blocks can be exploited in two ways: pipelining or
time-multiplexing. In a pipelined design, streaming data through multiple instances
of the accelerators achieve multiple operations in a single pass. However, for area ef-
ficient designs, a single accelerator can be used in a time-multiplexed way. For the
studied benchmarks, instantiating multiple filter/aggregation blocks in a pipeline pro-
vides the maximum throughput, as we further detail in Section 6.1.

4.3. Hash-Based Units: Table Join and GroupBy
For table joins and groupby operations, we proposed an efficient hashing-based engine.
As a first step for table joins, a hash table is constructed using a hash function over
the key (Build phase). Later on, once constructed, the entries of the second table are
probed against this hash table to generate the resulting joint table (Probe phase). For
the groupby operation, building a hash table over the key can already result in the
desired output data.

Hash collisions are critical in hash-based table join and groupby operations because
they can be detrimental to good performance. Hash collisions indicate a situation
where different keys refer to the same index of the hash table. To resolve collisions,
software fallback [6] is a promising solution, but it causes extra overheads. Alterna-
tively, collisions can be managed in hardware as well, by chaining the colliding hash
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Fig. 6: Hash table caching for enhanced acceleration of table join and groupby. The
DDR-3 that locates the hash table is partitioned into two parts. The first part is in-
dexed and uncached and the second part is only used for collisions and is cached inside
the FPGA. (k0 and k1 are the colliding keys).

table entries [20]. Such behavior can cause pointer chasing and undermine good per-
formance, especially if the hash table is located in high latency DDR-3 memory. To
alleviate this problem, thanks to the architecture of FPGAs, we proposed a pure hard-
ware solution. In contrast, the previous techniques such as [6], whereas only off-chip
memory is exploited, we targeted to cover the high latency of DDR-3 RAM by exploiting
the low-latency Block RAM resources of the FPGA. However, since the size of BRAMs
is not large enough to cope with entire hash tables, we present a hash table caching
mechanism. We presented an early version of the hash table caching technique in [21].
The cache in BRAM includes some of the hash tables entries that were recently used.
Faster access to the cached entries provides a more streamlined execution. Conse-
quently, utilizing DDR-3 RAM and Block RAMs enables us to both, (i) to use the full
capacity of the DDR-3 RAM to store entire large hash tables, (ii) and to exploit Block
RAMs as a hash cache.

As it can be seen in Figure 6, the main components of the proposed engine area Lin-
ear Feedback Shift Register(LFSR)-based hash function that allows constant pipelin-
ing, Block-RAMs of FPGA as the cache, and the logic of the table join/groupby mech-
anism. We can store values (for table join), or an aggregation of values (for groupby)
inside the hash table, in conjunction with the key and a pointer to another hash tables
entry for collision resolution. This way, exploiting Block RAM resources, the cache is
used to avoid slow pointer chasing effectively. It contains direct-mapped copies of hash
tables entries that are recently accessed after a collision. We used the Least Significant
Bit (LSB) of the hash index as the index to the cache entry, and the Most Significant
Bit (MSB) as a cache tag to discard false positives of cache accesses. The proposed
mechanism could also work in conjunction with the multi-threaded hash join engines
[22]. The performance of our caching technique is evaluated in Section 6.1.2.

For any hash collision, in the worst case, we need to perform an additional memory
read to access the corresponding hash table entry in the chain, which incur an 8-16
clock cycles latency. This is the average latency of the memory part in our platform.
However, in the best case, when the read operation of the hash table entry is hit in the
cache, (in BRAM) only one cycle is enough to access it.
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Fig. 7: The architecture of sort engine in AxleDB. (a) Spatial sorter. (b) merge-sort tree.

By the way, the hardware-software co-designed bloom-filter-based hash join acceler-
ator is proposed in [23] that can be a complementary solution for the introduced hash
table caching technique in this paper. We do not use several hash functions, and we do
not run into false positive problems as with the Bloom filter approach. In contrast, we
utilize almost most of the free BRAMs of the FPGA as a cache to achieve an improved
throughput. In [23], as Bloom filters use BRAMs to store the bit vector, the processing
of large data tables may be limited by the size of BRAMs.

4.4. Sorting and Merging Unit
To efficiently sort large datasets, we used two hardware structures in AxleDB. (i) The
sorter is an extension of the spatial sorter [24], which allows AxleDB to effectively
support the LIMIT operation. Furthermore, (ii) we implemented a merge-sort tree to
merge partially sorted sets to be able to sort large input sets.

4.4.1. Spatial Sorter. A spatial sorter is composed of a chained array of sorting regis-
ters, each of which effectively performs a compare and swap operation. As it can be
seen in Figure 7(a), each sorter node is made up of a comparator, two registers, and
two multiplexers [25]. New elements are inserted at the beginning of the sorted array.
At each clock cycle and on each node, an input value is compared with the current
value. The larger value is stored in the sorter node, and the smaller value is passed
on to the next node. An n-node spatial sorter has a time cost of 2n cycles to sort an
input set of size n. For this, for n cycles, n tuples are pushed in one by one at the head
of the sorter. Later on, in cycle n, a flush signal is pushed in at the head node. Until
cycle 2n, this signal propagates until the end of the sorting pipeline. Meanwhile, the
tuples that last entered are shifted deeper in the pipeline until they find their correct
final positions. By 2n cycles, all the tuples that reside in the nodes of the pipeline are
sorted. Then it is possible to start pushing out and writing back the resulting set, and
at the same time, to begin receiving a new unsorted input set. The resource usage of
the spatial sorter is proportional to its number of inputs. For our case where we want
to support wide data inputs, the spatial sorter is a resource-friendly solution.

4.4.2. Merging Sorted Sets. To merge-sort input sets that are larger than the sorter
size, the sorter was coupled with a merging tree, as shown in Figure 7(b). N-way input
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buffers feed the merger with sorted sets. At each cycle, the smaller input data passes
through on all nodes, therefore in the lowest node, the smallest data is output. Block
RAMs of FPGA were used as input buffers to sustain constant throughput under DDR-
3 RAM latency.

4.4.3. Sorting with the LIMIT Operation. An inherent advantage of employing a spatial
sorter is the LIMIT operation. The LIMIT operation is very commonly used in database
analytics. We profit from this fact to have a sorter that can do the LIMIT operation at
O(n) complexity. However, the best property of this kind of sorting hardware is that it
is very regular, chaining-friendly, and maps very well on the FPGA fabric. The LIMIT
operation returns only the top n elements of a sorted set. The spatial sorter of size n,
when constantly fed with input tuples each cycle (regardless of its size), essentially
acts as a LIMIT n operation.

After passing the whole input set through the sorter pipeline, the flush signal will
return the sorted top n elements of the set. Therefore, on AxleDB, sorting with a LIMIT
operation (where n < sorter nodes) has a linear time cost of n cycles and furthermore
does not require a merging operation afterward. We need to ensure that in a LIMIT
n operation, the n results fit inside the sorter nodes, and do not overflow. In the case
of overflow, a complete sort (that also uses the merge tree) would be needed. Later in
Section 6.1.3, we demonstrate this operation, working with query Q03.

4.5. Block-Level MinMax DataBase Indexing Unit
Database indexing is a technique that improves the speed of retrieving the database
tables and is widely used in software DBMS [26], [27], [28]. Indexes are meta-data of
the original dataset that are used to locate data quickly. Although there is no standard
for generating database indexes, the most commonly used types are B-Tree, Bitmap,
and MinMax [28]. In this paper, we focused on the MinMax indexing technique, be-
cause it has a straightforward and efficient idea behind, and in addition, it does not
suffer from the usual overheads of the other indexing methods, i.e., the large size of in-
dexes in B-Tree method6, or the low utilization of Bitmap indexing for high-cardinality
data method. Some of the software DBMS are already equipped with this technique in
different naming: BRIN (Block Range Indexes) in PostgreSQL [29] or Storage Indexes
in Oracle [30]. On the other hand, although database indexing is supported in one of
IBMs FPGA-coupled products, Netezza [31] which is called zone maps, to the best of
our knowledge, it is not investigated thoroughly in FPGA research community yet.

MinMax indexing is an access method intended for the fast scanning of data tables
in SSD, by avoiding accesses to the unneeded blocks. We propose a block-level version
that uses min and max (bMin ,bMax) values for each data block. As a pre-step of query
processing, the aim is to determine data blocks that according to their index values,
will or will not pass the filter. This way, the aim is to avoid retrieving those unnecessary
blocks from SSD.

In AxleDB, in database creation time, the index values are generated and stored on
the SSD. Thus, SSD is partitioned into two distinct parts: data blocks including data
tables, and index blocks including index values. The supported filtering operations
are LESS THAN (<), MORE THAN (>) and BETWEEN (<>). The functionality of
the index checking unit is shown in Listing 1, for a single block i. Depending on the
filtering operator, only and if only these conditions are satisfied, it would be necessary

6In Section 6.2, we reported some experimental results from PostgreSQL equipped with B-Tree indexing.
We observed that in some queries, the I/O transmission of indexes dominates the original dataset execution,
causing significant performance degradation.
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to retrieve the block i from SSD. (biMin and biMax are the min, max index values of
data block i. qMin and qMax are the filtering qualifiers.)

Listing 1: The functionality of index checking function for a sample block i.

OPERATION Index Checking Function
LESS THAN(Field <qMax) (qMax >=biMin)
MORE THAN(Field >qMin) (qMin <=biMax)
BETWEEN(qMax<Field <qMin) (qMax >=biMin)&&(qMin <=biMax)

The index checking function is repeated for all of the indexes, thus, finally we ob-
tain the list of only the necessary blocks of data. Although the total size of indexes is
proportional to the number of data blocks (size of total data divided by block size), as
we only store two values for each block (bMin,bMax), the size of index storage is mainly
negligible, leading to a small performance overhead. We exploited local Block RAMs
of the FPGA to store indexes. The following steps summarize running AxleDB with
MinMax indexing capability, as a pre-step of query processing:

(1) AxleDB initializes the index checking unit with one of the supported operations
(<, >, <>) and their qualifiers (qMin,qMax).

(2) AxleDB first retrieves the index blocks from SSD. Later on, for each particular
index that corresponds to a particular data block, AxleDB checks it (as shown in
Listing 1). Accordingly, the list of the required data blocks for the further process-
ing are generated in the Block RAMs.

(3) Once the index checking process is completed, AxleDB continues the query process-
ing by retrieving only those necessary data blocks that are listed in Block RAMs.

The efficiency of MinMax indexing technique highly depends on the data distribution
model. For instance using this technique, for the highly ordered dataset, most of the
unnecessary data blocks can be detected, which in turn leads to a significant reduction
in I/O transmission. We further analyze it in Section 6.1.4.

5. EVALUATION METHODOLOGY
5.1. Configuration of the AxleDB
We developed AxleDB on a VC709 FPGA development board with an XC7VX690T
FPGA and 4GB of DDR-3 RAM. It accesses a Crucial M4-256GB SSD through a cus-
tomized version of an SATA-3 controller, based on Groundhog [12]. We used a relatively
large block size (512 KB), which can help minimize the SSD overheads and, thus lead
to significant improvements in data transfer throughput. AxleDB is directly attached
to the host through a high-speed PCIe-3 interface for data/instruction transmission.
Our accelerators and DDR-3 RAM controllers run at 200 MHz, PCIe-3 controller at
250 MHz, and SATA-3 at 150 MHz, therefore we used various synchronizing FIFOs
for clock domain crossing.

In order to thoroughly evaluate the efficiency of the various components of AxleDB,
we ran the benchmarks in two modes: (i) cold run, where the input datasets are orig-
inally located inside the SSD, and (ii) warm run, without considering the I/O time of
SSD, and assuming that the datasets are already loaded in the DDR-3 memory of the
platform. Thus, in the warm mode, the total processing time of the queries does not in-
clude the time of loading input data tables from SSD to the DDR-3. To better analyze
the cold and warm runs, we partitioned the total execution time of the query into three
parts: (i) the I/O time of SSD, i.e. the required time of transferring input datasets from
the SSD to DDR-3 memory of AxleDB, (ii) execution time, i.e. the query execution time
of the processing units (accelerators) of AxleDB, and (iii) the time spent on the other
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parts, including query planning time7, the time for PCIe-3 data transfers, and finally
the overhead of device controllers. The last portion is negligible for large scales of data.

5.2. Configuration of Comparison Cases: MonetDB, PostgreSQL and CStore
We evaluated AxleDB against the query processing engines of several state-of-the-art
software DBMS: (i) MonetDB 11.21 [9] as a popular column-oriented database system,
(ii) PostgreSQL 9.5 (PGSQL) as a popular object-relational row-oriented database sys-
tem [8], and (iii) CStore as the PostgreSQL’s column-oriented data store extension
[10]. More specifically, it is worth noting that:

— MonetDB has several unique features to optimize the I/O and computation, simul-
taneously: (i) it is built on a column representation of database relations, (ii) it has
an innovative storage model based on vertical fragmentation, (iii) it has a CPU-
tuned query processing architecture, (iv) it exclusively tries to use the main mem-
ory for the processing, and (v) it has the capability of running queries in a multi-
threaded fashion.

— PostgreSQL is intrinsically a row-oriented database system. It is equipped with a
wide set of database indexing methods, such as BRIN, B-Tree, etc., that can be used
as an appropriate comparison case with the proposed FPGA-based MinMax index-
ing technique in AxleDB. Also, to get better performance, PostgreSQL is extended
with an extra patch to support fixed-decimal data type [33]. Fixed decimal is a fixed
precision decimal type which provides a subset of the features of PostgreSQL’s built-
in NUMERIC type, but with increased performance.

— CStore is an extension that enables column-oriented data storage in PostgreSQL. It
uses the Optimized Row Columnar (ORC) format, which brings some benefits such
as; compression, column-projection, and skips indexes (similar to MinMax/BRIN).

We run MonetDB, PostgreSQL, and CStore on a Supermicro server machine,
equipped with two E2630 Intel Xeon processors, with a total of 12 cores and 24 threads,
running at a maximum frequency of 2.3 GHz. The server is attached to a Crucial M4
SSD disk (as in the AxleDB) to store database tables. The operating system (OS) is
Ubuntu 64-bit 12.04, with kernel version 3.13. To have a fair comparison, we equip
the server with the same size of the memory with AxleDB, 4GB DDR-3. However, we
observe a system crashes of the PostgreSQL/CStore runs for the 10GB scale bench-
marks, which is the consequence of the insufficient system memory. Thus, for this spe-
cial case, the server is equipped with a larger capacity of memory. We observed that
at least 16 GB is enough to accomplish the query processing without system crash-
ing. Consequently, in summary, the host is equipped with 4GB and 16GB for Mon-
etDB and PostgreSQL/CStore experiments, respectively. Furthermore, similar to the
AxleDB, software DBMS experiments were also ran in two modes, i) cold mode, where
input data tables are located in the SSD, and ii) warm mode, where input data tables
are already loaded into the DDR-3 memory from the original database storage, SSD.
To obtain their execution times, we ran each query twice, consecutively. The first run is
in the cold mode. In contrast, the second run is executed using internal buffers, where
the data is already located inside the main memory of the server. The second run is in
the warm mode.

7As the query planning of AxleDB is currently a manual process, thus to have a fair comparison with
software DBMS, we extracted the average time of the query planner of MonetDB (8ms for cold and 2ms
for warm runs), and used it in this part [32].
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5.3. Introducing the Benchmarks Methodology
We evaluated AxleDB with five decision-support TPC-H queries, under various con-
ditions [13]. The studied queries are Q01, Q03, Q04, Q06, and Q14, which heavily
utilize and stress the various hardware accelerators. For instance, Q01 requires sev-
eral aggregation accelerators, Q03 employs nested hash join and sorter operations, and
Q06 heavily utilizes the filtering accelerator. Furthermore, the selected queries repre-
sent process-intensive (Q01), I/O-intensive (Q06, Q14) and I/O-process-balanced (Q03,
Q04) workloads, which allows us to exhaustively analyze the cold and warm runs of
the platforms. This classification is based on running the TPC-H queries in default
PostgreSQL, equipped with B-Tree indexing, and on a host machine with large enough
memory to prevent memory thrashing. We elaborated them in Section 6.2.

The TPC-H database generator allows generating the input dataset in various
scales. Using this capability, we analyzed the AxleDB in 1GB and 10GB scales, to
evaluate it while dealing with small and large datasets. Regarding the maximum size
of the data that can be handled in AxleDB, there are two constraints:

— The size of the input data tables: The maximum size of the input data tables
that AxleDB can handle is constrained by the size of the data storage (DDR-3 for
in-memory- warm runs- case and SSD in other cases- cold runs).

— The size of the hash table: Other constraint is the size of the hash table that
needs to be fitted the DDR-3 size. This is because our hash join/group-by module
uses DDR-3 as the hash table and it does not support yet the extremely large hash
tables that their size exceeds the DDR-3 size.

It is worth noting that for the studied queries in the experimental results in Sec-
tion 6, the aforementioned limitations were never observed. However, attaching larger
DDR-3 RAM to AxleDB, it can cope with larger scales. In addition, other promising
solutions include (i) supporting multiple disks through the use of daughter-cards on
the FPGA board [34], (ii) applying range partitioning on the database tables [35], or
(iii) having a distributed framework [36].

5.4. Introducing the Evaluation Metrics
For each given query, we compare AxleDB against the software baselines in terms of
speedup, throughput, and energy dissipation metrics. The speedup shows the relative
query processing time of the query, throughput in an absolute metric and shows the
amount of the processed data in one second, and the energy is used to compare the
relative energy dissipation (power * time) of each query. These metrics are defined in
equations 1, 2, 3, and 4:

speedup =
query processing time of sw platforms(sec)

query processing time of AxleDB(sec)
(1)

power efficiency =
power consumption of sw platforms(watts)

power consumption of AxleDB(watts)
(2)

energy efficiency = speedup ∗ power efficiency (3)

throughput(absolute) =
total amount of processed data(MB)

query processing time(sec)
(4)

6. EXPERIMENTAL RESULTS
In this section, first, we individually evaluated the components of AxleDB. Later on,
we presented the experimental results of the queries under test and discussed on their
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Fig. 8: The total execution time of the queries, partitioned into per-accelerator.

performance, including comparisons with multi-threaded DBMS. Finally, we reported
and discussed on the power and energy consumption of AxleDB. Later on, the utiliza-
tion rate of hardware resources is discussed.

6.1. Evaluating Query Accelerators of AxleDB
We individually evaluated the query accelerators of AxleDB, including filter, aggrega-
tion, hash join/groupby, sort, and MinMax indexing. For each of the given queries, we
partitioned the total execution time into the time spent in each of the accelerators,
as reported in Figure 8. It is worth noting that, only the query execution time is in-
cluded in this figure, without considering the I/O time of SSD, PCIe-3, or the overhead
of controllers. We will evaluate those parts in the Section 6.2.

6.1.1. Evaluating Filtering and Aggregation Accelerators. In Sections 4.1 and 4.2, we pre-
sented the design idea behind the filtering, arithmetic, logical, and aggregation units.
Before using these units in the AxleDB, we first verified the functionality and also the
I/O interfaces, in Vivado HLS [18], [19]. To enable full pipelining, all arrays are com-
pletely partitioned using Vivado HLS. To improve performance, the execution latency
of all operations take one clock cycle, except for multiplication which takes six clock
cycles. For the queries under test, the filtering of char arrays is handled by the filter
blocks treating the strings as aggregate 8-bit char arrays. However, for regular expres-
sion types of filtering operations, more advanced hardware would be required, which
could be incorporated in AxleDB if desired. As it can be seen in Figure 8, among the
studied queries, the filtering operation is dominant in Q06 and has a significant con-
tribution in Q14, as well. In contrast, for the other queries, as the filtering operation
passes a large portion of data to the further expensive operations, its contribution in
total execution time is relatively reduced.

6.1.2. Evaluating Hash Join and Groupby Accelerators. We evaluated the hash-based join
and groupby on the given TPC-H queries, except for Q06 that requires neither of them.
In our hardware platform, DDR-3 RAM is large enough to store all the hash tables used
in this study. Our Block RAM-based cache size is 2.8 MB, which utilizes more than half
of the available Block RAMs of our FPGA device.

We compared our results against a baseline that does not employ the cache, and
all accesses are served from DDR-3 RAM in a pipelined fashion. Figures 9a and 9b
show the experimental results for the given queries in 10GB scale, in terms of the
hit/miss rate of the cache and the speedup of hash join/groupby equipped by the hash
table caching mechanism in comparison to the cache-less baseline version, respectively.
On the experiments of 1GB scale, we observed that the cache is not utilized as there
are no hash collisions and also hash table fits in the Block RAMs. For those queries
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(a) (b)

Fig. 9: Evaluation results of the proposed hash join engine. (a) Hash table caching
results: cache hit ratio. (b) Hash table caching results: the speedup comparison against
the baseline without any hash table caching.

with several join/groupby operations, such as Q03, we run all the involved operations
separately and later on, their summation is depicted in this figure, as the final report
of each particular query. The performance gains employing caching can be perceived
as a direct consequence of the cache H.R (up to 63.1%). Accordingly, as it can be seen
in Figure 9b, that the speedup varies from 1.4X to 3.2X for the given queries. Although
in our experiments the improvement limitation is mainly due to the limited cache size,
the Block RAM capacity in modern FPGAs is in the order of tens of MBs, which could
help build larger caches.

Analyzing the breakdown of query execution time in Figure 8, we can see that hash-
based operations dominate the execution time in some of the given queries: i.e. the
groupby operation in Q01 and the hash join operations in Q03 and Q04.

6.1.3. Evaluating the Sorting Accelerator. The sorter performance and area usage is a
function of how deep the sorter is and how wide the merger circuitry is. Theoreti-
cally speaking, memory capacity and bandwidth limitations apart, there is no limit on
how many elements could be sorted using such a sort-merge scheme. For n elements
to sort, our approach takes 2n cycles using only the sorter module, and an additional
n cycles for each n-way merge tree run. Eg. If we have an 8-node sorter and a 4-to-1
merger, to sort n=32 elements, it takes (32x2 (sort) + 32 cycles (merge)) cycles, which
is 3n cycles in total, plus latency. But for n=128 elements, it would take 128x2 cycles
(for sort), but we still have 128/8=16 partially sorted sets to merge, which can be done
with 4 iterations of 4-to-1 merge plus a final iteration (again, of a 4-to-1 merge), which
takes a total of 5n cycles: so the whole sorting operation takes 7n cycles in total, plus
latency.

More specifically, working with Q03, the LIMIT operator permits us to require a
sorter that only needs to be larger than 10 nodes, and no sort-merger circuitry is
needed. The spatial sorter needs to support at least a 16 Bytes key and a 16 Bytes
value. However, Q01 requires support for wider data (16 Bytes key, 48 Bytes value), as
well as a deeper sorter unit. In Section 6.3, we elaborate more on our final circuitry
of choice for running our experiments. For the other queries, the sorter module is not
needed, as they do not have any ORDER BY operation.

6.1.4. Evaluating MinMax Indexing Technique. To evaluate our FPGA-based indexing
method, we run the benchmarks with MinMax indexing in software DBMS, called
BRIN (Block Range Indexes) in PostgreSQL and skip indexes in CStore. As illustrated
in Section 4.5, the MinMax indexing method can be effectively utilized in the highly-
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Fig. 10: Performance results for the studied benchmarks: MinMax indexing in AxleDB
vs. BRIN indexing in CStore and PostgreSQL, for sorted and unsorted (default) 10GB
scale dataset. Lower is better.

ordered datasets. However, TPC-H is a synthetic benchmark with mainly a normal dis-
tribution of data. Thus, to investigate the efficiency of the MinMax indexing method,
we generated sorted versions of the data tables of the given queries and ran them on
AxleDB/CStore/PostgreSQL using the modified tables. These tables are sorted based
on those keys, which are also used in the filtering operation of the given queries. For
instance, Q03 is sorted and also indexed based on l shipdate.

Figure 10 presents the total execution time of the queries in 10GB scale, which is
broken down into the aforementioned partitions. In general, we observed that all of the
platforms (AxleDB, PostgreSQL, and CStore) could process the given queries on sorted
datasets faster than the unsorted versions, thanks to the inherent characteristics of
the MinMax indexing method. However, the speedup varies for different queries. More
specifically, we observed that:

— Q01 is a process-intensive query. Thus, the indexing method is not efficiently uti-
lized (for instance, we saw that there was no speedup of AxleDB comparing sorted
vs. unsorted datasets). However, we observed a 6.6X speedup comparing AxleDB
against PostgreSQL and CStore.

— in Q03 and Q04, the total query processing time of AxleDB is reduced proportionally,
up to 40%.

— in Q06 and Q14, the total query processing time is significantly reduced in all the
platforms (for instance, 5.5X and 8.2X speedup of AxleDB on sorted vs. unsorted
datasets). These queries are I/O-intensive, thus, skip loading most of the unneces-
sary parts of data lead to the considerable speedup, thanks to the efficient utilization
of the indexing method.

In AxleDB, the utilization of MinMax indexing method not only improves the I/O
throughput but also reduces the overall query execution time. For instance, as it can
be seen in Figure 10, running AxleDB for sorted vs. unsorted datasets, we observed a
5.8X speedup of the execution time in Q06.

6.2. Overall Performance Analysis
In this section, we compared the query processing time of AxleDB against MonetDB,
CStore, and PostgreSQL under various conditions. For the overall performance anal-
ysis, we ran the platforms in default mode: (i) MonetDB without any indexing, (ii)
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(a)

(b)

Fig. 11: Total query processing time of the studied benchmarks in cold mode, com-
paring AxleDB vs. MonetDB, CStore, and PostgreSQL. (a)1GB scale, (b) 10GB scale.
Lower is better.

CStore that is equipped with an embedded MinMax indexing (called skip indexing),
(iii) PostgreSQL, which is equipped with B-Tree indexing, as well as an index-free
version, and (iv) AxleDB with the MinMax indexing method. The experimental re-
sults of cold and warm runs of the platforms, on 1GB and 10GB scales, are shown in
Figures 11 and 12, respectively.

6.2.1. Evaluation of Cold Runs. Figure 11 presents the total processing time, broken
down into the aforementioned partitions. On average, AxleDB can process queries
more than an order of magnitude faster than CStore and PostgreSQL (15X in 1GB
and 13.6X in 10GB scales), as well as showing speedup against MonetDB (3X in 1GB
and 4.7X in 10GB scales). More specifically, among the set of studied queries, we ob-
served that for:

— process-intensive queries (Q01), as it can be seen in Figure 11(a), for 1GB scale,
the I/O time of SSD is negligible, the indexing method is not utilized well, and the
execution time is dominating. In the process-intensive workloads, the performance
gain of the AxleDB is mainly the consequence of exploiting highly efficient query
accelerators, in a deeply pipelined fashion. For this particular query, the speedup is
6.3X compared to MonetDB, and 7.1X against the different versions of PostgreSQL,
including CStore, PostgreSQL-indexed, and PostgreSQL-non-indexed. Although for
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10GB scale, as shown in Figure 11(b), AxleDB, CStore and PostgreSQL expose simi-
lar behaviors, we observed that MonetDB is not optimized very well, as it frequently
accesses the SSD to retrieve data. This is the result of insufficient memory to store
temporary data for this particular memory-dependant process-intensive query.

— I/O-process-balanced queries (Q03, Q04), the improvement of AxleDB is the con-
sequence of both I/O efficiency and faster execution. For instance, AxleDB reduces
SSD I/O time by 17.9X and execution time by 31.5X for Q04 in 1GB scale, compar-
ing to the index-enabled PostgreSQL, which leads to a total of 23.4X speedup for
this particular case. For these queries, on average, the speedup is 1.8X for 1GB and
2.5X for 10GB scale, against MonetDB, and 12.2X for 1GB and 12X for 10GB scale,
against different versions of PostgreSQL.

— I/O-intensive benchmarks (Q06, Q14), SSD I/O time is dominating. Comparing
PostgreSQL with index-enabled vs. non-index versions, we unexpectedly observed
a significant overhead of B-Tree indexes, which causes substantial performance
degradation. In contrast, AxleDB, CStore, and MonetDB, thanks to their column-
oriented data storage, significantly reduce SSD I/O transfers. The results demon-
strate that AxleDB can process these queries, on average 2.4X and 2.3X faster than
MonetDB, and 21.6X and 18.7X faster than the average of different versions of Post-
greSQL, for 1GB and 10GB scales, respectively.

In summary, the results clearly demonstrate that AxleDB achieves the acceleration of
query processing, thanks to the pipeline-optimized query accelerators, and simultane-
ously optimizes the SSD I/O performance, thanks to the data movement techniques
that were used, such as direct attached, column-oriented data storage and database
indexing.

6.2.2. Evaluation of Warm Runs. For the warm run mode, the speedup of the AxleDB
compared to the software platforms is the consequence of the pipelined execution of
the query accelerators in the AxleDB. Furthermore, as it can be seen in Figure 12(b),
in 10GB scale and for some of the queries, the lack of memory in the host causes mem-
ory thrashing that leads to a performance degradation of software platforms. More
specifically, for different scales of datasets:

— In 1GB scale, as it can be seen in Figure 12(a), we observed that the attached mem-
ory of the platforms is large enough to already store the small-sized data. Thus, the
SSD I/O is totally skipped. Consequently, the speedup of AxleDB against software
platforms is the sole result of a faster query execution in AxleDB. The speedup of
AxleDB is from 1.6X to 5.3X against MonetDB (on average 2.9X), and from 9.8X to
34.2X (on average 19X) against the different variants of PostgreSQL.

— In 10GB scale, as it can be seen in Figure 12(b), we observed several exceptions,
where the memory capacity of the platforms is not sufficient to store entire datasets.
(i) For MonetDB, the SSD I/O time contributes to 71%, 52% and 64% of the total
query processing time for the queries Q01, Q03, and Q04, respectively. This I/O
overhead is the result of the extra data (parts of the input dataset or temporary data
that is needed during the processing) retrieved from SSD. (ii) On the other hand,
for PostgreSQL, we observed memory thrashing for the index-enabled version of
Q06. This overhead is the result of a large amount of memory used for the indexes.
For this particular case, the I/O contributes to 82% of the total query processing
time, which, in turn, executes significantly slower than AxleDB (304X). Eventually,
the speedup of AxleDB ranges from 1.3X to 19.4X against MonetDB (on average
7.1X), and from 7.9X to 131X (on average 38.1X) against the different variants of
PostgreSQL.
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Fig. 12: Total query processing time of the studied benchmarks in warm mode, com-
paring AxleDB vs. MonetDB, CStore, and PostgreSQL. (a)1GB scale, (b) 10GB scale.
Lower is better.

In this section, to evaluate the cold and warm runs, we used a single-threaded ver-
sion of software platforms and observed a significant improvement using AxleDB. For
further investigations, we will analyze their multi-threaded version in Section 6.4.

6.3. A Discussion on the Optimized points of AxleDB in terms of Data Management and
Execution Accelerating

In this section, we analyze the speedups of the warm against cold runs of AxleDB
against the comparison cases for the studied queries. In general, the significant
speedup of AxleDB against software-based comparison cases is the consequence of
two optimization points: i) offloading the query processing onto the FPGA and follow-
ing the streamline dataflow execution model and ii) Optimized accesses to the SSD
(tightly coupled to the processing units -accelerators- in the FPGA). Accordingly, we
analyze their impact in the speedup of AxleDB for each query individually. Toward
this goal, by comparing the experimental results in Figure 11(a) (cold runs) and Fig-
ure 12(a) (warm runs) in 1GB scale, we observe that for:

— Offloading the query processing onto the FPGA: To evaluate the impact of this
optimization point, we use the experimental results in Figure 12(a) for the warm
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Fig. 13: Comparing the practical throughput of AxleDB against MonetDB and Post-
greSQL. (a) cold runs in 1GB scale. (b) warm runs in 1GB scale. Higher is better.

runs. We observe on average 2.9X and 18.9X speedup of AxleDB against MonetDB
and PostgreSQL, respectively, in 1GB scale. Since there is no memory thrashing in
the 1GB scale of warm runs, we can conclude that these speedups are purely the
consequence of the FPGA offloading in AxleDB. Moreover, as it can be seen, Mon-
etDB is more optimized than PostgreSQL especially in Q06 and Q14, which can be
the consequence of better memory management (and higher bandwidth utilization)
in MonetDB.

— Performing optimized access to the SSD: To evaluate the impact of this opti-
mization point, we use the experimental results in Figure 11(a) for the cold runs. As
it can be seen in this figure, the total query processing time is partitioned into the
SSD I/O and the execution time in the processing units. Comparing only the SSD
I/O time (blue part), we observe that AxleDB is on average 3.1X and 10.8X more
optimized than MonetDB and PostgreSQL, respectively, in 1GB scale. This can be
the consequence of the better SSD I/O management in AxleDB thanks to the tight
coupling of SSD to the hardware accelerators. This lets AxleDB skip the loading of
the unnecessary parts of the data tables, and provides a higher utilization rate of
the SSD bandwidth by using the large block sizes (up to 1MB). Moreover, as it can
be seen, the SSD I/O management in MonetDB and CStore version of PostgreSQL
is more optimized than the default version of PostgreSQL, as they follow a column-
store data format.

6.4. Overall Throughput Analysis of AxleDB against the Software Platforms
In this section, we briefly analyze the throughput of AxleDB, MonetDB, and an average
of different versions of PosgtreSQL. The experimental results are shown in Figure
13 (a) and (b) for cold and warm runs, respectively, in 1Gb scale. The throughput is
computed as the amount of pure data (input and output data tables) that can are
processed in each platform, as formulated in the Equation 4. Another word, we did
not include database indexes, intermediate tables e.g. hash tables, etc., to compute the
overall throughput in this figure. As it can be seen:

— in the cold runs, the SSD throughput is the bottleneck of the overall throughput
that limits it to below 500 MB/s (the maximum theoretical throughput of the SATA-
3 interface.). However, we observe better throughput of AxleDB in comparison to the
other platforms.
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(a) (b)

(c) (d)

Fig. 14: Comparing the speedup of AxleDB vs. multi-threaded MonetDB. (a) cold runs
in 1GB scale. (b) warm runs in 1GB scale. (c) cold runs in 10GB scale. (d) warm runs
in 10GB scale. y-axis represents the speedup of AxleDB against the multi-threaded
MonetDB- the relative query processing time, as formulated in the Equation 1. Higher
is better.

— in the warm runs, as data tables are located in the DDR-3 memory, thus there is
no SSD I/O bottleneck, and we observe better throughput up to 3.2 GBPS. However,
as it is expected, the intermediate data transmission prevents to achieve the max-
imum theoretical throughput of the DDR-3 memory. More specifically, we observe
this behavior in Q01, whereas as discussed in Section 6.1 and shown in the Figure
9 (a), the groupby aggregation operation dominates the total query processing time,
as a consequence of significant intermediate data transmission.

It is worth noting that in AxleDB, MonetDB, and CStore we need to load only the nec-
essary columns of data tables to the FPGA. In contrast, the other row-based versions
of PostgreSQL, we load the entire data tables. This design point is already considered
in the throughput results.

6.5. Evaluating the Performance of AxleDB against Multi-threaded MonetDB
To analyze the effects of the multi-threading, we compared AxleDB against the multi-
threaded version of MonetDB. Unfortunately, as of now, PostgreSQL and its variants
do not support multi-threading. Figure 14 shows the experimental results for cold and
warm runs of 1GB and 10GB scales, in terms of the normalized speedup of AxleDB
vs. MonetDB, exploiting a varying number of CPU threads. We did not observe any
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significant changes in the behavior of MonetDB utilizing more than ’8’ threads. Thus
the diagram includes the experimental results up to 8 threads. We observed that:

— For cold runs, as it can be seen in Figure 14(a) and (c), utilizing additional threads
does not lead to improving the performance of MonetDB, except for Q01, which is
a process-intensive query. Consequently, for Q03, Q04, Q06 and Q14, a constant
speedup is achieved, almost independently from the number of threads utilized.
In contrast, in Q01, utilizing more threads accomplishes the query execution in a
parallel and thus in a rapid fashion, which causes to reduce the speedup of AxleDB
vs. MonetDB from 6.3X to 1.2X in 1GB, and from 14.1X to 8.8X in 10GB scales.
Furthermore, for 10GB scale as a result of memory thrashing issue, in Q01 the
speedup of AxleDB is about an order of magnitude, while for the other queries, it is
between 1X and 3X.

— For warm runs, as it can be seen in Figure 14(b) and (d), as there is no SSD I/O
transferring time (except those queries where memory thrashing was observed),
utilizing more threads leads to better performance of MonetDB. Accordingly, for
10GB scale, the speedup of AxleDB varies between 5.3X and 1.6X, and between
2.8X and 0.98X, against single-threaded and 8-threaded MonetDB, respectively.

In summary, we observed that multi-threading in MonetDB leads to high perfor-
mance, especially in process-intensive queries. However, as AxleDB simultaneously
employs a set of highly-efficient accelerators, as well as optimizing the I/O, it can ac-
complish the processing of the studied queries faster than multi-threaded MonetDB in
most cases.

6.6. Evaluating the Energy-Efficiency of AxleDB against Multi-threaded MonetDB
Table III shows the power consumption of AxleDB, estimated using Vivado Power Es-
timator after the Place & Route stage. A considerable amount of power is dissipated
while interfacing hardware and accelerators. Also, multiple clock domains draw addi-
tional power in the data connection switch. On the other hand, to measure the power
dissipation of the processor, we used Intels Running Average Power Limit (RAPL) en-
ergy meter. RAPL exposes energy usage estimates to software via model-specific reg-
isters, using hardware performance counters and I/O models [37].

For the comparison against state-of-the-art DBMS, we considered the total power
consumption of AxleDB and software platforms, excluding the power dissipation of
data storage devices, i.e. SSD and DDR-3 RAM. We reported the energy efficiency of
AxleDB against multi-threaded MonetDB in Figure 15. It is worth noting that the en-
ergy consumption (in Joules) is obtained by measuring the power dissipation using
RAPL for software platforms and using Vivado tools for AxleDB (in Watts), and multi-
plying it with the total query processing time (in seconds). Regarding the experimental
results, we observed that:

— As it can be seen in Figure 15(a) and (c), for cold runs of MonetDB in 1GB scale,
AxleDB is 3.5–14.8X (on average 6.7X), and 2.4–5.3X (on average 3.9X), more energy
efficient than the single-threaded and eight-threaded MonetDB, respectively. The
improvement for 10GB is more significant, as it varies from 5X to 32.9X (on average
10.8X), and from 4.9X to 23.4X (on average 9.1X). In some cases such as Q01, this
is the result of memory thrashing. Furthermore, in cold runs, as the SSD I/O has
a significant contribution, the measured power dissipation of computing cores does
not considerably vary.

— As it can be seen in Figure 15(b) and (d), for warm runs of MonetDB in 1GB scale,
the energy optimization of AxleDB varies from 5.5X to 13.1X (on average 8.1X),
and from 2.8X to 10.3X (on average 6.3X), compared against the single-threaded
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(a) (b)

(c) (d)

Fig. 15: Comparing the energy efficiency of AxleDB vs. multi-threaded MonetDB. (a)
cold runs in 1GB scale. (b) warm runs in 1GB scale. (c) cold runs in 10GB scale.
(d) warm runs in 10GB scale. y-axis represents the relative energy efficiency of the
AxleDB against the multi-threaded MonetDB- the relative energy efficiency as formu-
lated in the Equation 3. Higher is better.

and eight-threaded MonetDB, respectively. Scaling up to 10GB scale, similar to cold
runs, we observed better optimization. Exploiting more threads in warm runs of
MonetDB leads to additional power consumption, as more processor cores are active.

Furthermore, compared to the different variants of PostgreSQL, including indexed,
non-indexed and CStore, we observed that AxleDB is at least an order of magnitude
more energy efficient, on average 25.7X for cold runs and 62.1X for warm runs.

In summary, as AxleDB is inherently faster than software DBMS, thanks to its
deeply-pipelined architecture, and is also more power-efficient, thanks to a lower op-
erating frequency than software platforms (on average 200 Mhz vs. 2.3 GHz), thus as
we reported in Figure 15, it is more energy efficient, as well.

6.7. Hardware Resource Utilization
The flexible design of AxleDBs components allows for various compile time parameter-
ization. For example, the sorter module can be configured for different depths, widths
or ascending/descending orderings. Table IV shows the area reports, obtained by set-
ting 16 Bytes for the key, and 48 Bytes for the value field for the components. This
compile time configuration covers all the requirements of the studied queries.

As it can be seen in Table IV, we observed that the data-parallel filtering and aggre-
gation accelerators require a significant number of LUTs. The task-based join/groupby
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Table III: Power Cons.

Component Power(W)
clocks 1.1
logic 0.77
interfaces 3.6
signals 1.1
I/O 1.01
Acc/PDCS/RBAA

DPC/FIFOs 5.05
leakage 0.07
Total 12.7
Total
excluding
interfaces

9.1

Table IV: Hardware Resource Utilization of AxleDB

Component LUT FF BRAM DSP
filter/aggr/arith 10396 2436 - 256
hash Join engine 13758 10623 724 -
sorter 128-node 148937 131730 - -
merger (16-to-1) 33061 33840 33 -
index checker 2870 689 45 -
PDCS/RBAA
DPC/FIFOs 2401 3884 26 -

SATA-3 ctrl 2018 2607 122 -
DDR-3 ctrl 12226 8329 1 -
PCI-3 ctrl 60671 62993 59 -
Total 283532 256490 1010 256
Virtex-7 usage (%) 65.7 30 68.6 7.1

modules require an extensive usage of hard memory blocks, because of a high amount
of meta-data and the caching circuitry that is generated for providing higher perfor-
mance. Also, to be able to support all the studied queries, the sorter is configured to
be wide enough for running Q01, resulting in a large circuit that occupies around one-
third of the FPGA. A 256-node sorter would occupy double this area and would cease
to fit our FPGA along with all the other supported modules in AxleDB.

7. RELATED WORK
Previous studies have looked into designing efficient query processing engines, em-
ploying vector architectures [38], ASICs [4], GPUs [39] or hybrid [40], [41]. On the
other hand, other approaches either used FPGAs statically [2], [24], or they leveraged
dynamic reconfiguration to better fit the requirements of each query [42], [43], [44].
We differ from these works by following a static but programmable approach in query
processing and data management, as we can support as many operations as we need,
without requiring runtime reconfiguration. Industry has also invested on a few prod-
ucts, IBM Netezza [31] and XtreamData dbX [45], which offer full DBMS solutions.

We compared AxleDB with a set of state-of-the-art FPGA/ASIC-oriented query pro-
cessing platforms: Ibex [6], Q100 [4], BlueDBM [36], [46], [47], and [46]. Ibex is a
database storage engine that is equipped with a limited set of query processing opera-
tions, working directly with data inside SSD. Q100 proposes domain-specific database
processors, but without supporting data management in off-chip storage. BlueDBM
proposes a system architecture with flash-based storage and in-store processing capa-
bilities, but it is not specialized for query processing. Sukhwani et al. [46] present an
FPGA-based query processing engine that is attached to a DBMS via PCIe-3 with a
data compression capability. Jaeyoung et. al. [47] present a smart SSD that incorpo-
rates it with memory and computing resources inside the SSD controller. [46] presents
a query processing systems that efficiently uses partial dynamic reconfiguration capa-
bility of FPGAs to the on-the-fly query processing.

Table V lists the embedded accelerators for each of the studied platforms. AxleDB
currently covers most of the necessary modules to run complex queries, although op-
erations such as pattern matching or compression are not supported yet. On the other
hand, as illustrated in Section 4, we proposed a novel and efficient accelerators for
many important SQL query primitives. Our filtering and aggregation units are de-
signed in an optimized way using modern HLS tools, our hash join engine is an en-
hancement of Ibex [6], and our sorter, based on the spatial sorter [25] is upgraded with
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Table V: Comparing AxleDB with state of the art platforms, in terms of accelerators

AxleDB Ibex Q100 BlueDBM Sukhwani
et al.

Jaeyoung
et al.

Ziener
et al.

filter X X X × X X X
aggregation X X X × X X X
hash join X X × X X × X
merge join × × X × × × X
order by X × X × X × X
DB indexing X × × × × × ×
compression × × × × X × ×

Table VI: Comparing AxleDB with state of the art platforms, in terms of features

AxleDB Ibex Q100 BlueDBM Sukhwani
et al.

Jaeyoung
et al.

Ziener
et al.

Tech FPGA FPGA ASIC FPGA FPGA CPU FPGA

COL/ROW COL
+ROW COL COL —– COL COL COL

+ROW
ISA X × X X X X X
SSD direct direct indirect direct indirect direct indirect
Cluster × × × X X × ×

extra LIMIT operation capabilities. Database indexing is embedded in the AxleDB and
IBM Netezza, although Q100 is also equipped with a range partitioning method, as a
preprocessing step for the ORDER BY operation, that could potentially be extended to
serve for database indexing. Also, we summarized the technical characteristics of the
given platforms in Table IV. More specifically, comparing AxleDB with:
–Ibex: we follow the similar approach to place the disk near the query processing
units. However, Ibex can suffer from programmability capabilities in data manage-
ment. Also, we propose a wider set of query accelerators, whereas Ibex is not equipped
with a sorter accelerator or indexing capabilities. In Ibex, software fallbacks in some
of the query accelerators such as hash join can diminish its throughput.
– Q100: our work differs mainly in micro-architecture and ISA design. Instructions of
AxleDB are centered around data movement and initiating the accelerators, whereas
Q100 has SQL-style instructions. The authors based their micro-architecture design
on the sensitivity analysis of TPC-H queries. However, the off-chip bandwidth exper-
iments have shown that query execution speeds are affected to a greater extent. In
contrast, our platform is designed to maximize the available off-chip bandwidth with
hardware indexing. This design effort is also complemented by explicit data move-
ment instructions. Also, as Q100 is tailored as a composition of special purpose (ASIC)
blocks, thus, extending the blocks can be an expensive process.
– BlueDBM: Its single node consists of flash storage, accelerator hardware in FPGA,
flash controller and network interface. Data requests are sent from the host with mini-
mum kernel overhead. Specialized accelerators process the data retrieved directly from
flash storage, bypassing DRAM. AxleDB also supports different types of data move-
ment, allows data streaming among the host, SSD, DDR-3, and accelerators. AxleDB
is specialized for database query processing using an efficient set of query processing
accelerators, whereas BlueDBM does not support the performing of such complex SQL
queries. BlueDBM has a distributed structure that allows them to scale up more pro-
cessing nodes, providing a larger address space. This capability is not yet supported
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in AxleDB. However, the underlying architecture does not pose any difficulties for pro-
viding such functionality.
– Sukhwani et al. [46] presents an FPGA-based query processing engine. The engine
is attached to a DBMS via PCIe-3. The supported functionality of the accelerator is
filtering, join and sorting. To improve the throughput, the data is compressed by the
host. Therefore, the decompression is the first step in the query processing pipeline
on FPGA and processed queries are sent back in decompressed form. The authors do
not provide any indexing mechanisms, and all queries that are sent to the accelera-
tor require a full table scan. Also, the join and sorting units are not streaming based.
Thus they use on-board DRAM for storing intermediate results. In the query pipeline,
the filtering units always come before the join/sort units. Necessary data is read from
DRAM of the host. Thus, this requires additional data movement from external stor-
age to DRAM by either the host or the accelerator. In the AxleDB, the data movement
and acceleration instructions allow processing blocks to execute in any order. Hence, it
is possible to utilize a join/sort unit before filtering. AxleDB is designed to interface ex-
ternal memory directly and stores intermediate data in FPGA’s memory. Also, AxleDB
uses MinMax indexing to traverse data that resides in external SSD memory.
– Jaeyoung et. al. [47] presents a smart SSD that incorporates SSD storage with
memory and computing resources inside the SSD controller. This design allows inter-
nal aggregate I/O bandwidth to be 5X higher than fastest SAS and SATA architectures.
The Smart SSD architecture presented consists of embedded processors that are on the
SSD host interface controller. They are coupled with DRAM and SRAM memories for
intermediate data storage. NAND memory arrays inside SSDs allow parallel access.
Contrary to Smart SSD, AxleDB is designed to work on an FPGA, and it is connected
to an SSD via an SATA port. This allows the design of specialized accelerators on the
FPGA rather than general purpose embedded processors. In two cases, smart SSDs
can fail to exploit the advantages of its architecture, because these scenarios might
not require extensive communication between the embedded processors and the SSD
units. The first case is when the embedded processors require data communication be-
tween the host, and the utilization of the SSDs are very low. Next, the general purpose
local memories of the embedded processors do not satisfy the memory requirements for
the problem at hand. This might cause register spilling and decrease the performance.
In these two cases, specialized accelerators can provide better results compared to gen-
eral purpose embedded processors of the smart SSD.
– Ziener et. al. [44] presents a query processing platform that leverages the partial
dynamic reconfiguration capability of FPGAs to better fit the requirements of each
query on-the-fly. Query primitives such as filtering, aggregation, hash join, and sorter
are gathered in a library while supporting both column- and row-oriented data store
formats. However, this work does not follow a direct-SSD-coupled approach that di-
minishes the overall throughput, which can suffer from data offloading and partial
reconfiguration overheads.

8. CONCLUSIONS AND FUTURE WORK
In this work, we demonstrated the design and implementation of AxleDB, a pro-
grammable query processing platform that couples efficient query-specific accelerators
with COTS storage for providing better performance and energy efficiency compared
to state-of-the-art software DBMS. In AxleDB, we targeted to decrease the execution
time and to reduce the I/O overhead of data movement, simultaneously. To acceler-
ate complex SQL queries, we proposed a diverse set of highly efficient query accel-
erators for aggregation, filtering, sorting, join and groupby operations. To reduce the
I/O overheads, we used some techniques such as directly attaching SSD storage with
column-oriented data to the processing units, and applying database indexing to dis-
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card unnecessary data in the pre-processing time of the query. AxleDB was designed
to be programmable by software through a set of special instructions, which enables
flexibility in database acceleration in a novel way.
We observed that running a set of TPC-H queries, AxleDB can achieve query process-
ing speedups ranging from 1.8X to 34.2X and more energy efficiency ranging from 2.8X
to 62.1X, compared to the state-of-the-art DBMS, MonetDB, and PostgreSQL that run
on a modern server.
Some of the promising future works are as follows: (i) developing the cluster version of
AxleDB to support larger amounts of data, (ii) automating the hardware query plan,
which is the translation process from SQL to AxleDB instruction set, (iii) equipping
AxleDB with other effective database indexing methods, such as B-Trees to further
optimize I/O transmission, and (iv) exploiting dynamic reconfiguration capability of
FPGAs to better allocate the query-specific accelerators.
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[41] Arcas-Abella, Oriol and Armejach, Adrià and Hayes, Timothy and Malazgirt, Gorker Alp and Palomar,
Oscar and Salami, Behzad and Sonmez, Nehir. Hardware Acceleration for Query Processing: Lever-
aging FPGAs, CPUs, and Memory. Computing in Science & Engineering, volume=18, number=1,
pages=80–87, year=2016, AIP Publishing.

[42] Becher, Andreas and Bauer, Florian and Ziener, Daniel and Teich, Jurgen. Energy-aware SQL query
acceleration through FPGA-based dynamic partial reconfiguration. Field Programmable Logic and
Applications (FPL), 2014 24th International Conference on. pages=1–8, year=2014, IEEE.

[43] Koch, Dirk and Torresen, Jim. FPGASort: A high performance sorting architecture exploiting run-time
reconfiguration on FPGAs for large problem sorting. Proceedings of the 19th ACM/SIGDA interna-
tional symposium on Field programmable gate arrays, pages=45–54, 2011, ACM.

[44] Ziener, Daniel and Bauer, Florian and Becher, Andreas and Dennl, Christopher and Meyer-Wegener,
Klaus and Schürfeld, Ute and Teich, Jürgen and Vogt, Jörg-Stephan and Weber, Helmut. FPGA-
Based Dynamically Reconfigurable SQL Query Processing. ACM Transactions on Reconfigurable
Technology and Systems (TRETS), volume=9, number=4, pages=25, 2016, ACM.

[45] Scofield, Todd C and Delmerico, Jeffrey A and Chaudhary, Vipin and Valente, Geno. Xtremedata dbx: an
FPGA-based data warehouse appliance. Computing in Science & Engineering, volume= 12, num-
ber= 4, pages=66–73, 2010, AIP Publishing.

[46] Sukhwani, Bharat and Min, Hong and Thoennes, Mathew and Dube, Parijat and Brezzo, Bernard and
Asaad, Sameh and Dillenberger, Donna Eng. Database analytics: a reconfigurable-computing ap-
proach, Micro, IEEE, volume=34, number=1, pages=19–29, 2014, IEEE.

[47] Do, Jaeyoung and Kee, Yang-Suk and Patel, Jignesh M and Park, Chanik and Park, Kwanghyun and
DeWitt, David J. Query processing on smart SSDs: opportunities and challenges. Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data, pages=1221–1230, 2013,
ACM.


