

1

Full citation: Afifi, S., GholamHosseini, H., & Sinha., R. (2019) A system on chip for melanoma
detection using FPGA-based SVM classifier, Microprocessors and Microsystems 65(2019) pp.57-
68. doi: 10.1016/j.micpro.2018.12.005.

A system on chip for melanoma detection using FPGA-based SVM classifier

Shereen Afifi*, Hamid GholamHosseini
Electrical and Electronic Engineering

Department, Auckland University of Technology
Auckland 1010, New Zealand
{safifi, hgholamh}@aut.ac.nz

 Roopak Sinha
Department of IT and Software Engineering

Auckland University of Technology
 Auckland 1010, New Zealand

rsinha@aut.ac.nz

Abstract
Support Vector Machine (SVM) is a robust machine
learning model that shows high accuracy with different
classification problems, and is widely used for various
embedded applications. However, implementation of
embedded SVM classifiers is challenging, due to the
inherent complicated computations required. This
motivates implementing the SVM on hardware platforms
for achieving high performance computing at low cost and
power consumption. Melanoma is the most aggressive form
of skin cancer that increases the mortality rate. We aim to
develop an optimized embedded SVM classifier dedicated
for a low-cost handheld device for early detection of
melanoma at the primary healthcare. In this paper, we
propose a hardware/software co-design for implementing
the SVM classifier onto FPGA to realize melanoma
detection on a chip. The implemented SVM on a recent
hybrid FPGA (Zynq) platform utilizing the modern
UltraFast High-Level Synthesis design methodology
achieves efficient melanoma classification on chip. The
hardware implementation results demonstrate
classification accuracy of 97.9%, and a significant
hardware acceleration rate of 21 with only 3% resources
utilization and 1.69W for power consumption. These results
show that the implemented system on chip meets crucial
embedded system constraints of high performance and low
resources utilization, power consumption, and cost, while
achieving efficient classification with high classification
accuracy.

Keywords: SVM, FPGA, Embedded system,
System on chip, Hardware/software co-design,
Melanoma

1. INTRODUCTION
Support Vector Machine (SVM) classifier is a common
supervised machine learning tool which is widely used for
efficient classification. SVM demonstrates high
classification accuracy with numerous applications such as
speech recognition, object detection, image classification,
bioinformatics, medical diagnosis, etc. [1]. Supervised
learning machines are typically composed of two main
phases, training/learning phase and classification phase.

The SVM training phase constructs a model to be used for
classifying any test data that is based on Support Vectors
(SVs). The SVs are identified from the training dataset
during the training process, to be then used in the
classification phase for predicting the proper class of an
input test data. SVMs have shown high classification
accuracy rates outperforming other popular classification
algorithms in numerous cases and applications [2,3].

A growing interest exists for exploiting SVMs in many
embedded detection systems and various image processing
applications.

The SVM model is computationally expensive and time-
consuming especially for large-scale problems, which
raises a vital need for acceleration. While software
implementations of SVM produce high accuracy rates, they
cannot efficiently meet real-time embedded systems
constraints. In such embedded real-time applications,
special dedicated hardware implementations (accelerators)
are required to meet constraints like limited resources
utilization and low power consumption. This has motivated
plethora of research towards implementing and
accelerating SVM in hardware such as using parallel
computing platforms.

Special-purpose (reconfigurable) hardware is exploited for
boosting computations, while providing High Performance
Computing (HPC) at low cost and power consumption.
Field-Programmable Gate Array (FPGA) is a robust
parallel processing reconfigurable device. FPGA is widely
used for realizing essential performance for embedded
systems, as well as providing low hardware resource
utilization and low power consumption [4]. FPGAs have
demonstrated high performance with various applications,
which outperformed other comparable platforms [5,6].
Accordingly, FPGA is a suitable platform for realizing an
optimized embedded SVM classifier on chip.

Some existing research works aim to implement the SVM
model on the FPGA platform. Nevertheless, meeting vital
constraints of embedded systems as high performance and
low cost are very challenging, in addition to reaching an
effective classification system that offers high accuracy
rate.

Therefore, this research aims to propose an optimized
FPGA-based SVM classifier and implement an embedded

2

classification system on a chip to be used for melanoma
detection as a case study. Melanoma is the most aggressive
form of skin cancer responsible for the majority of skin
cancer-related deaths. The highest rates of melanoma in the
world exists in New Zealand and Australia. Early diagnosis
of melanoma could reduce mortality rates and treatments
costs. Consequently, a real-time embedded classifier is
essential for enhancing early detection of melanoma, which
could be embedded within a low-cost and fast handheld
scanning device for the primary health care.

This study was conducted based on previous experiments
performed for melanoma detection within our research
group [2]. It was found that the SVM classifier performed
better among common classifiers with higher accuracy
results for classification and diagnosis of melanoma [2]. In
this paper, we propose a hardware/software system on chip
for implementing an optimized SVM classifier on FPGA
with a use-case on melanoma detection. This article builds
significantly on our previous work [7,8]. An initial design
and implementation of the system [7], and an early
hardware design of the SVM algorithm [8] have been
integrated and fully developed into a system on chip in this
article. Unlike previous work reported on the
implementation of only one model [8], we used the
proposed hardware/software co-design to implement three
variable-sizes SVM models using different optimization
techniques. This article reports extensive results analysis
and validation for the three implemented models, as well as
comparisons with our previous designs and other related
works.

2. RELATED WORK ON FPGA-BASED
SVM IMPLEMENTATION
Different FPGA-based hardware architectures have been
implemented in the literature for realizing the SVM
classification phase on FPGA [9]. From reviewing existing
implementations in the literature, we concluded that the
main challenge is meeting vital embedded system
constraints of flexibility, scalability, and high performance,
as well as, low cost, area, and power consumption, while
achieving effective classification. Many of the current
architectures and implementations did not take these
constraints into account (especially the critical power
constraint that was measured for only a limited number of
previous implementations). Most existing implementations
were realized on old generations of FPGAs. No FPGA
implementation of the SVM exists in the literature that
exploits the hybrid architecture (hardware/software
system) of the recent FPGA platform “Zynq System on
Chip (SoC)” (to the best of our knowledge). Also, almost
all previous FPGA implementations are designed utilizing
the classical Hardware Description Language (HDL),
which is very time consuming and demands expert
hardware developers. However, the modern UltraFast
High-Level Synthesis (HLS) design methodology is lately
exploited for simplifying the FPGA development [10].
Furthermore, no SVM classification system on FPGA
exists in the literature that targets early detection of
melanoma using clinical images at the primary healthcare.

Consequently, this research focuses on implementing an
optimized SVM classifier on FPGA, aiming to overcome
such limitations, challenges, and research gaps identified
from the performed survey study [9]. A hardware/software
co-design is proposed in this paper to implement an
embedded SVM classification system for melanoma
detection on the hybrid Zynq SoC utilizing the latest HLS
design methodology, while meeting the challenging
embedded system constraints.

3. PROPOSED SVM DESIGN AND
IMPLEMENTATION ON SOC
3.1. FPGA platform and system development tools
The FPGA platform “Xilinx Zynq-7000 All Programmable
System on Chip (SoC)” is utilized to implement our SVM
classifier, exploiting the cutting-edge technology and reach
a powerful efficient embedded system [11]. The Zynq SoC
is characterized by its hybrid architecture, which
significantly simplifies the embedded system development
process. The FPGA and ARM processor are both combined
in a single system on a chip as a Programmable Logic (PL)
and a Processing System (PS) respectively.

The software tool “Xilinx Vivado Design Suite” is selected
as being an efficient system-design tool for simplifying
embedded system development based on incorporating an
FPGA within a single SoC [12]. Xilinx Vivado suite
comprises a powerful design tool, which employs the new
UltraFast HLS design methodology. This methodology is
characterized with simplifying FPGA programming via
using the High-Level Language (HLL) replacing the
traditional HDL [10], as well as, decreasing the FPGA
development effort and time.

The following sub-sections present the proposed
hardware/software co-design for implementing an SVM
classifier on Zynq SoC using the HLS design methodology.
The hardware design is first proposed in Section 2 for
implementing the SVM classifier as an HLS IP on the Zynq
PL part using the Vivado HLS tool, and then the designed
IP is integrated into a proposed SoC design in Section 3
using the Vivado design tool. Finally, the software design
is proposed in Section 4 using the Xilinx Software
Development Kit (SDK) tool to implement the software
program running on Zynq PS part and realize the embedded
SVM classification system on Zynq SoC.

3.2. Proposed SVM HLS IP on Zynq PL
A hardware design is proposed utilizing the recent HLS
design methodology to implement an HLS IP of a binary
SVM classifier incorporating a linear kernel function. This
HLS design/IP implements the SVM classification
algorithm, where the main decision function (1) is
implemented for classifying a test data sample x. Eq. (1)
depends on some parameters (α, y and b) that are identified
from the training phase, as well as, the number of SVs
(denoted as SV)[13].

𝐹(𝑥) = 𝑠𝑖𝑔𝑛 *+ 𝛼!𝑦!(𝑥⃗! · 𝑥⃗) − 𝑏
"#

!$%
2 (1)

Based on our previous hardware/software co-design
implemented in [7], a hardware design extension is

3

proposed in this paper to implement a full SVM onto
FPGA. In the initial implementation [7], the most compute-
intensive task of the SVM classification algorithm, the dot-
product calculation was implemented and boosted on
FPGA. So, the hardware design is extended in this paper to
reach an online full SVM classifier running on the Zynq
platform, offering HPC and low cost.

By exploiting the Vivado HLS tool with C/C + + language,
a top function module is designed as an HLS IP that
computes the decision function (1), which is divided into
three main equations for simplifying the hardware design
and mapping, aiming to reduce the hardware complexity.

𝐴𝐶55555⃗ = + 𝛼!𝑦! 	𝑥55⃗ ! 	
"#

!$%
 (2)

𝐷 = 𝐴𝐶55555⃗ 	 · 	𝑥55⃗ (3)

𝐹(𝑥) = 𝑠𝑖𝑔𝑛(𝐷 − 𝑏) = -
−1, (𝐷	 − 	𝑏) < 𝑡ℎ
1, (𝐷	 − 	𝑏) ≥ 𝑡ℎ (4)

The designed IP basically implements the proposed pseudo
code that is illustrated in Fig. 1. In the designed C code,
float data type is assigned for all used data and mapped to
the standard single-precision floating-point format on the
FPGA. The designed IP depends on the size of both the
features and SVs, in order to implement any SVM
classifier. The designed IP receives needed data via an
input stream interface to be stored in three main arrays. One
2D array holds features of SVs. The other 1D array has αy

of each SV and the third 1D array is for storing the features
data of the test instance. The required calculations are
divided into three main tasks in the algorithm, mapping the
three main Eqs. (2)– (4). The first task is summing all
manipulated/multiplied SVs to be stored then in an
accumulated array (AC in (2)). The second task is
performing the dot product between the test instance and
the accumulated array to calculate the classification
distance value (D in (3)). Then, the calculated distance
number is finally classified according to the sign value,
which gives the final SVM classifier decision for the class
(F(x) in (4), th is the threshold value determined through
the validation phase). We have two possible outputs equal
to 1, or −1, which corresponds to melanoma class, or non-
melanoma class, respectively.

The HLS tool provides various directives to be applied for
the IP to assign different interfaces and apply other
hardware techniques [14]. The AXI4-Stream directive is
utilized as the input stream interface of the designed
function module for streaming the required data between
the PS (ARM CPU) and the designed HLS IP in the PL slice
of the Zynq SoC. Additionally, the AXI-lite bus is allocated
as a control bus of the module for controlling the designed
IP and other connected cores in the system as well as
controlling the data flow of the system through
communicating with the ARM CPU (PS).

In addition, the HLS tool provides various optimization
techniques as directives to be employed for the designed IP
[14]. In order to optimize loops, the pipelining and
unrolling methods are used to enhance the throughput and
latency.

The unrolling technique creates multiple independent
operations instead of a single collection of operations.
Unrolling the loops decreases latency but increases
hardware resources utilization as well as power
consumption, which could be improved by applying
partially unrolling technique. Both pipelined and unrolling
designs are applied to the designed SVM HLS IP and
investigated based on synthesis results, aiming to find an
optimized hardware solution (results are provided and
analyzed in Section 4.3).

Fig. 1. Proposed pseudo code of the SVM algorithm.

Fig. 2. The proposed hardware/software co-design on Zynq SoC.

4

Concerning arrays, some performance bottlenecks are often
added with array accesses. The HLS tool normally maps
arrays to dual-port memories to improve throughput. Also,
arrays could be partitioned or reshaped by the help of the
tool in order to improve memory resource implementation
and increase throughput. The available partitioning styles
are block, cyclic and complete [14]. These available
directives are also applied to the proposed IP for more
optimization investigation (discussed in Section 4.3).

3.3. Proposed embedded system design on Zynq SoC
The proposed HLS IP of the SVM classifier is successfully
co-simulated (RTL simulation) and exported as an RTL
implementation (packaged IP), after synthesizing the
designed code utilizing the HLS tool. Next, the exported
HLS IP is incorporated with the proposed design as shown
in Fig. 2. Using the Vivado design suite, the exported HLS
IP in the Zynq PL is attached to the PS ARM CPU through
an ACP (Accelerator Coherency Port), using a Direct
Memory Access (DMA) controller core. The ACP is a 64-
bit AXI slave interface on the snoop control unit that allows
an asynchronous cache-coherent access point directly from
the PL part to the PS part with low latency path [15]. The
DMA IP controls transferring the data between the HLS IP
and the ARM CPU through the AXI4-Stream bus. Besides,
an AXI-Timer is exploited for performance comparisons
based on the number of clock cycles needed by the IP/cores.

Finally, the designed Zynq SoC is exported for the SDK
tool to be tested, after successfully passing the synthesis,
implementation and bitstream generation stages in the
Vivado design tool.

3.4. Proposed software design on Zynq PS
A test bench or a software program has been implemented
to test and verify the implemented SVM classifier on the
Zynq SoC. The PS ARM CPU is responsible for executing
the test bench besides controlling the attached cores/IPs and
the data flow in the system. A software program is designed
and implemented in C using the SDK tool. Fig. 3 shows the
proposed algorithm of the software test bench/program that
runs on the PS ARM processor. The test instance and the
parameters of the trained SVM model required for
computations are imported, using three main files saved in
the Zynq SD card. The first file has the support vectors, and
the second file includes αy for each SV with the b value.
The third file keeps the test data. All imported data are
parsed and stored in three main arrays to be streamed to the
Zynq IP for further processing.

The same SVM algorithm as proposed in Fig. 1 is executed
on the ARM processor in order to compare its software
result with the hardware result resulted from the
implemented SVM HLS IP running on hardware. Also for
comparing the performance, the XTimer IP is exploited to
measure the clock cycles of running the SVM algorithm on
software/PS and hardware/PL (including the hardware
DMA streaming) and reports the hardware acceleration
factor.

This proposed system could be easily adapted to any other
trained SVM model with the same size of parameters
(number of SVs and features) that targets similar
applications or more general classification application.

Specifically, all new data required could be easily loaded
via the three designed files stored in the SD card.
Accordingly, the proposed SoC is feasible to achieve
generality, flexibility, and adaptability.

4. EXPERIMENTAL RESULTS
4.1. Experiments’ setups
A common SVM classifier called “SVM-Light” has been
studied as a case study to implement our SVM IP on Zynq
SoC. The SVM-light is a robust and simple classifier that
is available in C implementation and has been used in
various classification problems [16]. The modern UltraFast
HLS design methodology is utilized to design and
implement a binary SVM HLS IP, using the available
SVM-Light classification (C/C++) code.

The training phase was done offline on software by
exploiting the available SVM-Light windows application,
where the default parameters and the linear kernel function
were used to generate the trained SVM models. Based on
our previous work within our research group for melanoma
detection [2], a dataset was used for training that consists
of a total of 356 clinical images, including 168 melanoma
and 188 benign images. In order to form a features dataset
for the training of the SVM model, some selected pre-
processing, segmentation and feature extraction (based on
HSV color channels) algorithms were applied to the images
dataset (512 × 512 pixels). Finally, a new dataset of 356
instances of 27 features each was extracted from the images
dataset, to be used for training the SVM models [2]. In
order to achieve a higher accuracy for the trained models,
the cross-validation technique was utilized in the training
phase. Finally after generating a trained SVM model
offline, the model data was extracted to implement the
trained SVM model on hardware using this proposed
hardware design.

The Xilinx Vivado 2016.1 Design Suite was utilized to
design, implement and develop our proposed hardware
design on the Zynq-7 ZC702 Evaluation Board. The

Fig. 3. Proposed algorithm of the software program running on
Zynq PS.

5

Vivado HLS tool was used first to develop our SVM HLS
IP. Then, the developed SVM IP was exported for
integration with the proposed Zynq SoC (Fig. 2) that was
designed using the Vivado tool. The designed Zynq system
was synthesized, placed and routed and finally the
bitstream was generated to be exported for the Xilinx SDK
tool to run an online classification application on Zynq.

In the next sub-sections, the implemented SVM models are
introduced, then experimental results are presented and
analyzed.

4.2. Implemented SVM models
Three SVM trained models with different sizes have been
developed offline (using the SVM-Light windows
application) to be used for the hardware implementation
using the proposed design, targeting melanoma detection.
Three models were generated from training the available
features dataset for melanoma with 356 instances of 27
features each. First, the original full dataset was used to
generate a trained SVM model “Model 1” with 346 SVs.
Then, data scaling and normalization techniques were
applied to the original dataset, which generated another

trained model “Model 2” with 248 SVs that achieved higher
classification accuracy.

Another third model with smaller scale was implemented
in order to be used as a case study for performance
validation through running on the Zynq SoC, while the
other two models were validated using simulation results
only (due to the limited size of the available run-time
memory). The small-scale model has 61 SVs generated
from using part of the available normalized dataset in the
training phase (144 instances).

4.3. HLS synthesis results
Some available optimization directives of the Vivado HLS
tool were employed and tested (as introduced in Section
4.2), for optimizing the proposed HLS IP design. Different
experiments were performed to investigate improving and
optimizing the synthesis results by applying various
optimization directives of the HLS tool, aiming to achieve
an efficient and hardware-friendly design with low
hardware complexity. Accordingly, selected HLS synthesis
results with the assigned directives were presented in Table
1 (a), (b) and (c) for the three models of different SVs

 Table 1. Synthesis results of applying different directives to the proposed HLS IP.

6

numbers and 27 features each. In Table 1, the first column
displays the used directive, whilst the next columns present
the HLS synthesis results for applying the corresponding
directive (the design latency in clock cycles, throughput in
clock cycles, and resource utilization). The first row in the
tables demonstrates the synthesis results for the default
settings of the HLS tool in addition to applying the interface
directives of the I/O ports mapping (AXI4 and AXI-lite as
explained in the previous section). The subsequent rows are
for applying alternative directives besides the interface.
The resource allocation is tested for the used arrays (BRAM
and LUT). The pipeline or unroll technique is used for
inner/most loops. It is recommended to pipeline the inner
loops only in the nested loops, aiming to reach the optimum
solution and allowing the HLS tool to make required
scheduling quickly [14]. Additionally, the different array
partition styles are applied with the loop unrolling directive
under the same factor in addition to the pipeline.

By applying different optimization directives to the design
with the basic interfaces directives (in the first row), the
latency and throughput were significantly improved, whilst
extra resources were utilized. This is a justification of the
existing trade-off between area and data throughput. The
latency of the two large models model 1 and 2 of 82,460
and 114,898 clock cycles was significantly decreased by a
factor greater than 9x and 8x, respectively. Regarding
unrolling loops, lower latency of 9,876 and 13,698 cycles
of the two models were demonstrated, however, extra
resources were allocated (the power-consuming DSP was
increased from 5 to 135 for both models). Also, by applying
loop unrolling, the best latency of 8,366 cycles was
successfully realized for model 1, with utilizing more
resources and using almost all available LUTs of 93%.
Similarly for model 2, the lowest latency of 11,600 cycles
was reached, however, it is not applicable for
implementation due to the excess utilization of available
LUTs of 119%, which was decreased by unrolling inner
loops only. However, by applying the array partitioning
(cyclic style on a factor of 16), the best latency of 12,960
cycles was achieved for model 2 with fewer resources (20
DSPs), while a good latency of 9,336 cycles was achieved
for model 1 that was not less than unrolling most loops.

Regarding the pipelining method, the lowest area with only
5 DSPs utilization was realized for both models, whilst
latency improvement was achieved (14,138 and 19,617
cycles). By pipelining more loops, the latency was slightly
decreased for both models with some increases in the
resources utilization (reaching 10 or 58 DSPs).
Accordingly, the pipelined design is considered to be more
promising for a low-cost solution that offers low area and
power consumption with reduced latency and high
throughput.

Similarly for the small model S, optimized results were
achieved for latency and resources utilization, especially
with applying the pipelining and unrolling techniques.

4.4. Hardware implementation results
After developing the designed HLS SVM IP, it was
integrated into the proposed Zynq SoC for further
implementation using the Vivado tool. Based on the
investigation of the HLS synthesis results presented in the
previous section, the most effective designs of the HLS IP
that showed better synthesis results were selected for the
Zynq SoC implementation. For the two large-scale models,
the pipelined, unrolled and array partitioned designs
(bolded in Table 1 (a) and (b), to be denoted as design 1, 2,
and 3, respectively) were implemented (using 100 MHz and
666.67 MHz operating frequency for PL/FPGA and ARM
CPU respectively), for being the three best solutions for a
balanced trade-off between achieving high-performance
and low-area/cost. Also, model S was implemented (using
250MHz frequency for both FPGA and ARM CPU) with
the pipelined and unrolled designs (bolded in Table 1 (c)).

4.4.1. Hardware resource utilization
Table 2 summarizes the FPGA resource utilization for the
three implemented Zynq systems. The first column shows
the hardware resource and then the following columns
illustrate the resource utilization’s value and percentage
value for each of the implemented design. The last column
indicates the number of available hardware resources in the
target device. It is clear that the percentages of all resources
utilization in Table 2 for all design implementations are
very low, showing significant improvement in area savings.
Regarding the large-scale models, the number of DSPs
utilization is equal for the two models, which shows the
highest rate of utilization for design 2 compared to other
resources (similar behavior for model S).

4.4.2. Power consumption
The power consumption of all implementations have been
reported using the Vivado tool (the confidence level is
medium) and displayed in the last row of Table 2. The on-
chip total power consumption of all implementations of the
three models are considered to be small reasonable values,
meeting the critical embedded system constraint. For the
two large-scale models, the least power consumption
results of 1.756 and 1.758 W were achieved from design 1
that has the least area. Also having almost equal values of
power for the two models of different sizes is promising for
implementing large-scales SVMs with low power values.
The targeted device consumed 9% for the static power and
91% for the dynamic power consumption, where the Zynq
PS dissipated 95% of total dynamic power.

Table 2. Hardware implementation results of implemented models on Zynq SoC.

7

Similar figures were realized for the other implementations
of the two models. For model 1, design 3 showed slightly
higher power than design 2. However, design 2 consumed
the highest power dissipation of 2.125W for model 2, as a
result of being the design with the highest utilization rates
(The power dissipation by the DSPs was increased from
less than 1% in design 1 to 5% of the total dynamic power
in design 2 for model 2). For the small-scale model, both
designs implementations also showed low levels of area
and power consumption. Among the other two models and
designs implementations, this model achieved the least
power consumption of 1.686W with design 1.

4.4.3. Processing speed and time
The AXI-Timer IP core (Fig. 2) was exploited to compare
the total computing time between running the designed
code (Fig. 1) of the SVM on ARM processor in PS part and
on hardware implemented in PL part of the Zynq SoC. Due
to size limitation of the embedded DDR3 memory, the
application/program could not run completely at the SDK
tool, because of the big data size used by both models 1 and
2. Accordingly, the small-scale model S was used for
evaluating the processing speed and time by using XTimer
measurements from running the application on Zynq Soc,
while model 1 and 2 evaluation was based on timing
simulation results.

For running the test program on Zynq SoC for model S
using the SDK, only 3693 clock cycles was required for
running the hardware IP including data streaming via the
DMA (for design 1). However, the embedded ARM
processor used 77,367 clock cycles as a total run time of a
similar software C coded function. Therefore, a significant
acceleration factor greater than 20x was achieved by using
the implemented hardware accelerator/IP (similar
acceleration values were achieved for the unrolled design
2). The used operating frequency for both the PS
Zynq/ARM processor and PL/FPGA was 250 MHz.

Accordingly, the processing times were 14.77 μs and
309.47μs for the IP and ARM, respectively (approximately
equal processing time (15.32μs) for the HLS IP was
estimated from the C/RTL co-simulation at the HLS tool).
Additionally, the ARM processor could run at the most
optimization option to reach 89.59μs, whilst the
acceleration factor was still significance to be greater than
6x. Table 3 (a) shows the values of number of clock cycles
and processing time for running on the PL, ARM and
optimized ARM at 250MHz in addition to the speedup
factors. By using the available maximum operating
frequency of 250 MHz and 666.67 MHz for the PL and
ARM respectively, an acceleration factor of greater than
10x was achieved regarding the total number of clock
cycles, whilst > 3x was achieved regarding the processing
time (Table 3 (b)). In addition, the least processing time of
11.26 μs was achieved with the pipelined design of model
S.

Tables 4 and 5 summarize the processing times and
speedups values for both designs of model 1 and 2,
respectively, at 100 MHz. For the largest implemented
unrolled model 1, the highest acceleration factors of 36.98x
and 10.83x were achieved compared to the embedded ARM
without and with optimization. That’s shows a promising
acceleration to achieve a high performance embedded
classification system, while increasing scalability.

4.4.4. Classification accuracy
Using the Xilinx SDK tool, the proposed test bench
presented in Section 3.4 (Fig. 3) has been developed in C.
Some test instances of extracted features were tested to be
correctly classified by all implemented SVM IPs (one at a
time). Model S has been validated for online classification
while running on the Zynq SoC, whilst other implemented
models have been verified based on simulation results (due
to memory size limitation at run-time).

Table 3. Timing summary of model S.

8

Model 1 (248 SVs) was trained using the cross-validation
method to produce a model with a good classification
accuracy of 80.85%. In order to verify the hardware
classification result of our implemented SVM IP and
compare it with the software result, we monitored the
calculated classification distance value D in (3). By using
the C/RTL co-simulation results from the HLS tool, the
distance value from our implemented IP was easily
compared to that value generated from the SVM-Light
window application/software to be identical for all tested
instances. Accordingly, the percentage error was equal to
zero, reserving the classification accuracy level without any
loss from the hardware implementation, in contrast to some
existing implementations in the literature as stated in
Section 3.

Same performance was achieved from the small-scale
model S with a great accuracy of 97.92%, which has been
validated by both simulation results and online
classification results while running on the Zynq SoC. Table
6 summarizes different parameters of the implemented
SVM models; model 1 and model S. For each model, the
table shows the number of SVs generated with the number
of instances used in the training dataset of 27 features each,
as well as, the classification accuracy rate that was
preserved without any loss and validated with our
experiments.

5. DISCUSSION AND COMPARISONS
5.1. Discussion
The main objective of this research is proposing an
optimized FPGA-based SVM classifier towards realizing
an efficient embedded classification system targeting early
detection of melanoma (as a case study). This research
aimed to contribute to the existing literature by considering
the existing challenges, limitations and research gaps in the
current literature (that were identified from the survey
study [9] and summarized in Section 2). This research
focused on meeting the challenging constraints of
embedded systems development, while achieving efficient
classification with high accuracy rate. Recent FPGA design
methods, technologies, and system development tools were
exploited for implementing the proposed designs.

By using the modern UltraFast HLS design methodology
and the available optimization techniques (directives), the
development effort and time were declined, whilst the
embedded system design process was simplified. A simple
and scalable HLS-based design was proposed for
implementing an efficient SVM classifier IP/accelerator on
Zynq SoC. The main decision function was divided into
three main equations for simplifying the hardware
mapping, aiming to reach a hardware-friendly design with
lower hardware complexity.

Three trained SVM models with different sizes were
implemented using the proposed design, which were
generated from the training with the available feature
dataset for melanoma detection. In addition, another dataset
of different application ‘pattern recognition’ has been used
and tested, in order to validate our previous initial design
[7] and this proposed extended design for general purpose
classification. The trained SVM model has 877 SVs and
9947 features, which was fully implemented and tested
with our previous hardware/software co-design [7].
However for implementing such a large model using this
proposed extended hardware design, an FPGA of bigger
capacity with more resources is required or an additional
device(s) could be co-operated to be fully implemented on
hardware. Accordingly, the proposed design is capable of
implementing SVM classifiers of various applications with
variable sizes. Therefore, generality, scalability, and
applicability of classification could be realized with the
proposed design.

By applying various optimization techniques of the HLS
tool, different hardware solutions were achieved based on
HLS synthesis results, aiming to find an optimum
solution/balance for the existing trade-off between
performance and area/cost. Different designs have been
implemented, offering a low-cost design, as well as, a fast
design with higher cost. These various design options can
be chosen by developers to meet their project requirements.
The low-cost design with lower area and power was
favored for our case study “melanoma detection”, for
realizing a low-cost handheld device. For the Zynq SoC
implementation, the most effective designs of the HLS IP
were selected for implementation that showed the best
synthesis results, aiming to reach a balanced trade-off
between achieving high-performance and low-area/cost.

The experimental results of the three implemented SVM
models on Zynq SoC using the proposed design have been
evaluated in this discussion based on these factors;
hardware resource utilization, power consumption,
processing speed and time and classification accuracy,
aiming to reach an optimized hardware solution for
melanoma detection, while meeting vital embedded
systems constraints.

Regarding the resource utilization, all design
implementations of the three different models showed very
low utilization percentage that significantly improved area
costs. The unrolled design 2 is considered to be the most
costly design compared to the other two designs that has the
largest area results for almost all resources. The pipelined
design 1 demonstrated the least area results for the three
models. Therefore, the pipelined design is considered to be
the most cost effective design for achieving an embedded
system for online classification with low area and low cost.

All implemented designs demonstrated very low power
consumption, while the least values were for the pipelined
design. So, the pipelined design is capable of meeting the
most challenging constraint of “low-power consumption”.
In addition, it has been observed (from different
implementation experiments) that when using less
operating frequency for the ARM processor in the Zynq PL
part, the power dissipation is decreased. This method could
be applied in the future to optimize the power consumption

Table 6. Parameters of implemented SVM Models.

9

of the other models. Therefore, our implementation of the
proposed low-power system is so promising for the
deployment in an embedded environment, aiming to reach
our ultimate goal of realizing a handheld device with high
performance and low cost.

A significant hardware acceleration factor from 20x to 36x
was achieved by the implemented hardware systems of
variable sizes compared to an equivalent software
implementation of the SVM classification function running
on the embedded ARM/PS processor. The least processing
time of 11.26μs was achieved with the pipelined design of
the small-scale model S at 250MHz. Consequently, a real-
time embedded SVM system can be achieved that is
scalable and easily extended offering high performance.

Regarding the classification accuracy, the experimental
results demonstrated that every hardware classification
result of the implemented classifiers was exactly equal to
the corresponding software classification result.
Accordingly, the accuracy rate was preserved without any
loss from our hardware proposed design, in contrast to
some existing implementations in the literature that
suffered from slightly loss in the accuracy rate. A great
accuracy of 97.92% was achieved by model S, which has
been validated by both simulation results and online
classification results while running on the Zynq SoC.
Therefore, a reliable scalable online SVM classification
with a high classification accuracy could be realized with
no loss in accuracy rate using our proposed design, while
meeting critical embedded system constraints of optimized
speed, area, power and cost.

Finally, the implemented SVM classifier “model 1” on
Zynq SoC with the pipelined design is considered to be an
optimized classifier for our application “melanoma
detection”, which is an efficient trained model of realistic
size with only 2.7% slices utilized and 1.7 W power
consumed, while classifying was achieved at 56 μs with
80.8% accuracy at 250MHz.

5.2. Comparison with our previous proposed designs

5.2.1. Comparison with our previous hardware/software
Co-design
The previous hardware/software co-design [7] was
proposed in order to implement the complicated dot-
product calculation onto the hardware/PL, while the rest of
the required calculations of the decision function (1) was
running on the software/PS in a single device (Zynq SoC).
In this proposal, the hardware design was extended for
implementing the whole decision function in the PL as a
Zynq coprocessor/accelerator IP. The extended hardware
design depends on the size of both features and SVs, whilst
the previous design depends on the number of features
only.

The implementation of the previous design was realized for
the SVM classifier that has the same size as model 2 (27
features and 346 SVs). So, design 1 (pipelined) and design
2 (unrolled) of model 2 were chosen in order to compare
the implementation results of the previous design with this
extended hardware design. Table 7 shows the
implementation results of model 2 implemented on Zynq
SoC using our previous hardware/software co-design with

the unrolled HLS directive [7] and this proposed extended
design (with the pipelined (design 1) and unrolled (design
2) directives). The extended hardware implementation of
design 1 successfully extended our previous
implementation, while consuming extra 0.02 W only for
power dissipation. For resource utilization, additional 17
BRAMs and 31 memory LUTs were used, whilst utilization
of other hardware resources (FFs and LUTs) was reduced
with equal number of DSPs. Compared to design 2, an
additional 0.387 W was required than that of the previous
implementation, and more resources were utilized for all
resources except for Memory LUTs.

Obviously, design 1 showed more optimization in area and
power results compared to design 2 for extending the
previous design, where the unrolling technique was used.
Accordingly, more design extension and scalability could
be easily achieved with good implementation results by
using the proposed cost-effective pipelined design.

5.2.2. Comparison with our proposed BRAM-based design
We have proposed another similar design on [17], which is
based on using three BRAM interfaces to pass the
corresponding three arrays’ data instead of streaming
required data via the stream interface/bus. Same SVM
trained models, model 1 and model S have been
implemented in [17] using the BRAM-based design with
applying the pipelined technique/directive to boost required
processing. So, the pipelined design 1 of both model 1 and
model S using this proposal were compared to the
implemented models using our proposed BRAM-based
Design [17], where the hardware implementation results
are summarized in Table 8.

This proposed hardware/software design consumed less
hardware resource utilization with same number of DSPs
and lower power consumption for both models, while
keeping the same level of the classification accuracy. This
shows that our different proposed designs are promising for
preserving accuracy without loss, while improving
hardware implementation results for reaching an optimum
solution. For the small-scale model S, this proposed design
consumed 0.4 W less power consumption than the BRAM-
based design. Also, fewer hardware resources were
utilized, especially for the BRAM utilization where only 6
BRAMs were utilized, while the other design used 48
BRAMs. Similar figures of less resources and power were
recorded for the large-scale model 1.

Regarding the processing time, this design spent less 0.2 μs
than the other design for the model S at 250MHz, while
extra 17.3μs was required for model 1. It can be considered
as another justification of the existing trade-off between
performance and area/cost. This proposed
hardware/software co-design still shows low processing
time with fewer resources and less power than the other
design for variable model’s size. Therefore, this design is
feasible to realize an efficient embedded classifier for
integration within a cost- and energy-efficient handheld
device, targeting melanoma detection at the primary
healthcare.

10

5.3. Comparison with related works
In order to compare with some relevant work for different
applications, our proposed pipelined design 1 of model 1 is
selected, as being the most effective design with real data
size for our case study “melanoma detection”. The selected
model showed the best implementation results of high
performance and low cost, area, and power among the
implemented designs and models (apart from the small-
scale model S).

5.3.1. Detection accuracy
Some FPGA-based implementations in literature suffered
from some loss in the SVM classification accuracy as stated
in Section 3. Interestingly, no loss in the classification
accuracy rate was achieved from our hardware
implemented model, as the calculated classification values
were exactly equal to the corresponding software results,
which ensures reservation of the online classification
accuracy rate onto FPGA. That’s increase feasibility of
implementing other SVM models using our proposed
design, while keeping same classification accuracy level
without loss. In addition, our implemented SVM
classification system showed a high acceptable detection
accuracy of more than 80%, which could be used and
applied in real life (>97% for model S). Precisely, our
implemented system is considered to be accurate and
reliable with zero loss in classification accuracy rate in
contrast to other reported implementations in existing
literature [18–22] (have recorded some loss in accuracy).

5.3.2. FPGA technology
The fact that many implementations in literature used old
versions of FPGAs and very limited used recent ones
[23,24], motivates us to use the latest FPGA technologies
that are more powerful and feature-rich. Accordingly, we
used the recent Xilinx Zynq-7000 SoC platform for our
implementation. It also allowed for a

higher operating frequency in contrast to numerous
previous implementations in the literature. Besides, the

modern Vivado Design Suite (2016.1 version) was
exploited for our development process that applies the
latest UltraFast HLS design methodology, which decreases
hardware development effort, accelerates design
productivity and shorten time-to-market. Consequently,
our implemented system on Zynq achieved more optimized
implementation results.

5.3.3. Processing speed and time
Regarding the processing speed and time, the implemented
system on hardware has significantly accelerated the
processing power up to 36 orders of magnitude over similar
software implementation running on the embedded ARM
processor/CPU. By using the recent FPGA technology that
offers a high operating frequency of 250 MHz, a processing
time of 56.6 μs (33.5 μs in case of the unrolled design) was
achieved, demonstrating real-time performance (the least
time of 11.26μs was achieved for the pipelined model S).
Therefore, a real-time and effective embedded system can
be achieved, which also outperforms some existing
implementations regarding processing time [18,19,25–29].

5.3.4. Hardware resources utilization
Regarding the hardware resource utilization, our proposed
implementation reported very low utilization of all
resources, which ensures the realization of a low power
system with low cost and feasibility for extensibility and
scalability. Our implemented system demonstrated less
resource utilization than some of the previous
implementations for different applications in literature
[18,20,22,25,26,28,30].

5.3.5. Power consumption
Interestingly, our achieved low-power embedded system
meets the most challenging constraint “low power
consumption”, whereas very few of such implemented
systems exist in the literature. Also, it has been found that
most existing implementations had not included any
measurements for the power consumption. Specifically, our

 Table 7. Implementation results comparison of model 2.

Table 8. Implementation results comparison of model 1 and model S.

11

Zynq systems dissipated lower power among other existing
implementations in the literature [20,22,25,31].

5.3.6. Detailed comparison and discussion
Some of the existing related implementations of binary
SVMs were selected to be compared with our implemented
model 1 and model S using the pipelined design 1 (apart
from the different applications used), which is summarized
in Table 9. Using the modern UltraFast HLS design
methodology, our implementations achieved significant
hardware results compared to others that used the
traditional pipelined architectures and common systolic
array architectures. It is clear that lower resource utilization
was demonstrated with real moderate size of SVM
parameters with the linear kernel. The power consumption
is significantly low (less than 1.8 W), compared to a very
high power of 15 W in [25], while others didn’t consider
this critical constraint. By using the recent FPGA platform,
a higher operating frequency was used to achieve extremely
less processing time than [25] and comparable time to [26]
and [28]. Regarding model 1, the least processing time of
33 μs was demonstrated by using the faster unrolled design
that offers slightly higher cost and area from the pipelined
design, however, the lowest 11.26 μs was achieved by the
small-scale model S using the cost- and energy-efficient
pipelined design. Acceptable classification accuracy rate
higher than 80% with zero loss was verified for our
application, while others didn’t validate their hardware
classifiers [25,28]. Accordingly, our implemented models
on the recent hybrid Zynq SoC platform achieved
optimized results for the hardware resource utilization,
power consumption, detection speed and processing time
with high classification accuracy rates using real data for
melanoma detection.

Finally, to the best of our knowledge, our Zynq
implemented embedded system using the HLS method is
considered to be the first FPGA-based SVM classifier
exists in the literature that targets melanoma classification.
In addition, our implemented system successfully
overcame the most challenges exit in the literature of
meeting critical embedded system constraints of high
performance, flexibility, scalability, and low area, cost, and
power consumption, while reaching effective
classification.

6. CONCLUSIONS
The main contribution of this research is proposing a
hardware/software co-design to implement a full SVM
classifier on FPGA, and realization of an embedded SoC

dedicated for melanoma detection on the latest hybrid Zynq
SoC utilizing the modern UltraFast HLS design
methodology. Our implemented Zynq systems met the
challenging embedded system constraints, by achieving
high performance computing at low cost, area and power
consumption, while realizing high classification accuracy.
By utilizing the HLS design methodology and the offered
optimization techniques (directives), the development
effort and time were declined, whilst embedded system
design process was simplified. A simple flexible IP-based
design was presented, which is scalable and easily
extendable to support multi-purpose classification.
Different solutions/designs were presented for balancing
the existing trade-off between speed and area, offering
options for various project requirements from a low-cost
design to a fast design with higher cost.

Interestingly, the SVM classification process was
significantly accelerated on FPGA by a factor up to 36x
outperforming an embedded processor, whereas 11.3μs
processing time was achieved using a high operating
frequency of 250MHz. Moreover, an effective SVM
classification with high accuracy of 97.9% was realized on
hardware without any loss in accuracy rate, in contrast to
other existing implementations in the literature. Compared
to other related systems in the literature, our implemented
embedded system is a cost-effective system with low area
(2.7% slices) and power consumption (1.7W).

For future work, the implemented embedded system of the
SVM could be easily extended and adapted for different
online classification applications, targeting generality,
scalability and applicability. Also, the implemented binary
classifier could be easily extended to implement a
multiclass classifier, in addition to implementing different
types of kernels. More test instances would be tested in
future in order to validate the classification accuracy rate of
the implemented classifier. Furthermore, the proposed
hardware/software co-design realized on the hybrid Zynq
SoC using the HLS method could be adopted by hardware
developers for implementing their embedded systems.
Other FPGA-based design and optimization methods can
be employed in the future (e.g. fixed-point arithmetic, DPR
technique, multiplier-less method), for gaining more
flexibility and scalability with higher performance and less
cost. The presented scalable IP-based design would be
extended to form a multi-core architecture by adding more
SVM IPs in a single device/SoC that could be applied as a
multi-class, ensemble, or cascaded classification. Finally,
the implemented classifier is feasible to be embedded in the
future within a fast low-cost handheld medical scanning
device for melanoma detection or any other applications.

Table 9. Comparison with related works.

12

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES
[1] J. Nayak, B. Naik, H. Behera, A comprehensive survey on support

vector machine in data mining tasks: applications & challenges, Int.
J. Database Theory Appl. 8 (2015) 169–186.

[2] P. Sabouri, H. GholamHosseini, T. Larsson, J. Collins, A cascade
classifier for diagnosis of melanoma in clinical images, in:
Proceedings of the Thirty-sixth Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC),
2014, pp. 6748–6751.

[3] J. Kim, B.-S. Kim, S. Savarese, Comparing image classification
methods: K-nearest-neighbor and support-vector-machines, Ann
Arbor 1001 (2012) 48109 2122.

[4] T. Saegusa, T. Maruyama, Y. Yamaguchi, How fast is an FPGA in
image processing? in: Proceedings of the International Conference on
Field Programmable Logic and Applications (FPL), 2008, pp. 77–82.

[5] S. Asano, T. Maruyama, Y. Yamaguchi, Performance comparison of
FPGA, GPU and CPU in image processing, in: Proceedings of the
International Conference on Field Programmable Logic and
Applications (FPL), 2009, pp. 126–131.

[6] J. Fowers, G. Brown, P. Cooke, G. Stitt, A Performance and Energy
Comparison of FPGAs, GPUs, and Multicores for Sliding-Window
Applications, in: Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, 2012, pp. 47–56.

[7] S. Afifi, H. GholamHosseini, R. Sinha, Hardware Acceleration of
SVM-Based Classifier for Melanoma Images, in: F. Huang, A.
Sugimoto (Eds.), Image and Video Technology– PSIVT 2015
Workshops, Springer International Publishing, Cham, 2016, pp. 235–
245. RV 2015, GPID 2013, VG 2015, EO4AS 2015, MCBMIIA
2015, and VSWS 2015, Auckland, New Zealand, November 23-27,
2015. Revised Selected Papers.

[8] S. Afifi, H. GholamHosseini, R. Sinha, A Low-cost FPGA-based
SVM classifier for melanoma detection, in: Proceedings of the 2016
IEEE EMBS Conference on Biomedical Engineering and Sciences
(IECBES), 2016, pp. 631–636.

[9] S.M. Afifi, H. GholamHosseini, R. Sinha, Hardware implementations
of SVM on FPGA: a state-of-the-art review of current practice, Int.
J. Innov. Sci. Eng. Technol. (IJISET) 2 (2015) 733–752.

[10] Vivado High-Level Synthesis. Available:
http://www.xilinx.com/products/design-tools/vivado/integration/esl-
design.html

[11] Zynq-7000 All Programmable SoC. Available:
http://www.xilinx.com/products/ silicon-devices/soc/zynq-
7000.html

[12] Vivado Design Suite. Available:
http://www.xilinx.com/products/design-tools/ vivado.html

[13] V.N. Vapnik, An overview of statistical learning theory, IEEE
Trans. Neural Netw. 10 (1999) 988–999.

[14] Vivado Design Suite User guide, High-Level Synthesis. Available:
http://www.xilinx.com/support/documentation/sw_manuals/xilinx20
14_1/ ug902-vivado-high-level-synthesis.pdf

[15] Zynq-7000 All Programmable SoC Acccelerator for floating-Point
Matrix Multiplication using Vivado HLS. Available:
http://www.xilinx.com/support/
documentation/application_notes/xapp1170-zynq-hls.pdf

[16] T. Joachims, Making Large-Scale SVM Learning Practical.
Advances In Kernel Methods: Support Vector Learning, in: B.
Schölkopf, C. Burges, A. Smola (Eds.), MIT Press, 1999.

[17] S. Afifi, H. GholamHosseini, R. Sinha, SVM classifier on chip for
melanoma detection, in: Proceedings of the Thirty-ninth Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC’17), 2017.

[18] M. Qasaimeh, A. Sagahyroon, T. Shanableh, FPGA-based parallel
hardware architecture for real-time image classification, IEEE Trans.
Comput. Imaging 1 (2015) 56–70.

[19] M. Cutajar, E. Gatt, I. Grech, O. Casha, J. Micallef, Hardware-based
support vector machine for phoneme classification, in: Proceedings
of the IEEE EuroCon, 2013, pp. 1701–1708.

[20] C. Kyrkou, T. Theocharides, C.-S. Bouganis, An embedded
hardware-efficient architecture for real-time cascade support vector
machine classification, in: Proceedings of the 2013 International
Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS XIII), 2013, pp. 129–136.

[21] C. Kyrkou, T. Theocharides, C.S. Bouganis, A hardware-efficient
architecture for embedded real-time cascaded support vector
machines classification, in: Proceedings of the Twenty-third ACM
International Conference on Great lakes Symposium on VLSI, 2013,
pp. 341–342.

[22] C. Kyrkou, C.-S. Bouganis, T. Theocharides, M.M. Polycarpou,
Embedded hardware-efficient real-time classification with cascade
support vector machines, IEEE Trans. Neural Netw. Learn. Syst. 27
(2015) 99–122.

[23] B. Mandal, M.P. Sarma, K.K. Sarma, Implementation of systolic
array based SVM classifier using multiplierless kernel, in:
Proceedings of the International Conference on Signal Processing
and Integrated Networks (SPIN), 2014, pp. 35–39.

[24] V.S. Vranjković, R.J.R. Struharik, L.A. Novak, Reconfigurable
hardware for machine learning applications, J. Circuits Syst. Comput.
24 (5) (2015) 1550064, doi:10.1142/S0218126615500644.

[25] M. Pietron, M. Wielgosz, D. Zurek, E. Jamro, K. Wiatr, Comparison
of GPU And FPGA implementation of SVM algorithm for fast image
segmentation, in: Architecture of Computing Systems–ARCS 2013,
Springer, 2013, pp. 292–302. ed.

[26] C. Kyrkou, T. Theocharides, SCoPE: towards a systolic array for
SVM object Detection, IEEE Embed. Syst. Lett. 1 (2009) 46–49.

[27] Z. Nie, X. Zhang, Z. Yang, An FPGA implementation of multi-class
support vector machine classifier based on posterior probability, in:
Proceedings of the 2010 Third International Conference on Computer
and Electrical Engineering (ICCEE 2010), 2010 no. 2.

[28] M. Berberich, K. Doll, Highly flexible FPGA-architecture of a
support vector machine, in: Proceedings of the MPC-Workshop, 45,
2014, pp. 25–32. https://opus4.kobv.de/opus4-h-
ab/frontdoor/index/index/docId/200.

[29] D. Mahmoodi, A. Soleimani, H. Khosravi, M. Taghizadeh, FPGA
simulation of linear and nonlinear support vector machine, J. Softw.
Eng. Appl. 4 (2011) 320–328.

[30] C. Kyrkou, T. Theocharides, A parallel hardware architecture for
real-time object detection with support vector machines, IEEE Trans.
Comput. 61 (2012) 831–842.

[31] R. Patil, G. Gupta, V. Sahula, A. Mandal, Power Aware Hardware
Prototyping of Multiclass SVM Classifier Through Reconfiguration,
in: Proceedings of the Twenty-fifth International Conference on
VLSI Design (VLSID), 2012, pp. 62–67.

Dr. Shereen Afifi was awarded a B.Sc. in
Computers and Systems Engineering with honours
from Ain-Shams University, Egypt in 2003 and a
M.Sc. in Computer Engineering from Arab
Academy for Science, Technology and Maritime
Transport, College of Engineering and
Technology, Egypt in 2012 with excellent grade.
She finished her PhD studies in Electrical and
Electronic Engineering at the School of
Engineering, Computer and Mathematical

Sciences, Auckland University of Technology (AUT), New Zealand in
2018, having received an AUT Vice Chancellor’s Doctoral Scholarship.
The PhD research project aims to propose an optimized hardware-based
embedded system to enable a low-cost handheld medical device dedicated
for early detection of melanoma, which will be very beneficial for the
primary healthcare in New Zealand. Her research interests include
FPGAs, Embedded Systems, Microprocessors and Microsystems,
Biomedical Devices, e-Health, Machine Learning and Computer Vision.
She has been working in the academic career since her graduation as a
Lecturer/Teaching Assistant in the French University in Egypt. She has
been also a researcher in the Informatics Research Centre-French
University in Egypt and successfully completed a research internship in
the Laboratory LEAT at The University of Nice Sophia-Antipolis, France
in July 2013 having received a scholarship from the French Institute in
Egypt. She is currently working in Postdoctoral Research and Teaching
in the School of Engineering, Computer and Mathematical Sciences at
AUT University.

13

Dr. Hamid GholamHosseini is an Associate
Professor at the Department of Electrical and
Electronic Engineering, Auckland University of
Technology, New Zealand. He completed a PhD in
Biomedical Engineering at the Flinders University
of Australia in 2002 and fulfilled his MSc in
Electrical Engineering at the University of Tehran,
Iran. His current research and development work
combines areas of expertise ranging from Smart
patient monitoring/ Biomedical signal and image

processing/ Embedded and reconfigurable systems/Odor reproduction
and its application to tele-olfaction olfactory systems/ and e-Health for
smarter healthcare. Dr. GholamHosseini holds honorary and visiting
Professorships at Mälardalen University, Sweden and Guangdong
University of Technology, China and has published more than 140 book
chapters, journal papers and conference publications. He is a senior
member of IEEE and Chapter Chair of Engineering in Medicine and
Biology Society (EMBS) of IEEE New Zealand North Section.

Dr. Roopak Sinha received his Ph.D. in electrical
and electronic engineering from the University of
Auckland, New Zealand. He also holds BE(Hons)
and MCE degrees gained in 2003 and 2016,
respectively. He has previously worked with
Institut National de Recherche en Informatique et
Automatique (INRIA), Grenoble, France and The
University of Auckland. Currently, he is a Senior
Lecturer with the School of Engineering,
Computer and Mathematical Sciences, Auckland

University of Technology, New Zealand. His research interests include
next-generation formal frameworks for designing large-scale embedded
software with application in industrial automation systems, Internet-of-
Things, and intelligent transportation systems.

