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Abstract 
Support Vector Machine (SVM) is a robust machine 
learning model that shows high accuracy with different 
classification problems, and is widely used for various 
embedded applications. However, implementation of 
embedded SVM classifiers is challenging, due to the 
inherent complicated computations required. This 
motivates implementing the SVM on hardware platforms 
for achieving high performance computing at low cost and 
power consumption. Melanoma is the most aggressive form 
of skin cancer that increases the mortality rate. We aim to 
develop an optimized embedded SVM classifier dedicated 
for a low-cost handheld device for early detection of 
melanoma at the primary healthcare. In this paper, we 
propose a hardware/software co-design for implementing 
the SVM classifier onto FPGA to realize melanoma 
detection on a chip. The implemented SVM on a recent 
hybrid FPGA (Zynq) platform utilizing the modern 
UltraFast High-Level Synthesis design methodology 
achieves efficient melanoma classification on chip. The 
hardware implementation results demonstrate 
classification accuracy of 97.9%, and a significant 
hardware acceleration rate of 21 with only 3% resources 
utilization and 1.69W for power consumption. These results 
show that the implemented system on chip meets crucial 
embedded system constraints of high performance and low 
resources utilization, power consumption, and cost, while 
achieving efficient classification with high classification 
accuracy.  
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1. INTRODUCTION 
Support Vector Machine (SVM) classifier is a common 
supervised machine learning tool which is widely used for 
efficient classification. SVM demonstrates high 
classification accuracy with numerous applications such as 
speech recognition, object detection, image classification, 
bioinformatics, medical diagnosis, etc. [1]. Supervised 
learning machines are typically composed of two main 
phases, training/learning phase and classification phase. 

The SVM training phase constructs a model to be used for 
classifying any test data that is based on Support Vectors 
(SVs). The SVs are identified from the training dataset 
during the training process, to be then used in the 
classification phase for predicting the proper class of an 
input test data. SVMs have shown high classification 
accuracy rates outperforming other popular classification 
algorithms in numerous cases and applications [2,3].  

A growing interest exists for exploiting SVMs in many 
embedded detection systems and various image processing 
applications.  

The SVM model is computationally expensive and time-
consuming especially for large-scale problems, which 
raises a vital need for acceleration. While software 
implementations of SVM produce high accuracy rates, they 
cannot efficiently meet real-time embedded systems 
constraints. In such embedded real-time applications, 
special dedicated hardware implementations (accelerators) 
are required to meet constraints like limited resources 
utilization and low power consumption. This has motivated 
plethora of research towards implementing and 
accelerating SVM in hardware such as using parallel 
computing platforms.  

Special-purpose (reconfigurable) hardware is exploited for 
boosting computations, while providing High Performance 
Computing (HPC) at low cost and power consumption. 
Field-Programmable Gate Array (FPGA) is a robust 
parallel processing reconfigurable device. FPGA is widely 
used for realizing essential performance for embedded 
systems, as well as providing low hardware resource 
utilization and low power consumption [4]. FPGAs have 
demonstrated high performance with various applications, 
which outperformed other comparable platforms [5,6]. 
Accordingly, FPGA is a suitable platform for realizing an 
optimized embedded SVM classifier on chip.  

Some existing research works aim to implement the SVM 
model on the FPGA platform. Nevertheless, meeting vital 
constraints of embedded systems as high performance and 
low cost are very challenging, in addition to reaching an 
effective classification system that offers high accuracy 
rate.  

Therefore, this research aims to propose an optimized 
FPGA-based SVM classifier and implement an embedded 
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classification system on a chip to be used for melanoma 
detection as a case study. Melanoma is the most aggressive 
form of skin cancer responsible for the majority of skin 
cancer-related deaths. The highest rates of melanoma in the 
world exists in New Zealand and Australia. Early diagnosis 
of melanoma could reduce mortality rates and treatments 
costs. Consequently, a real-time embedded classifier is 
essential for enhancing early detection of melanoma, which 
could be embedded within a low-cost and fast handheld 
scanning device for the primary health care.  

This study was conducted based on previous experiments 
performed for melanoma detection within our research 
group [2]. It was found that the SVM classifier performed 
better among common classifiers with higher accuracy 
results for classification and diagnosis of melanoma [2]. In 
this paper, we propose a hardware/software system on chip 
for implementing an optimized SVM classifier on FPGA 
with a use-case on melanoma detection. This article builds 
significantly on our previous work [7,8]. An initial design 
and implementation of the system [7], and an early 
hardware design of the SVM algorithm [8] have been 
integrated and fully developed into a system on chip in this 
article. Unlike previous work reported on the 
implementation of only one model [8], we used the 
proposed hardware/software co-design to implement three 
variable-sizes SVM models using different optimization 
techniques. This article reports extensive results analysis 
and validation for the three implemented models, as well as 
comparisons with our previous designs and other related 
works.  
 

2. RELATED WORK ON FPGA-BASED 
SVM IMPLEMENTATION  
Different FPGA-based hardware architectures have been 
implemented in the literature for realizing the SVM 
classification phase on FPGA [9]. From reviewing existing 
implementations in the literature, we concluded that the 
main challenge is meeting vital embedded system 
constraints of flexibility, scalability, and high performance, 
as well as, low cost, area, and power consumption, while 
achieving effective classification. Many of the current 
architectures and implementations did not take these 
constraints into account (especially the critical power 
constraint that was measured for only a limited number of 
previous implementations). Most existing implementations 
were realized on old generations of FPGAs. No FPGA 
implementation of the SVM exists in the literature that 
exploits the hybrid architecture (hardware/software 
system) of the recent FPGA platform “Zynq System on 
Chip (SoC)” (to the best of our knowledge). Also, almost 
all previous FPGA implementations are designed utilizing 
the classical Hardware Description Language (HDL), 
which is very time consuming and demands expert 
hardware developers. However, the modern UltraFast 
High-Level Synthesis (HLS) design methodology is lately 
exploited for simplifying the FPGA development [10]. 
Furthermore, no SVM classification system on FPGA 
exists in the literature that targets early detection of 
melanoma using clinical images at the primary healthcare.  

Consequently, this research focuses on implementing an 
optimized SVM classifier on FPGA, aiming to overcome 
such limitations, challenges, and research gaps identified 
from the performed survey study [9]. A hardware/software 
co-design is proposed in this paper to implement an 
embedded SVM classification system for melanoma 
detection on the hybrid Zynq SoC utilizing the latest HLS 
design methodology, while meeting the challenging 
embedded system constraints.  
 

3. PROPOSED SVM DESIGN AND 
IMPLEMENTATION ON SOC  
3.1. FPGA platform and system development tools  
The FPGA platform “Xilinx Zynq-7000 All Programmable 
System on Chip (SoC)” is utilized to implement our SVM 
classifier, exploiting the cutting-edge technology and reach 
a powerful efficient embedded system [11]. The Zynq SoC 
is characterized by its hybrid architecture, which 
significantly simplifies the embedded system development 
process. The FPGA and ARM processor are both combined 
in a single system on a chip as a Programmable Logic (PL) 
and a Processing System (PS) respectively.  

The software tool “Xilinx Vivado Design Suite” is selected 
as being an efficient system-design tool for simplifying 
embedded system development based on incorporating an 
FPGA within a single SoC [12]. Xilinx Vivado suite 
comprises a powerful design tool, which employs the new 
UltraFast HLS design methodology. This methodology is 
characterized with simplifying FPGA programming via 
using the High-Level Language (HLL) replacing the 
traditional HDL [10], as well as, decreasing the FPGA 
development effort and time.  

The following sub-sections present the proposed 
hardware/software co-design for implementing an SVM 
classifier on Zynq SoC using the HLS design methodology. 
The hardware design is first proposed in Section 2 for 
implementing the SVM classifier as an HLS IP on the Zynq 
PL part using the Vivado HLS tool, and then the designed 
IP is integrated into a proposed SoC design in Section 3 
using the Vivado design tool. Finally, the software design 
is proposed in Section 4 using the Xilinx Software 
Development Kit (SDK) tool to implement the software 
program running on Zynq PS part and realize the embedded 
SVM classification system on Zynq SoC.  
 
3.2. Proposed SVM HLS IP on Zynq PL  
A hardware design is proposed utilizing the recent HLS 
design methodology to implement an HLS IP of a binary 
SVM classifier incorporating a linear kernel function. This 
HLS design/IP implements the SVM classification 
algorithm, where the main decision function (1) is 
implemented for classifying a test data sample x. Eq. (1) 
depends on some parameters (α, y and b) that are identified 
from the training phase, as well as, the number of SVs 
(denoted as SV)[13].  

𝐹(𝑥) = 𝑠𝑖𝑔𝑛 *+ 𝛼!𝑦!(𝑥⃗! · 𝑥⃗) − 𝑏
"#

!$%
2 (1) 

Based on our previous hardware/software co-design 
implemented in [7], a hardware design extension is  
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proposed in this paper to implement a full SVM onto 
FPGA. In the initial implementation [7], the most compute-
intensive task of the SVM classification algorithm, the dot-
product calculation was implemented and boosted on 
FPGA. So, the hardware design is extended in this paper to 
reach an online full SVM classifier running on the Zynq 
platform, offering HPC and low cost.  

By exploiting the Vivado HLS tool with C/C + + language, 
a top function module is designed as an HLS IP that 
computes the decision function (1), which is divided into 
three main equations for simplifying the hardware design 
and mapping, aiming to reduce the hardware complexity.  

𝐴𝐶55555⃗ = + 𝛼!𝑦! 	𝑥55⃗ ! 	
"#

!$%
 (2) 

𝐷 = 𝐴𝐶55555⃗ 	 · 	𝑥55⃗  (3) 

𝐹(𝑥) = 𝑠𝑖𝑔𝑛(𝐷 − 𝑏) = -
−1, (𝐷	 − 	𝑏) < 𝑡ℎ
1, (𝐷	 − 	𝑏) ≥ 𝑡ℎ (4) 

 

The designed IP basically implements the proposed pseudo 
code that is illustrated in Fig. 1. In the designed C code, 
float data type is assigned for all used data and mapped to 
the standard single-precision floating-point format on the 
FPGA. The designed IP depends on the size of both the 
features and SVs, in order to implement any SVM 
classifier. The designed IP receives needed data via an 
input stream interface to be stored in three main arrays. One 
2D array holds features of SVs. The other 1D array has αy  

of each SV and the third 1D array is for storing the features 
data of the test instance. The required calculations are 
divided into three main tasks in the algorithm, mapping the 
three main Eqs. (2)– (4). The first task is summing all 
manipulated/multiplied SVs to be stored then in an 
accumulated array (AC in (2)). The second task is 
performing the dot product between the test instance and 
the accumulated array to calculate the classification 
distance value (D in (3)). Then, the calculated distance 
number is finally classified according to the sign value, 
which gives the final SVM classifier decision for the class 
(F(x) in (4), th is the threshold value determined through 
the validation phase). We have two possible outputs equal 
to 1, or −1, which corresponds to melanoma class, or non-
melanoma class, respectively.  

The HLS tool provides various directives to be applied for 
the IP to assign different interfaces and apply other 
hardware techniques [14]. The AXI4-Stream directive is 
utilized as the input stream interface of the designed 
function module for streaming the required data between 
the PS (ARM CPU) and the designed HLS IP in the PL slice 
of the Zynq SoC. Additionally, the AXI-lite bus is allocated 
as a control bus of the module for controlling the designed 
IP and other connected cores in the system as well as 
controlling the data flow of the system through 
communicating with the ARM CPU (PS).  

In addition, the HLS tool provides various optimization 
techniques as directives to be employed for the designed IP 
[14]. In order to optimize loops, the pipelining and 
unrolling methods are used to enhance the throughput and 
latency.  

The unrolling technique creates multiple independent 
operations instead of a single collection of operations. 
Unrolling the loops decreases latency but increases 
hardware resources utilization as well as power 
consumption, which could be improved by applying 
partially unrolling technique. Both pipelined and unrolling 
designs are applied to the designed SVM HLS IP and 
investigated based on synthesis results, aiming to find an 
optimized hardware solution (results are provided and 
analyzed in Section 4.3).  

 
Fig. 1. Proposed pseudo code of the SVM algorithm. 

 
Fig. 2. The proposed hardware/software co-design on Zynq SoC. 
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Concerning arrays, some performance bottlenecks are often 
added with array accesses. The HLS tool normally maps 
arrays to dual-port memories to improve throughput. Also, 
arrays could be partitioned or reshaped by the help of the 
tool in order to improve memory resource implementation 
and increase throughput. The available partitioning styles 
are block, cyclic and complete [14]. These available 
directives are also applied to the proposed IP for more 
optimization investigation (discussed in Section 4.3).  
 
3.3. Proposed embedded system design on Zynq SoC  
The proposed HLS IP of the SVM classifier is successfully 
co-simulated (RTL simulation) and exported as an RTL 
implementation (packaged IP), after synthesizing the 
designed code utilizing the HLS tool. Next, the exported 
HLS IP is incorporated with the proposed design as shown 
in Fig. 2. Using the Vivado design suite, the exported HLS 
IP in the Zynq PL is attached to the PS ARM CPU through 
an ACP (Accelerator Coherency Port), using a Direct 
Memory Access (DMA) controller core. The ACP is a 64-
bit AXI slave interface on the snoop control unit that allows 
an asynchronous cache-coherent access point directly from 
the PL part to the PS part with low latency path [15]. The 
DMA IP controls transferring the data between the HLS IP 
and the ARM CPU through the AXI4-Stream bus. Besides, 
an AXI-Timer is exploited for performance comparisons 
based on the number of clock cycles needed by the IP/cores.  

Finally, the designed Zynq SoC is exported for the SDK 
tool to be tested, after successfully passing the synthesis, 
implementation and bitstream generation stages in the 
Vivado design tool.  
 
3.4. Proposed software design on Zynq PS  
A test bench or a software program has been implemented 
to test and verify the implemented SVM classifier on the 
Zynq SoC. The PS ARM CPU is responsible for executing 
the test bench besides controlling the attached cores/IPs and 
the data flow in the system. A software program is designed 
and implemented in C using the SDK tool. Fig. 3 shows the 
proposed algorithm of the software test bench/program that 
runs on the PS ARM processor. The test instance and the 
parameters of the trained SVM model required for 
computations are imported, using three main files saved in 
the Zynq SD card. The first file has the support vectors, and 
the second file includes αy for each SV with the b value. 
The third file keeps the test data. All imported data are 
parsed and stored in three main arrays to be streamed to the 
Zynq IP for further processing.  

The same SVM algorithm as proposed in Fig. 1 is executed 
on the ARM processor in order to compare its software 
result with the hardware result resulted from the 
implemented SVM HLS IP running on hardware. Also for 
comparing the performance, the XTimer IP is exploited to 
measure the clock cycles of running the SVM algorithm on 
software/PS and hardware/PL (including the hardware 
DMA streaming) and reports the hardware acceleration 
factor.  

This proposed system could be easily adapted to any other 
trained SVM model with the same size of parameters 
(number of SVs and features) that targets similar 
applications or more general classification application.  

Specifically, all new data required could be easily loaded 
via the three designed files stored in the SD card. 
Accordingly, the proposed SoC is feasible to achieve 
generality, flexibility, and adaptability.  
 

4. EXPERIMENTAL RESULTS  
4.1. Experiments’ setups  
A common SVM classifier called “SVM-Light” has been 
studied as a case study to implement our SVM IP on Zynq 
SoC. The SVM-light is a robust and simple classifier that 
is available in C implementation and has been used in 
various classification problems [16]. The modern UltraFast 
HLS design methodology is utilized to design and 
implement a binary SVM HLS IP, using the available 
SVM-Light classification (C/C++) code.  

The training phase was done offline on software by 
exploiting the available SVM-Light windows application, 
where the default parameters and the linear kernel function 
were used to generate the trained SVM models. Based on 
our previous work within our research group for melanoma 
detection [2], a dataset was used for training that consists 
of a total of 356 clinical images, including 168 melanoma 
and 188 benign images. In order to form a features dataset 
for the training of the SVM model, some selected pre-
processing, segmentation and feature extraction (based on 
HSV color channels) algorithms were applied to the images 
dataset (512 × 512 pixels). Finally, a new dataset of 356 
instances of 27 features each was extracted from the images 
dataset, to be used for training the SVM models [2]. In 
order to achieve a higher accuracy for the trained models, 
the cross-validation technique was utilized in the training 
phase. Finally after generating a trained SVM model 
offline, the model data was extracted to implement the 
trained SVM model on hardware using this proposed 
hardware design.  

The Xilinx Vivado 2016.1 Design Suite was utilized to 
design, implement and develop our proposed hardware 
design on the Zynq-7 ZC702 Evaluation Board. The  

 
Fig. 3. Proposed algorithm of the software program running on 
Zynq PS.  
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Vivado HLS tool was used first to develop our SVM HLS 
IP. Then, the developed SVM IP was exported for 
integration with the proposed Zynq SoC (Fig. 2) that was 
designed using the Vivado tool. The designed Zynq system 
was synthesized, placed and routed and finally the 
bitstream was generated to be exported for the Xilinx SDK 
tool to run an online classification application on Zynq.  

In the next sub-sections, the implemented SVM models are 
introduced, then experimental results are presented and 
analyzed.  
 
4.2. Implemented SVM models  
Three SVM trained models with different sizes have been 
developed offline (using the SVM-Light windows 
application) to be used for the hardware implementation 
using the proposed design, targeting melanoma detection. 
Three models were generated from training the available 
features dataset for melanoma with 356 instances of 27 
features each. First, the original full dataset was used to 
generate a trained SVM model “Model 1” with 346 SVs. 
Then, data scaling and normalization techniques were 
applied to the original dataset, which generated another 

trained model “Model 2” with 248 SVs that achieved higher 
classification accuracy.  

Another third model with smaller scale was implemented 
in order to be used as a case study for performance 
validation through running on the Zynq SoC, while the 
other two models were validated using simulation results 
only (due to the limited size of the available run-time 
memory). The small-scale model has 61 SVs generated 
from using part of the available normalized dataset in the 
training phase (144 instances).  
 
4.3. HLS synthesis results  
Some available optimization directives of the Vivado HLS 
tool were employed and tested (as introduced in Section 
4.2), for optimizing the proposed HLS IP design. Different 
experiments were performed to investigate improving and 
optimizing the synthesis results by applying various 
optimization directives of the HLS tool, aiming to achieve 
an efficient and hardware-friendly design with low 
hardware complexity. Accordingly, selected HLS synthesis 
results with the assigned directives were presented in Table 
1 (a), (b) and (c) for the three models of different SVs  

 Table 1. Synthesis results of applying different directives to the proposed HLS IP.  

 



 
6 

numbers and 27 features each. In Table 1, the first column 
displays the used directive, whilst the next columns present 
the HLS synthesis results for applying the corresponding 
directive (the design latency in clock cycles, throughput in 
clock cycles, and resource utilization). The first row in the 
tables demonstrates the synthesis results for the default 
settings of the HLS tool in addition to applying the interface 
directives of the I/O ports mapping (AXI4 and AXI-lite as 
explained in the previous section). The subsequent rows are 
for applying alternative directives besides the interface. 
The resource allocation is tested for the used arrays (BRAM 
and LUT). The pipeline or unroll technique is used for 
inner/most loops. It is recommended to pipeline the inner 
loops only in the nested loops, aiming to reach the optimum 
solution and allowing the HLS tool to make required 
scheduling quickly [14]. Additionally, the different array 
partition styles are applied with the loop unrolling directive 
under the same factor in addition to the pipeline.  

By applying different optimization directives to the design 
with the basic interfaces directives (in the first row), the 
latency and throughput were significantly improved, whilst 
extra resources were utilized. This is a justification of the 
existing trade-off between area and data throughput. The 
latency of the two large models model 1 and 2 of 82,460 
and 114,898 clock cycles was significantly decreased by a 
factor greater than 9x and 8x, respectively. Regarding 
unrolling loops, lower latency of 9,876 and 13,698 cycles 
of the two models were demonstrated, however, extra 
resources were allocated (the power-consuming DSP was 
increased from 5 to 135 for both models). Also, by applying 
loop unrolling, the best latency of 8,366 cycles was 
successfully realized for model 1, with utilizing more 
resources and using almost all available LUTs of 93%. 
Similarly for model 2, the lowest latency of 11,600 cycles 
was reached, however, it is not applicable for 
implementation due to the excess utilization of available 
LUTs of 119%, which was decreased by unrolling inner 
loops only. However, by applying the array partitioning 
(cyclic style on a factor of 16), the best latency of 12,960 
cycles was achieved for model 2 with fewer resources (20 
DSPs), while a good latency of 9,336 cycles was achieved 
for model 1 that was not less than unrolling most loops.  

Regarding the pipelining method, the lowest area with only 
5 DSPs utilization was realized for both models, whilst 
latency improvement was achieved (14,138 and 19,617 
cycles). By pipelining more loops, the latency was slightly 
decreased for both models with some increases in the 
resources utilization (reaching 10 or 58 DSPs). 
Accordingly, the pipelined design is considered to be more 
promising for a low-cost solution that offers low area and 
power consumption with reduced latency and high 
throughput.  

Similarly for the small model S, optimized results were 
achieved for latency and resources utilization, especially 
with applying the pipelining and unrolling techniques.  
 
4.4. Hardware implementation results  
After developing the designed HLS SVM IP, it was 
integrated into the proposed Zynq SoC for further 
implementation using the Vivado tool. Based on the 
investigation of the HLS synthesis results presented in the 
previous section, the most effective designs of the HLS IP 
that showed better synthesis results were selected for the 
Zynq SoC implementation. For the two large-scale models, 
the pipelined, unrolled and array partitioned designs 
(bolded in Table 1 (a) and (b), to be denoted as design 1, 2, 
and 3, respectively) were implemented (using 100 MHz and 
666.67 MHz operating frequency for PL/FPGA and ARM 
CPU respectively), for being the three best solutions for a 
balanced trade-off between achieving high-performance 
and low-area/cost. Also, model S was implemented (using 
250MHz frequency for both FPGA and ARM CPU) with 
the pipelined and unrolled designs (bolded in Table 1 (c)).  
 
4.4.1. Hardware resource utilization  
Table 2 summarizes the FPGA resource utilization for the 
three implemented Zynq systems. The first column shows 
the hardware resource and then the following columns 
illustrate the resource utilization’s value and percentage 
value for each of the implemented design. The last column 
indicates the number of available hardware resources in the 
target device. It is clear that the percentages of all resources 
utilization in Table 2 for all design implementations are 
very low, showing significant improvement in area savings. 
Regarding the large-scale models, the number of DSPs 
utilization is equal for the two models, which shows the 
highest rate of utilization for design 2 compared to other 
resources (similar behavior for model S).  
 
4.4.2. Power consumption  
The power consumption of all implementations have been 
reported using the Vivado tool (the confidence level is 
medium) and displayed in the last row of Table 2. The on-
chip total power consumption of all implementations of the 
three models are considered to be small reasonable values, 
meeting the critical embedded system constraint. For the 
two large-scale models, the least power consumption 
results of 1.756 and 1.758 W were achieved from design 1 
that has the least area. Also having almost equal values of 
power for the two models of different sizes is promising for 
implementing large-scales SVMs with low power values. 
The targeted device consumed 9% for the static power and 
91% for the dynamic power consumption, where the Zynq 
PS dissipated 95% of total dynamic power.  

Table 2. Hardware implementation results of implemented models on Zynq SoC.  
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Similar figures were realized for the other implementations 
of the two models. For model 1, design 3 showed slightly 
higher power than design 2. However, design 2 consumed 
the highest power dissipation of 2.125W for model 2, as a 
result of being the design with the highest utilization rates 
(The power dissipation by the DSPs was increased from 
less than 1% in design 1 to 5% of the total dynamic power 
in design 2 for model 2). For the small-scale model, both 
designs implementations also showed low levels of area 
and power consumption. Among the other two models and 
designs implementations, this model achieved the least 
power consumption of 1.686W with design 1.  
 
4.4.3. Processing speed and time  
The AXI-Timer IP core (Fig. 2) was exploited to compare 
the total computing time between running the designed 
code (Fig. 1) of the SVM on ARM processor in PS part and 
on hardware implemented in PL part of the Zynq SoC. Due 
to size limitation of the embedded DDR3 memory, the 
application/program could not run completely at the SDK 
tool, because of the big data size used by both models 1 and 
2. Accordingly, the small-scale model S was used for 
evaluating the processing speed and time by using XTimer 
measurements from running the application on Zynq Soc, 
while model 1 and 2 evaluation was based on timing 
simulation results.  

For running the test program on Zynq SoC for model S 
using the SDK, only 3693 clock cycles was required for 
running the hardware IP including data streaming via the 
DMA (for design 1). However, the embedded ARM 
processor used 77,367 clock cycles as a total run time of a 
similar software C coded function. Therefore, a significant 
acceleration factor greater than 20x was achieved by using 
the implemented hardware accelerator/IP (similar 
acceleration values were achieved for the unrolled design 
2). The used operating frequency for both the PS 
Zynq/ARM processor and PL/FPGA was 250 MHz. 

Accordingly, the processing times were 14.77 μs and 
309.47μs for the IP and ARM, respectively (approximately 
equal processing time (15.32μs) for the HLS IP was 
estimated from the C/RTL co-simulation at the HLS tool). 
Additionally, the ARM processor could run at the most 
optimization option to reach 89.59μs, whilst the 
acceleration factor was still significance to be greater than 
6x. Table 3 (a) shows the values of number of clock cycles 
and processing time for running on the PL, ARM and 
optimized ARM at 250MHz in addition to the speedup 
factors. By using the available maximum operating 
frequency of 250 MHz and 666.67 MHz for the PL and 
ARM respectively, an acceleration factor of greater than 
10x was achieved regarding the total number of clock 
cycles, whilst > 3x was achieved regarding the processing 
time (Table 3 (b)). In addition, the least processing time of 
11.26 μs was achieved with the pipelined design of model 
S.  

Tables 4 and 5 summarize the processing times and 
speedups values for both designs of model 1 and 2, 
respectively, at 100 MHz. For the largest implemented 
unrolled model 1, the highest acceleration factors of 36.98x 
and 10.83x were achieved compared to the embedded ARM 
without and with optimization. That’s shows a promising 
acceleration to achieve a high performance embedded 
classification system, while increasing scalability.  
 
4.4.4. Classification accuracy  
Using the Xilinx SDK tool, the proposed test bench 
presented in Section 3.4 (Fig. 3) has been developed in C. 
Some test instances of extracted features were tested to be 
correctly classified by all implemented SVM IPs (one at a 
time). Model S has been validated for online classification 
while running on the Zynq SoC, whilst other implemented 
models have been verified based on simulation results (due 
to memory size limitation at run-time).  

Table 3. Timing summary of model S.  

 



 
8 

Model 1 (248 SVs) was trained using the cross-validation 
method to produce a model with a good classification 
accuracy of 80.85%. In order to verify the hardware 
classification result of our implemented SVM IP and 
compare it with the software result, we monitored the 
calculated classification distance value D in (3). By using 
the C/RTL co-simulation results from the HLS tool, the 
distance value from our implemented IP was easily 
compared to that value generated from the SVM-Light 
window application/software to be identical for all tested 
instances. Accordingly, the percentage error was equal to 
zero, reserving the classification accuracy level without any 
loss from the hardware implementation, in contrast to some 
existing implementations in the literature as stated in 
Section 3.  

Same performance was achieved from the small-scale 
model S with a great accuracy of 97.92%, which has been 
validated by both simulation results and online 
classification results while running on the Zynq SoC. Table 
6 summarizes different parameters of the implemented 
SVM models; model 1 and model S. For each model, the 
table shows the number of SVs generated with the number 
of instances used in the training dataset of 27 features each, 
as well as, the classification accuracy rate that was 
preserved without any loss and validated with our 
experiments.  
 

5. DISCUSSION AND COMPARISONS  
5.1. Discussion  
The main objective of this research is proposing an 
optimized FPGA-based SVM classifier towards realizing 
an efficient embedded classification system targeting early 
detection of melanoma (as a case study). This research 
aimed to contribute to the existing literature by considering 
the existing challenges, limitations and research gaps in the 
current literature (that were identified from the survey 
study [9] and summarized in Section 2). This research 
focused on meeting the challenging constraints of 
embedded systems development, while achieving efficient 
classification with high accuracy rate. Recent FPGA design 
methods, technologies, and system development tools were 
exploited for implementing the proposed designs.  

By using the modern UltraFast HLS design methodology 
and the available optimization techniques (directives), the 
development effort and time were declined, whilst the 
embedded system design process was simplified. A simple 
and scalable HLS-based design was proposed for 
implementing an efficient SVM classifier IP/accelerator on 
Zynq SoC. The main decision function was divided into 
three main equations for simplifying the hardware 
mapping, aiming to reach a hardware-friendly design with 
lower hardware complexity.  

Three trained SVM models with different sizes were 
implemented using the proposed design, which were 
generated from the training with the available feature 
dataset for melanoma detection. In addition, another dataset 
of different application ‘pattern recognition’ has been used 
and tested, in order to validate our previous initial design 
[7] and this proposed extended design for general purpose 
classification. The trained SVM model has 877 SVs and 
9947 features, which was fully implemented and tested 
with our previous hardware/software co-design [7]. 
However for implementing such a large model using this 
proposed extended hardware design, an FPGA of bigger 
capacity with more resources is required or an additional 
device(s) could be co-operated to be fully implemented on 
hardware. Accordingly, the proposed design is capable of 
implementing SVM classifiers of various applications with 
variable sizes. Therefore, generality, scalability, and 
applicability of classification could be realized with the 
proposed design.  

By applying various optimization techniques of the HLS 
tool, different hardware solutions were achieved based on 
HLS synthesis results, aiming to find an optimum 
solution/balance for the existing trade-off between 
performance and area/cost. Different designs have been 
implemented, offering a low-cost design, as well as, a fast 
design with higher cost. These various design options can 
be chosen by developers to meet their project requirements. 
The low-cost design with lower area and power was 
favored for our case study “melanoma detection”, for 
realizing a low-cost handheld device. For the Zynq SoC 
implementation, the most effective designs of the HLS IP 
were selected for implementation that showed the best 
synthesis results, aiming to reach a balanced trade-off 
between achieving high-performance and low-area/cost.  

The experimental results of the three implemented SVM 
models on Zynq SoC using the proposed design have been 
evaluated in this discussion based on these factors; 
hardware resource utilization, power consumption, 
processing speed and time and classification accuracy, 
aiming to reach an optimized hardware solution for 
melanoma detection, while meeting vital embedded 
systems constraints.  

Regarding the resource utilization, all design 
implementations of the three different models showed very 
low utilization percentage that significantly improved area 
costs. The unrolled design 2 is considered to be the most 
costly design compared to the other two designs that has the 
largest area results for almost all resources. The pipelined 
design 1 demonstrated the least area results for the three 
models. Therefore, the pipelined design is considered to be 
the most cost effective design for achieving an embedded 
system for online classification with low area and low cost.  

All implemented designs demonstrated very low power 
consumption, while the least values were for the pipelined 
design. So, the pipelined design is capable of meeting the 
most challenging constraint of “low-power consumption”. 
In addition, it has been observed (from different 
implementation experiments) that when using less 
operating frequency for the ARM processor in the Zynq PL 
part, the power dissipation is decreased. This method could 
be applied in the future to optimize the power consumption  

Table 6. Parameters of implemented SVM Models.  
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of the other models. Therefore, our implementation of the 
proposed low-power system is so promising for the 
deployment in an embedded environment, aiming to reach 
our ultimate goal of realizing a handheld device with high 
performance and low cost.  

A significant hardware acceleration factor from 20x to 36x 
was achieved by the implemented hardware systems of 
variable sizes compared to an equivalent software 
implementation of the SVM classification function running 
on the embedded ARM/PS processor. The least processing 
time of 11.26μs was achieved with the pipelined design of 
the small-scale model S at 250MHz. Consequently, a real-
time embedded SVM system can be achieved that is 
scalable and easily extended offering high performance.  

Regarding the classification accuracy, the experimental 
results demonstrated that every hardware classification 
result of the implemented classifiers was exactly equal to 
the corresponding software classification result. 
Accordingly, the accuracy rate was preserved without any 
loss from our hardware proposed design, in contrast to 
some existing implementations in the literature that 
suffered from slightly loss in the accuracy rate. A great 
accuracy of 97.92% was achieved by model S, which has 
been validated by both simulation results and online 
classification results while running on the Zynq SoC. 
Therefore, a reliable scalable online SVM classification 
with a high classification accuracy could be realized with 
no loss in accuracy rate using our proposed design, while 
meeting critical embedded system constraints of optimized 
speed, area, power and cost.  

Finally, the implemented SVM classifier “model 1” on 
Zynq SoC with the pipelined design is considered to be an 
optimized classifier for our application “melanoma 
detection”, which is an efficient trained model of realistic 
size with only 2.7% slices utilized and 1.7 W power 
consumed, while classifying was achieved at 56 μs with 
80.8% accuracy at 250MHz.  
 
5.2. Comparison with our previous proposed designs  

5.2.1. Comparison with our previous hardware/software 
Co-design  
The previous hardware/software co-design [7] was 
proposed in order to implement the complicated dot-
product calculation onto the hardware/PL, while the rest of 
the required calculations of the decision function (1) was 
running on the software/PS in a single device (Zynq SoC). 
In this proposal, the hardware design was extended for 
implementing the whole decision function in the PL as a 
Zynq coprocessor/accelerator IP. The extended hardware 
design depends on the size of both features and SVs, whilst 
the previous design depends on the number of features 
only.  

The implementation of the previous design was realized for 
the SVM classifier that has the same size as model 2 (27 
features and 346 SVs). So, design 1 (pipelined) and design 
2 (unrolled) of model 2 were chosen in order to compare 
the implementation results of the previous design with this 
extended hardware design. Table 7 shows the 
implementation results of model 2 implemented on Zynq 
SoC using our previous hardware/software co-design with 

the unrolled HLS directive [7] and this proposed extended 
design (with the pipelined (design 1) and unrolled (design 
2) directives). The extended hardware implementation of 
design 1 successfully extended our previous 
implementation, while consuming extra 0.02 W only for 
power dissipation. For resource utilization, additional 17 
BRAMs and 31 memory LUTs were used, whilst utilization 
of other hardware resources (FFs and LUTs) was reduced 
with equal number of DSPs. Compared to design 2, an 
additional 0.387 W was required than that of the previous 
implementation, and more resources were utilized for all 
resources except for Memory LUTs.  

Obviously, design 1 showed more optimization in area and 
power results compared to design 2 for extending the 
previous design, where the unrolling technique was used. 
Accordingly, more design extension and scalability could 
be easily achieved with good implementation results by 
using the proposed cost-effective pipelined design.  
 
5.2.2. Comparison with our proposed BRAM-based design  
We have proposed another similar design on [17], which is 
based on using three BRAM interfaces to pass the 
corresponding three arrays’ data instead of streaming 
required data via the stream interface/bus. Same SVM 
trained models, model 1 and model S have been 
implemented in [17] using the BRAM-based design with 
applying the pipelined technique/directive to boost required 
processing. So, the pipelined design 1 of both model 1 and 
model S using this proposal were compared to the 
implemented models using our proposed BRAM-based 
Design [17], where the hardware implementation results 
are summarized in Table 8.  

This proposed hardware/software design consumed less 
hardware resource utilization with same number of DSPs 
and lower power consumption for both models, while 
keeping the same level of the classification accuracy. This 
shows that our different proposed designs are promising for 
preserving accuracy without loss, while improving 
hardware implementation results for reaching an optimum 
solution. For the small-scale model S, this proposed design 
consumed 0.4 W less power consumption than the BRAM-
based design. Also, fewer hardware resources were 
utilized, especially for the BRAM utilization where only 6 
BRAMs were utilized, while the other design used 48 
BRAMs. Similar figures of less resources and power were 
recorded for the large-scale model 1.  

Regarding the processing time, this design spent less 0.2 μs 
than the other design for the model S at 250MHz, while 
extra 17.3μs was required for model 1. It can be considered 
as another justification of the existing trade-off between 
performance and area/cost. This proposed 
hardware/software co-design still shows low processing 
time with fewer resources and less power than the other 
design for variable model’s size. Therefore, this design is 
feasible to realize an efficient embedded classifier for 
integration within a cost- and energy-efficient handheld 
device, targeting melanoma detection at the primary 
healthcare.  
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5.3. Comparison with related works  
In order to compare with some relevant work for different 
applications, our proposed pipelined design 1 of model 1 is 
selected, as being the most effective design with real data 
size for our case study “melanoma detection”. The selected 
model showed the best implementation results of high 
performance and low cost, area, and power among the 
implemented designs and models (apart from the small-
scale model S).  
 
5.3.1. Detection accuracy  
Some FPGA-based implementations in literature suffered 
from some loss in the SVM classification accuracy as stated 
in Section 3. Interestingly, no loss in the classification 
accuracy rate was achieved from our hardware 
implemented model, as the calculated classification values 
were exactly equal to the corresponding software results, 
which ensures reservation of the online classification 
accuracy rate onto FPGA. That’s increase feasibility of 
implementing other SVM models using our proposed 
design, while keeping same classification accuracy level 
without loss. In addition, our implemented SVM 
classification system showed a high acceptable detection 
accuracy of more than 80%, which could be used and 
applied in real life (>97% for model S). Precisely, our 
implemented system is considered to be accurate and 
reliable with zero loss in classification accuracy rate in 
contrast to other reported implementations in existing 
literature [18–22] (have recorded some loss in accuracy).  
 
5.3.2. FPGA technology  
The fact that many implementations in literature used old 
versions of FPGAs and very limited used recent ones 
[23,24], motivates us to use the latest FPGA technologies 
that are more powerful and feature-rich. Accordingly, we 
used the recent Xilinx Zynq-7000 SoC platform for our 
implementation. It also allowed for a  

higher operating frequency in contrast to numerous 
previous implementations in the literature. Besides, the 

modern Vivado Design Suite (2016.1 version) was 
exploited for our development process that applies the 
latest UltraFast HLS design methodology, which decreases 
hardware development effort, accelerates design 
productivity and shorten time-to-market. Consequently, 
our implemented system on Zynq achieved more optimized 
implementation results.  

5.3.3. Processing speed and time  
Regarding the processing speed and time, the implemented 
system on hardware has significantly accelerated the 
processing power up to 36 orders of magnitude over similar 
software implementation running on the embedded ARM 
processor/CPU. By using the recent FPGA technology that 
offers a high operating frequency of 250 MHz, a processing 
time of 56.6 μs (33.5 μs in case of the unrolled design) was 
achieved, demonstrating real-time performance (the least 
time of 11.26μs was achieved for the pipelined model S). 
Therefore, a real-time and effective embedded system can 
be achieved, which also outperforms some existing 
implementations regarding processing time [18,19,25–29].  
 
5.3.4. Hardware resources utilization  
Regarding the hardware resource utilization, our proposed 
implementation reported very low utilization of all 
resources, which ensures the realization of a low power 
system with low cost and feasibility for extensibility and 
scalability. Our implemented system demonstrated less 
resource utilization than some of the previous 
implementations for different applications in literature 
[18,20,22,25,26,28,30].  
 
5.3.5. Power consumption  
Interestingly, our achieved low-power embedded system 
meets the most challenging constraint “low power 
consumption”, whereas very few of such implemented 
systems exist in the literature. Also, it has been found that 
most existing implementations had not included any 
measurements for the power consumption. Specifically, our  

                        Table 7. Implementation results comparison of model 2.  

 

Table 8. Implementation results comparison of model 1 and model S.  
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Zynq systems dissipated lower power among other existing 
implementations in the literature [20,22,25,31].  
 
5.3.6. Detailed comparison and discussion  
Some of the existing related implementations of binary 
SVMs were selected to be compared with our implemented 
model 1 and model S using the pipelined design 1 (apart 
from the different applications used), which is summarized 
in Table 9. Using the modern UltraFast HLS design 
methodology, our implementations achieved significant 
hardware results compared to others that used the 
traditional pipelined architectures and common systolic 
array architectures. It is clear that lower resource utilization 
was demonstrated with real moderate size of SVM 
parameters with the linear kernel. The power consumption 
is significantly low (less than 1.8 W), compared to a very 
high power of 15 W in [25], while others didn’t consider 
this critical constraint. By using the recent FPGA platform, 
a higher operating frequency was used to achieve extremely 
less processing time than [25] and comparable time to [26] 
and [28]. Regarding model 1, the least processing time of 
33 μs was demonstrated by using the faster unrolled design 
that offers slightly higher cost and area from the pipelined 
design, however, the lowest 11.26 μs was achieved by the 
small-scale model S using the cost- and energy-efficient 
pipelined design. Acceptable classification accuracy rate 
higher than 80% with zero loss was verified for our 
application, while others didn’t validate their hardware 
classifiers [25,28]. Accordingly, our implemented models 
on the recent hybrid Zynq SoC platform achieved 
optimized results for the hardware resource utilization, 
power consumption, detection speed and processing time 
with high classification accuracy rates using real data for 
melanoma detection.  

Finally, to the best of our knowledge, our Zynq 
implemented embedded system using the HLS method is 
considered to be the first FPGA-based SVM classifier 
exists in the literature that targets melanoma classification. 
In addition, our implemented system successfully 
overcame the most challenges exit in the literature of 
meeting critical embedded system constraints of high 
performance, flexibility, scalability, and low area, cost, and 
power consumption, while reaching effective 
classification.  
 

6. CONCLUSIONS  
The main contribution of this research is proposing a 
hardware/software co-design to implement a full SVM 
classifier on FPGA, and realization of an embedded SoC 

dedicated for melanoma detection on the latest hybrid Zynq 
SoC utilizing the modern UltraFast HLS design 
methodology. Our implemented Zynq systems met the 
challenging embedded system constraints, by achieving 
high performance computing at low cost, area and power 
consumption, while realizing high classification accuracy. 
By utilizing the HLS design methodology and the offered 
optimization techniques (directives), the development 
effort and time were declined, whilst embedded system 
design process was simplified. A simple flexible IP-based 
design was presented, which is scalable and easily 
extendable to support multi-purpose classification. 
Different solutions/designs were presented for balancing 
the existing trade-off between speed and area, offering 
options for various project requirements from a low-cost 
design to a fast design with higher cost.  

Interestingly, the SVM classification process was 
significantly accelerated on FPGA by a factor up to 36x 
outperforming an embedded processor, whereas 11.3μs 
processing time was achieved using a high operating 
frequency of 250MHz. Moreover, an effective SVM 
classification with high accuracy of 97.9% was realized on 
hardware without any loss in accuracy rate, in contrast to 
other existing implementations in the literature. Compared 
to other related systems in the literature, our implemented 
embedded system is a cost-effective system with low area 
(2.7% slices) and power consumption (1.7W).  

For future work, the implemented embedded system of the 
SVM could be easily extended and adapted for different 
online classification applications, targeting generality, 
scalability and applicability. Also, the implemented binary 
classifier could be easily extended to implement a 
multiclass classifier, in addition to implementing different 
types of kernels. More test instances would be tested in 
future in order to validate the classification accuracy rate of 
the implemented classifier. Furthermore, the proposed 
hardware/software co-design realized on the hybrid Zynq 
SoC using the HLS method could be adopted by hardware 
developers for implementing their embedded systems. 
Other FPGA-based design and optimization methods can 
be employed in the future (e.g. fixed-point arithmetic, DPR 
technique, multiplier-less method), for gaining more 
flexibility and scalability with higher performance and less 
cost. The presented scalable IP-based design would be 
extended to form a multi-core architecture by adding more 
SVM IPs in a single device/SoC that could be applied as a 
multi-class, ensemble, or cascaded classification. Finally, 
the implemented classifier is feasible to be embedded in the 
future within a fast low-cost handheld medical scanning 
device for melanoma detection or any other applications.  

Table 9. Comparison with related works.  
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