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Abstract

Today’s systems are overwhelmingly designed to move data to computation. This design choice goes directly against

at least three key trends in systems that cause performance, scalability and energy bottlenecks: (1) data access from

memory is already a key bottleneck as applications become more data-intensive and memory bandwidth and energy do

not scale well, (2) energy consumption is a key constraint in especially mobile and server systems, (3) data movement

is very expensive in terms of bandwidth, energy and latency, much more so than computation. These trends are

especially severely-felt in the data-intensive server and energy-constrained mobile systems of today.

At the same time, conventional memory technology is facing many scaling challenges in terms of reliability, energy,

and performance. As a result, memory system architects are open to organizing memory in different ways and making

it more intelligent, at the expense of higher cost. The emergence of 3D-stacked memory plus logic as well as the

adoption of error correcting codes inside DRAM chips, and the necessity for designing new solutions to serious

reliability and security issues, such as the RowHammer phenomenon, are an evidence of this trend.

In this work, we discuss some recent research that aims to practically enable computation close to data. After

motivating trends in applications as well as technology, we discuss at least two promising directions for processing-

in-memory (PIM): (1) performing massively-parallel bulk operations in memory by exploiting the analog operational

properties of DRAM, with low-cost changes, (2) exploiting the logic layer in 3D-stacked memory technology to

accelerate important data-intensive applications. In both approaches, we describe and tackle relevant cross-layer

research, design, and adoption challenges in devices, architecture, systems, and programming models. Our focus is

on the development of in-memory processing designs that can be adopted in real computing platforms at low cost.
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1. Introduction

Main memory, which is built using the Dynamic Ran-

dom Access Memory (DRAM) technology, is a major

component in nearly all computing systems. Across

all of these systems, including servers, cloud platforms,

and mobile/embedded devices, the data working set

sizes of modern applications are rapidly growing, caus-

ing the main memory to be a significant bottleneck for

these applications [1, 2, 3, 4, 5, 6, 7]. Alleviating the

main memory bottleneck requires the memory capac-

ity, energy, cost, and performance to all scale in an ef-

ficient manner. Unfortunately, it has become increas-

ingly difficult in recent years to scale all of these dimen-

sions [1, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], and the

main memory bottleneck has instead been worsening.

A major reason for the main memory bottleneck is

the high cost associated with data movement. In to-

day’s computers, to perform any operation on data that

resides in main memory, the memory controller must

first issue a series of commands to the DRAM mod-

ules across an off-chip bus (known as the memory chan-

nel). The DRAM module responds by sending the data

to the memory controller across the memory channel,

after which the data is placed within a cache or reg-

isters. The CPU can only perform the operation on

the data once the data is in the cache. This process

of moving data from the DRAM to the CPU incurs a

long latency, and consumes a significant amount of en-

ergy [7, 32, 33, 34, 35]. These costs are often exacer-

bated by the fact that much of the data brought into the

caches is not reused by the CPU [36, 37], providing lit-

tle benefit in return for the high latency and energy cost.
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The cost of data movement is a fundamental issue

with the processor-centric nature of contemporary com-

puter systems, where the CPU is considered to be the

master of the system and has been optimized heavily. In

contrast, data storage units such as main memory are

treated as unintelligent workers, and, thus, are largely

not optimized. With the increasingly data-centric na-

ture of contemporary and emerging applications, the

processor-centric design approach leads to many ineffi-

ciencies. For example, within a single compute node,

most of the node real estate is dedicated to handle

the storage and movement of data (e.g., large on-chip

caches, shared interconnect, memory controllers, off-

chip interconnects, main memory) [38].

Recent advances in memory design and memory ar-

chitecture have enabled the opportunity for a paradigm

shift towards performing processing-in-memory (PIM),

where we can redesign the computer to no longer be

processor-centric and avoid unnecessary data move-

ment. Processing-in-memory, also known as near-data

processing (NDP), enables the ability to perform oper-

ations either using (1) the memory itself, or (2) some

form of processing logic (e.g., accelerators, simple

cores, reconfigurable logic) inside the DRAM subsys-

tem. Processing-in-memory has been proposed for at

least four decades [39, 40, 41, 42, 43, 44, 45, 46, 47, 48,

49, 50, 51, 52, 53]. However, these past efforts were

not adopted at large scale due to various reasons, in-

cluding the difficulty of integrating processing elements

with DRAM and the fact that memory technology was

not facing as critical scaling challenges as it is today.

As a result of advances in modern memory architec-

tures, e.g., the integration of logic and memory in a 3D-

stacked manner, various recent works explore a range of

PIM architectures for multiple different purposes (e.g.,

[7, 32, 33, 34, 35, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,

79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91]).

In this paper, we explore two approaches to enabling

processing-in-memory in modern systems. The first ap-

proach examines a form of PIM that only minimally

changes memory chips to perform simple yet power-

ful common operations that the chip could be made

inherently very good at performing [31, 71, 82, 83,

84, 85, 86, 90, 92, 93, 94, 95, 96]. Solutions that

fall under this approach take advantage of the existing

DRAM design to cleverly and efficiently perform bulk

operations (i.e., operations on an entire row of DRAM

cells), such as bulk copy, data initialization, and bitwise

operations. The second approach takes advantage of

the design of emerging 3D-stacked memory technolo-

gies to enable PIM in a more general-purpose man-

ner [7, 34, 35, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68, 70, 72, 73, 74, 75, 77, 87, 88, 89, 91].

In order to stack multiple layers of memory, 3D-stacked

chips use vertical through-silicon vias (TSVs) to con-

nect the layers to each other, and to the I/O drivers of

the chip [97]. The TSVs provide much greater inter-

nal bandwidth than is available externally on the mem-

ory channel. Several such 3D-stacked memory archi-

tectures, such as the Hybrid Memory Cube [98, 99]

and High-Bandwidth Memory [97, 100], include a logic

layer, where designers can add some simple processing

logic to take advantage of the high internal bandwidth.

For both approaches to PIM, there are a number

of new challenges that system architects and program-

mers must address to enable the widespread adoption

of PIM across the computing landscape and in different

domains of workloads. In addition to describing work

along the two key approaches, we also discuss these

challenges in this paper, along with existing work that

addresses these challenges.

2. Major Trends Affecting Main Memory

The main memory is a major, critical component of

all computing systems, including cloud and server plat-

forms, desktop computers, mobile and embedded de-

vices, and sensors. It is one of the two main pillars of

any computing platform, together with the processing

elements, namely CPU cores, GPU cores, or reconfig-

urable devices.

Due to its relatively low cost and low latency, DRAM

is the predominant technology to build main memory.

Because of the growing data working set sizes of mod-

ern applications [1, 2, 3, 4, 5, 6, 7], there is an ever-

increasing demand for higher DRAM capacity and per-

formance. Unfortunately, DRAM technology scaling

is becoming more and more challenging in terms of

increasing the DRAM capacity and maintaining the

DRAM energy efficiency and reliability [1, 11, 15, 101,

102]. Thus, fulfilling the increasing memory needs from

applications is becoming more and more costly and dif-

ficult [2, 3, 4, 8, 9, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21,

22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 35, 59, 103,

104, 105].

If CMOS technology scaling is coming to an

end [106], the projections are significantly worse for

DRAM technology scaling [107]. DRAM technology

scaling affects all major characteristics of DRAM, in-

cluding capacity, bandwidth, latency, energy and cost.

We next describe the key issues and trends in DRAM

technology scaling and discuss how these trends moti-
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vate the need for intelligent memory controllers, which

can be used as a substrate for processing in memory.

The first key concern is the difficulty of scaling

DRAM capacity (i.e., density, or cost per bit), band-

width and latency at the same time. While the process-

ing core count doubles every two years, the DRAM ca-

pacity doubles only every three years [20]. This causes

the memory capacity per core to drop by approximately

30% every two years [20]. The trend is even worse

for memory bandwidth per core – in the last 20 years,

DRAM chip capacity (for the most common DDRx chip

of the time) has improved around 128× while DRAM

bandwidth has increased only around 20× [22, 23, 31].

In the same period of twenty years, DRAM latency (as

measured by the row cycling time) has remained al-

most constant (i.e., reduced by only 30%), making it

a significant performance bottleneck for many modern

workloads, including in-memory databases [108, 109,

110, 111], graph processing [34, 112, 113], data ana-

lytics [110, 114, 115, 116], datacenter workloads [4],

and consumer workloads [7]. As low-latency comput-

ing is becoming ever more important [1], e.g., due to the

ever-increasing need to process large amounts of data at

real time, and predictable performance continues to be

a critical concern in the design of modern computing

systems [2, 16, 117, 118, 119, 120, 121, 122, 123], it is

increasingly critical to design low-latency main memory

chips.

The second key concern is that DRAM technology

scaling to smaller nodes adversely affects DRAM re-

liability. A DRAM cell stores each bit in the form

of charge in a capacitor, which is accessed via an ac-

cess transistor and peripheral circuitry. For a DRAM

cell to operate correctly, both the capacitor and the ac-

cess transistor (as well as the peripheral circuitry) need

to operate reliably. As the size of the DRAM cell re-

duces, both the capacitor and the access transistor be-

come less reliable. As a result, reducing the size of the

DRAM cell increases the difficulty of correctly storing

and detecting the desired original value in the DRAM

cell [1, 11, 15, 101]. Hence, memory scaling causes

memory errors to appear more frequently. For exam-

ple, a study of Facebook’s entire production datacenter

servers showed that memory errors, and thus the server

failure rate, increase proportionally with the density of

the chips employed in the servers [124]. Thus, it is crit-

ical to make the main memory system more reliable to

build reliable computing systems on top of it.

The third key issue is that the reliability problems

caused by aggressive DRAM technology scaling can

leads to new security vulnerabilities. The RowHammer

phenomenon [11, 15] shows that it is possible to pre-

dictably induce errors (bit flips) in most modern DRAM

chips. Repeatedly reading the same row in DRAM can

corrupt data in physically-adjacent rows. Specifically,

when a DRAM row is opened (i.e., activated) and closed

(i.e., precharged) repeatedly (i.e., hammered), enough

times within a DRAM refresh interval, one or more bits

in physically-adjacent DRAM rows can be flipped to the

wrong value. A very simple user-level program [125]

can reliably and consistently induce RowHammer errors

in vulnerable DRAM modules. The seminal paper that

introduced RowHammer [11] showed that more than

85% of the chips tested, built by three major vendors be-

tween 2010 and 2014, were vulnerable to RowHammer-

induced errors. In particular, all DRAM modules from

2012 and 2013 are vulnerable.

The RowHammer phenomenon entails a real reliabil-

ity, and perhaps even more importantly, a real and preva-

lent security issue. It breaks physical memory isolation

between two addresses, one of the fundamental build-

ing blocks of memory, on top of which system security

principles are built. With RowHammer, accesses to one

row (e.g., an application page) can modify data stored in

another memory row (e.g., an OS page). This was con-

firmed by researchers from Google Project Zero, who

developed a user-level attack that uses RowHammer to

gain kernel privileges [126, 127]. Other researchers

have shown how RowHammer vulnerabilities can be

exploited in various ways to gain privileged access to

various systems: in a remote server RowHammer can

be used to remotely take over the server via the use of

JavaScript [128]; a virtual machine can take over an-

other virtual machine by inducing errors in the victim

virtual machine’s memory space [129]; a malicious ap-

plication without permissions can take control of an An-

droid mobile device [130]; or an attacker can gain arbi-

trary read/write access in a web browser on a Microsoft

Windows 10 system [131]. For a more detailed treat-

ment of the RowHammer problem and its consequences,

we refer the reader to [11, 15, 132].

The fourth key issue is the power and energy con-

sumption of main memory. DRAM is inherently a

power and energy hog, as it consumes energy even

when it is not used (e.g., it requires periodic memory

refresh [14]), due to its charge-based nature. And, en-

ergy consumption of main memory is becoming worse

due to three major reasons. First, its capacity and com-

plexity are both increasing. Second, main memory has

remained off the main processing chip, even though

many other platform components have been integrated

into the processing chip and have benefited from the

aggressive energy scaling and low-energy communica-

tion substrate on-chip. Third, the difficulties in DRAM
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technology scaling are making energy reduction very

difficult with technology generations. For example, Le-

furgy et al. [133] showed, in 2003 that, in large commer-

cial servers designed by IBM, the off-chip memory hi-

erarchy (including, at that time, DRAM, interconnects,

memory controller, and off-chip caches) consumed be-

tween 40% and 50% of the total system energy. The

trend has become even worse over the course of the

one-to-two decades. In recent computing systems with

CPUs or GPUs, only DRAM itself is shown to account

for more than 40% of the total system power [134, 135].

Hence, the power and energy consumption of main

memory is increasing relative to that of other compo-

nents in computing platform. As energy efficiency and

sustainability are critical necessities in computing plat-

forms today, it is critical to reduce the energy and power

consumption of main memory.

3. The Need for Intelligent Memory Controllers to

Enhance Memory Scaling

A key promising approach to solving the four major

issues above is to design intelligent memory controllers

that can manage main memory better. If the memory

controller is designed to be more intelligent and more

programmable, it can, for example, incorporate flexi-

ble mechanisms to overcome various types of reliability

issues (including RowHammer), manage latencies and

power consumption better based on a deep understand-

ing of the DRAM and application characteristics, pro-

vide enough support for programmability to prevent se-

curity and reliability vulnerabilities that are discovered

in the field, and manage various types of memory tech-

nologies that are put together as a hybrid main memory

to enhance the scaling of the main memory system. We

provide a few examples of how an intelligent memory

controller can help overcome circuit- and device-level

issues we are facing at the main memory level. We be-

lieve having intelligent memory controllers can greatly

alleviate the scaling issues encountered with main mem-

ory today, as we have described in an earlier position

paper [1]. This is a direction that is also supported by in-

dustry today, as described in an informative paper writ-

ten collaboratively by Intel and Samsung engineers on

DRAM technology scaling issues [8].

First, the RowHammer vulnerability can be prevented

by probabilistically refreshing rows that are adjacent to

an activated row, with a very low probability. This solu-

tion, called PARA (Probabilistic Adjacent Row Activa-

tion) [11] was shown to provide strong, programmable

guarantees against RowHammer, with very little power,

performance and chip area overhead [11]. It requires a

slightly more intelligent memory controller that knows

(or that can figure out) the physical adjacency of rows

in a DRAM chip and that is programmable enough to

adjust the probability of adjacent row activation and

issue refresh requests to adjacent rows accordingly to

the probability supplied by the system. As described

by prior work [11, 15, 132], this solution is much

lower overhead that increasing the refresh rate across

the board for the entire main memory, which is the

RowHammer solution employed by existing systems in

the field that have simple and rigid memory controllers.

Second, an intelligent memory controller can greatly

alleviate the refresh problem in DRAM, and hence its

negative consequences on energy, performance, pre-

dictability, and technology scaling, by understanding

the retention time characteristics of different rows well.

It is well known that the retention time of different cells

in DRAM are widely different due to process manufac-

turing variation [14, 101]. Some cells are strong (i.e.,

they can retain data for hundreds of seconds), whereas

some cells are weak (i.e., they can retain data for only

64 ms). Yet, today’s memory controllers treat every cell

as equal and refresh all rows every 64 ms, which is the

worst-case retention time that is allowed. This worst-

case refresh rate leads to a large number of unneces-

sary refreshes, and thus great energy waste and perfor-

mance loss. Refresh is also shown to be the key technol-

ogy scaling limiter of DRAM [8], and as such refresh-

ing all DRAM cells at the worst case rates is likely to

make DRAM technology scaling difficult. An intelli-

gent memory controller can overcome the refresh prob-

lem by identifying the minimum data retention time of

each row (during online operation) and refreshing each

row at the rate it really requires to be refreshed at or by

decommissioning weak rows such that data is not stored

in them. As shown by a recent body of work whose

aim is to design such an intelligent memory controller

that can perform inline profiling of DRAM cell retention

times and online adjustment of refresh rate on a per-row

basis [14, 101, 136, 137, 138, 139, 140, 141], includ-

ing the works on RAIDR [14, 101], AVATAR [137] and

REAPER [140], such an intelligent memory controller

can eliminate more than 75% of all refreshes at very

low cost, leading to significant energy reduction, perfor-

mance improvement, and quality of service benefits, all

at the same time. Thus the downsides of DRAM refresh

can potentially be overcome with the design of intelli-

gent memory controllers.

Third, an intelligent memory controller can enable

performance improvements that can overcome the limi-

tations of memory scaling. As we discuss in Section 2,

DRAM latency has remained almost constant over the
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last twenty years, despite the fact that low-latency com-

puting has become more important during that time.

Similar to how intelligent memory controllers handle

the refresh problem, the controllers can exploit the fact

that not all cells in DRAM need the same amount of

time to be accessed. Manufacturers assign timing pa-

rameters that define the amount of time required to per-

form a memory access. In order to guarantee correct

operation, the timing parameters are chosen to ensure

that the worst-case cell in any DRAM chip that is sold

can still be accessed correctly at worst-case operating

temperatures [22, 24, 26, 105]. However, we find that

access latency to cells is very heterogeneous due to vari-

ation in both operating conditions (e.g., across different

temperatures and operating voltage), manufacturing pro-

cess (e.g., across different chips and different parts of a

chip), and access patterns (e.g., whether or not the cell

was recently accessed). We give six examples of how

an intelligent memory controller can exploit the various

different types of heterogeneity.

(1) At low temperature, DRAM cells contain more

charge, and as a result, can be accessed much faster than

at high temperatures. We find that, averaged across 115

real DRAM modules from three major manufacturers,

read and write latencies of DRAM can be reduced by

33% and 55%, respectively, when operating at relatively

low temperature (55 ◦C) compared to operating at worst-

case temperature (85 ◦C) [24, 142]. Thus, a slightly in-

telligent memory controller can greatly reduce memory

latency by adapting the access latency to operating tem-

perature.

(2) Due to manufacturing process variation, we find

that the majority of cells in DRAM (across different

chips or within the same chip) can be accessed much

faster than the manufacturer-provided timing parame-

ters [22, 24, 26, 31, 105, 142]. An intelligent mem-

ory controller can profile the DRAM chip and identify

which cells can be accessed reliably at low latency, and

use this information to reduce access latencies by as

much as 57% [22, 26, 105].

(3) In a similar fashion, an intelligent memory con-

troller can use similar properties of manufacturing pro-

cess variation to reduce the energy consumption of a

computer system, by exploiting the minimum voltage re-

quired for safe operation of different parts of a DRAM

chip [25, 31]. The key idea is to reduce the operating

voltage of a DRAM chip from the standard specification

and tolerate the resulting errors by increasing access la-

tency on a per-bank basis, while keeping performance

degradation in check.

(4) Bank conflict latencies can be dramatically re-

duced by making modifications in the DRAM chip

such that different subarrays in a bank can be ac-

cessed mostly independently, and designing an intelli-

gent memory controller that can take advantage of re-

quests that require data from different subarrays (i.e.,

exploit subarray-level parallelism) [12, 13].

(5) Access latency to a portion of the DRAM bank

can be greatly reduced by partitioning the DRAM array

such that a subset of rows can be accessed much faster

than the other rows and having an intelligent memory

controller that decides what data should be placed in fast

rows versus slow rows [23, 142].

(6) We find that a recently-accessed or recently-

refreshed memory row can be accessed much more

quickly than the standard latency if it needs to be ac-

cessed again soon, since the recent access and refresh

to the row has replenished the charge of the cells in the

row. An intelligent memory controller can thus keep

track of the charge level of recently-accessed/refreshed

rows and use the appropriate access latency that corre-

sponds to the charge level [30, 103, 104], leading to sig-

nificant reductions in both access and refresh latencies.

Thus, the poor scaling of DRAM latency and energy can

potentially be overcome with the design of intelligent

memory controllers that can facilitate a large number of

effective latency and energy reduction techniques.

Intelligent controllers are already in widespread use

in another key part of a modern computing system.

In solid-state drives (SSDs) consisting of NAND flash

memory, the flash controllers that manage the SSDs

are designed to incorporate a significant level of intel-

ligence in order to improve both performance and re-

liability [143, 144, 145, 146, 147]. Modern flash con-

trollers need to take into account a wide variety of is-

sues such as remapping data, performing wear leveling

to mitigate the limited lifetime of NAND flash memory

devices, refreshing data based on the current wearout of

each NAND flash cell, optimizing voltage levels to max-

imize memory lifetime, and enforcing fairness across

different applications accessing the SSD. Much of the

complexity in flash controllers is a result of mitigat-

ing issues related to the scaling of NAND flash mem-

ory [143, 144, 145, 148, 149]. We argue that in order to

overcome scaling issues in DRAM, the time has come

for DRAM memory controllers to also incorporate sig-

nificant intelligence.

As we describe above, introducing intelligence into

the memory controller can help us overcome a number

of key challenges in memory scaling. In particular, a sig-

nificant body of works have demonstrated that the key

reliability, refresh, and latency/energy issues in memory

can be mitigated effectively with an intelligent memory

controller. As we discuss in Section 4, this intelligence
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can go even further, by enabling the memory controllers

(and the broader memory system) to perform applica-

tion computation in order to overcome the significant

data movement bottleneck in existing computing sys-

tems.

4. Perils of Processor-Centric Design

A major bottleneck against improving the overall sys-

tem performance and the energy efficiency of today’s

computing systems is the high cost of data movement.

This is a natural consequence of the von Neumann

model [150], which separates computation and storage

in two different system components (i.e., the computing

unit versus the memory/storage unit) that are connected

by an off-chip bus. With this model, processing is done

only in one place, while data is stored in another, sepa-

rate place. Thus, data needs to move back and forth be-

tween the memory/storage unit and the computing unit

(e.g., CPU cores or accelerators).

In order to perform an operation on data that is stored

within memory, a costly process is invoked. First, the

CPU (or an accelerator) must issue a request to the mem-

ory controller, which in turn sends a series of commands

across the off-chip bus to the DRAM module. Second,

the data is read from the DRAM module and returned to

the memory controller. Third, the data is placed in the

CPU cache and registers, where it is accessible by the

CPU cores. Finally, the CPU can operate (i.e., perform

computation) on the data. All these steps consume sub-

stantial time and energy in order to bring the data into

the CPU chip [4, 7, 151, 152].

In current computing systems, the CPU is the only

system component that is able to perform computa-

tion on data. The rest of system components are de-

voted to only data storage (memory, caches, disks) and

data movement (interconnects); they are incapable of

performing computation. As a result, current comput-

ing systems are grossly imbalanced, leading to large

amounts of energy inefficiency and low performance.

As empirical evidence to the gross imbalance caused

by the processor-memory dichotomy in the design of

computing systems today, we have recently observed

that more than 62% of the entire system energy con-

sumed by four major commonly-used mobile consumer

workloads (including the Chrome browser, TensorFlow

machine learning inference engine, and the VP9 video

encoder and decoder) [7]. Thus, the fact that current

systems can perform computation only in the comput-

ing unit (CPU cores and hardware accelerators) is caus-

ing significant waste in terms of energy by necessitating

data movement across the entire system.

At least five factors contribute to the performance

loss and the energy waste associated with retrieving data

from main memory, which we briefly describe next.

First, the width of the off-chip bus between the mem-

ory controller and the main memory is narrow, due to

pin count and cost constraints, leading to relatively low

bandwidth to/from main memory. This makes it diffi-

cult to send a large number of requests to memory in

parallel.

Second, current computing systems deploy com-

plex multi-level cache hierarchies and latency toler-

ance/hiding mechanisms (e.g., sophisticated caching

algorithms at many different caching levels, multiple

complex prefetching techniques, high amounts of mul-

tithreading, complex out-of-order execution) to toler-

ate the data access from memory. These components,

while sometimes effective at improving performance,

are costly in terms of both die area and energy con-

sumption, as well as the additional latency required to

access/manage them. These components also increase

the complexity of the system significantly. Hence, the

architectural techniques used in modern systems to tol-

erate the consequences of the dichotomy between pro-

cessing unit and main memory, lead to significant en-

ergy waste and additional complexity.

Third, the caches are not always properly leveraged.

Much of the data brought into the caches is not reused

by the CPU [36, 37], e.g., in streaming or random ac-

cess applications. This renders the caches either very

inefficient or unnecessary for a wide variety of modern

workloads.

Fourth, many modern applications, such as graph pro-

cessing [34, 35], produce random memory access pat-

terns. In such cases, not only the caches but also the

off-chip bus and the DRAM memory itself become very

inefficient, since only a little part of each cache line re-

trieved is actually used by the CPU. Such accesses are

also not easy to prefetch and often either confuse the

prefetchers or render them ineffective. Modern memory

hierarchies are not designed to work well for random

access patterns.

Fifth, the computing unit and the memory unit are

connected through long, power-hungry interconnects.

These interconnects impose significant additional la-

tency to every data access and represent a significant

fraction of the energy spent on moving data to/from the

DRAM memory. In fact, off-chip interconnect latency

and energy consumption is a key limiter of performance

and energy in modern systems [16, 23, 71, 82] as it

greatly exacerbates the cost of data movement.

The increasing disparity between processing tech-

nology and memory/communication technology has re-

6



sulted in systems in which communication (data move-

ment) costs dominate computation costs in terms of en-

ergy consumption. The energy consumption of a main

memory access is between two to three orders of mag-

nitude the energy consumption of a complex addition

operation today. For example, [152] reports that the en-

ergy consumption of a memory access is ∼ 115× the

energy consumption of an addition operation. As a re-

sult, data movement accounts for 40% [151], 35% [152],

and 62% [7] of the total system energy in scientific,

mobile, and consumer applications, respectively. This

energy waste due to data movement is a huge burden

that greatly limits the efficiency and performance of all

modern computing platforms, from datacenters with a

restricted power budget to mobile devices with limited

battery life.

Overcoming all the reasons that cause low perfor-

mance and large energy inefficiency (as well as high sys-

tem design complexity) in current computing systems

requires a paradigm shift. We believe that future com-

puting architectures should become more data-centric:

they should (1) perform computation with minimal data

movement, and (2) compute where it makes sense (i.e.,

where the data resides), as opposed to computing solely

in the CPU or accelerators. Thus, the traditional rigid

dichotomy between the computing units and the mem-

ory/communication units needs to be broken and a new

paradigm enabling computation where the data resides

needs to be invented and enabled.

5. Processing-in-Memory (PIM)

Large amounts of data movement is a major result of

the predominant processor-centric design paradigm of

modern computers. Eliminating unnecessary data move-

ment between memory unit and compute unit is essen-

tial to make future computing architectures higher per-

formance, more energy efficient and sustainable. To this

end, processing-in-memory (PIM) equips the memory

subsystem with the ability to perform computation.

In this section, we describe two promising ap-

proaches to implementing PIM in modern architectures.

The first approach exploits the existing DRAM archi-

tecture and the operational principles of the DRAM cir-

cuitry to enable bulk processing operations within the

main memory with minimal changes. This minimalist

approach can especially be powerful in performing spe-

cialized computation in main memory by taking advan-

tage of what the main memory substrate is extremely

good at performing with minimal changes to the exist-

ing memory chips. The second approach exploits the

ability to implement a wide variety of general-purpose

processing logic in the logic layer of 3D-stacked mem-

ory and thus the high internal bandwidth and low latency

available between the logic layer and the memory layers

of 3D-stacked memory. This is a more general approach

where the logic implemented in the logic layer can be

general purpose and thus can benefit a wide variety of

applications.

5.1. Approach I: Minimally Changing Memory Chips

One approach to implementing processing-in-

memory modifies existing DRAM architectures

minimally to extend their functionality with computing

capability. This approach takes advantage of the exist-

ing interconnects in and analog operational behavior

of conventional DRAM architectures (e.g., DDRx,

LPDDRx, HBM), without the need for a dedicated

logic layer or logic processing elements, and usually

with very low overheads. Mechanisms that use this

approach take advantage of the high internal bandwidth

available within each DRAM cell array. There are a

number of example PIM architectures that make use of

this approach [31, 82, 83, 84, 85, 86, 92, 93]. In this

section, we first focus on two such designs: RowClone,

which enables in-DRAM bulk data movement opera-

tions [82] and Ambit, which enables in-DRAM bulk

bitwise operations [83, 85, 86]. Then, we describe a

low-cost substrate that performs data reorganization for

non-unit strided access patterns [71].

5.1.1. RowClone

Two important classes of bandwidth-intensive mem-

ory operations are (1) bulk data copy, where a large

quantity of data is copied from one location in physi-

cal memory to another; and (2) bulk data initialization,

where a large quantity of data is initialized to a spe-

cific value. We refer to these two operations as bulk

data movement operations. Prior research [4, 153, 154]

has shown that operating systems and data center work-

loads spend a significant portion of their time perform-

ing bulk data movement operations. Therefore, acceler-

ating these operations will likely improve system perfor-

mance and energy efficiency.

We have developed a mechanism called Row-

Clone [82], which takes advantage of the fact that bulk

data movement operations do not require any compu-

tation on the part of the processor. RowClone exploits

the internal organization and operation of DRAM to per-

form bulk data copy/initialization quickly and efficiently

inside a DRAM chip. A DRAM chip contains multiple

banks, where the banks are connected together and to

I/O circuitry by a shared internal bus, each of which is
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divided into multiple subarrays [12, 82, 155]. Each sub-

array contains many rows of DRAM cells, where each

column of DRAM cells is connected together across the

multiple rows using bitlines.

RowClone consists of two mechanisms that take ad-

vantage of the existing DRAM structure. The first

mechanism, Fast Parallel Mode, copies the data of a

row inside a subarray to another row inside the same

DRAM subarray by issuing back-to-back activate (i.e.,

row open) commands to the source and the destination

row. The second mechanism, Pipelined Serial Mode,

can transfer an arbitrary number of bytes between two

banks using the shared internal bus among banks in a

DRAM chip.

RowClone significantly reduces the raw latency and

energy consumption of bulk data copy and initialization,

leading to 11.6× latency reduction and 74.4× energy re-

duction for a 4kB bulk page copy (using the Fast Parallel

Mode), at very low cost (only 0.01% DRAM chip area

overhead) [82]. This reduction directly translates to im-

provement in performance and energy efficiency of sys-

tems running copy or initialization-intensive workloads.

Our MICRO 2013 paper [82] shows that the perfor-

mance of six copy/initialization-intensive benchmarks

(including the fork system call, Memcached [156] and

a MySQL [157] database) improves between 4% and

66%. For the same six benchmarks, RowClone reduces

the energy consumption between 15% and 69%.

5.1.2. Ambit

In addition to bulk data movement, many applications

trigger bulk bitwise operations, i.e., bitwise operations

on large bit vectors [158, 159]. Examples of such ap-

plications include bitmap indices [160, 161, 162, 163]

and bitwise scan acceleration [164] for databases, accel-

erated document filtering for web search [165], DNA

sequence alignment [166, 167, 168], encryption algo-

rithms [169, 170, 171], graph processing [78], and net-

working [159]. Accelerating bulk bitwise operations

can thus significantly boost the performance and energy

efficiency of a wide range applications.

In order to avoid data movement bottlenecks when

the system performs these bulk bitwise operations, we

have recently proposed a new Accelerator-in-Memory

for bulk Bitwise operations (Ambit) [83, 85, 86]. Un-

like prior approaches, Ambit uses the analog operation

of existing DRAM technology to perform bulk bitwise

operations. Ambit consists of two components. The first

component, Ambit–AND–OR, implements a new opera-

tion called triple-row activation, where the memory con-

troller simultaneously activates three rows. Triple-row

activation performs a bitwise majority function across

the cells in the three rows, due to the charge sharing

principles that govern the operation of the DRAM array.

By controlling the initial value of one of the three rows,

we can use triple-row activation to perform a bitwise

AND or OR of the other two rows. The second compo-

nent, Ambit–NOT, takes advantage of the two inverters

that are connected to each sense amplifier in a DRAM

subarray. Ambit–NOT exploits the fact that, at the end

of the sense amplification process, the voltage level of

one of the inverters represents the negated logical value

of the cell. The Ambit design adds a special row to the

DRAM array, which is used to capture the negated value

that is present in the sense amplifiers. One possible im-

plementation of the special row [86] is a row of dual-

contact cells (a 2-transistor 1-capacitor cell [172, 173])

that connects to both inverters inside the sense amplifier.

With the ability to perform AND, OR, and NOT oper-

ations, Ambit is functionally complete: It can reliably

perform any bulk bitwise operation completely using

DRAM technology, even in the presence of significant

process variation (see [86] for details).

Averaged across seven commonly-used bitwise op-

erations, Ambit with 8 DRAM banks improves bulk

bitwise operation throughput by 44× compared to an

Intel Skylake processor [174], and 32× compared to

the NVIDIA GTX 745 GPU [175]. Compared to the

DDR3 standard, Ambit reduces energy consumption

of these operations by 35× on average. Compared to

HMC 2.0 [99], Ambit improves bulk bitwise operation

throughput by 2.4×. When integrated directly into the

HMC 2.0 device, Ambit improves throughput by 9.7×

compared to processing in the logic layer of HMC 2.0.

A number of Ambit-like bitwise operation substrates

have been proposed in recent years, making use of

emerging resistive memory technologies, e.g., phase-

change memory (PCM) [17, 19, 176, 177, 178, 179],

SRAM, or specialized computational DRAM. These

substrates can perform bulk bitwise operations in a spe-

cial DRAM array augmented with computational cir-

cuitry [90] and in PCM [78]. Similar substrates can

perform simple arithmetic operations in SRAM [79, 80]

and arithmetic and logical operations in memristors [81,

180, 181, 182, 183]. We believe it is extremely impor-

tant to continue exploring such low-cost Ambit-like sub-

strates, as well as more sophisticated computational sub-

strates, for all types of memory technologies, old and

new. Resistive memory technologies are fundamentally

non-volatile and amenable to in-place updates, and as

such, can lead to even less data movement compared to

DRAM, which fundamentally requires some data move-

ment to access the data. Thus, we believe it is very

promising to examine the design of emerging resistive
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memory chips that can incorporate Ambit-like bitwise

operations and other types of suitable computation ca-

pability.

5.1.3. Gather-Scatter DRAM

Many applications access data structures with differ-

ent access patterns at different points in time. Depend-

ing on the layout of the data structures in the physical

memory, some access patterns require non-unit strides.

As current memory systems are optimized to access se-

quential cache lines, non-unit strided accesses exhibit

low spatial locality, leading to memory bandwidth waste

and cache space waste.

Gather-Scatter DRAM (GS-DRAM) [71] is a low-

cost substrate that addresses this problem. It performs

in-DRAM data structure reorganization by accessing

multiple values that belong to a strided access pattern

using a single read/write command in the memory con-

troller. GS-DRAM uses two key new mechanisms.

First, GS-DRAM remaps the data of each cache line to

different chips such that multiple values of a strided ac-

cess pattern are mapped to different chips. This enables

the possibility of gathering different parts of the strided

access pattern concurrently from different chips. Sec-

ond, instead of sending separate requests to each chip,

the GS-DRAM memory controller communicates a pat-

tern ID to the memory module. With the pattern ID,

each chip computes the address to be accessed indepen-

dently. This way, the returned cache line contains differ-

ent values of the strided pattern gathered from different

chips.

GS-DRAM achieves near-ideal memory bandwidth

and cache utilization in real-world workloads, such as

in-memory databases and matrix multiplication. For in-

memory databases, GS-DRAM outperforms a transac-

tional workload with column store layout by 3× and an

analytics workload with row store layout by 2×, thereby

getting the best performance for both transactional and

analytical queries on databases (which in general ben-

efit from different types of data layouts). For matrix

multiplication, GS-DRAM is 10% faster than the best-

performing tiled implementation of the matrix multipli-

cation algorithm.

5.2. Approach II: PIM using 3D-Stacked Memory

Several works propose to place some form of pro-

cessing logic (typically accelerators, simple cores, or re-

configurable logic) inside the logic layer of 3D-stacked

memory [97]. This PIM processing logic, which we also

refer to as PIM cores or PIM engines, interchangeably,

can execute portions of applications (from individual

instructions to functions) or entire threads and applica-

tions, depending on the design of the architecture. Such

PIM engines have high-bandwidth and low-latency ac-

cess to the memory stacks that are on top of them, since

the logic layer and the memory layers are connected via

high-bandwidth vertical connections [97], e.g., through-

silicon vias. In this section, we discuss how systems

can make use of relatively simple PIM engines within

the logic layer to avoid data movement and thus obtain

significant performance and energy improvements on a

wide variety of application domains.

5.2.1. Tesseract: Graph Processing

A popular modern application is large-scale graph

processing [87, 184, 185, 186, 187, 188, 189, 190, 191,

192, 193]. Graph processing has broad applicability and

use in many domains, from social networks to machine

learning, from data analytics to bioinformatics. Graph

analysis workloads are known to put significant pres-

sure on memory bandwidth due to (1) large amounts

of random memory accesses across large memory re-

gions (leading to very limited cache efficiency and very

large amounts of unnecessary data transfer on the mem-

ory bus) and (2) very small amounts of computation per

each data item fetched from memory (leading to very

limited ability to hide long memory latencies and exac-

erbating the energy bottleneck by exercising the huge

energy disparity between memory access and computa-

tion). These two characteristics make it very challeng-

ing to scale up such workloads despite their inherent

parallelism, especially with conventional architectures

based on large on-chip caches and relatively scarce off-

chip memory bandwidth for random access.

We can exploit the high bandwidth as well as the po-

tential computation capability available within the logic

layer of 3D-stacked memory to overcome the limita-

tions of conventional architectures for graph processing.

To this end, we design a programmable PIM accelerator

for large-scale graph processing, called Tesseract [34].

Tesseract consists of (1) a new hardware architecture

that effectively utilizes the available memory bandwidth

in 3D-stacked memory by placing simple in-order pro-

cessing cores in the logic layer and enabling each core

to manipulate data only on the memory partition it is

assigned to control, (2) an efficient method of commu-

nication between different in-order cores within a 3D-

stacked memory to enable each core to request computa-

tion on data elements that reside in the memory partition

controlled by another core, and (3) a message-passing

based programming interface, similar to how modern

distributed systems are programmed, which enables re-

mote function calls on data that resides in each memory
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partition. The Tesseract design moves functions to data

rather than moving data elements across different mem-

ory partitions and cores. It also includes two hardware

prefetchers specialized for memory access patterns of

graph processing, which operate based on the hints pro-

vided by our programming model. Our comprehensive

evaluations using five state-of-the-art graph processing

workloads with large real-world graphs show that the

proposed Tesseract PIM architecture improves average

system performance by 13.8× and achieves 87% aver-

age energy reduction over conventional systems.

5.2.2. Consumer Workloads

A very popular domain of computing today con-

sists of consumer devices, which include smartphones,

tablets, web-based computers such as Chromebooks,

and wearable devices. In consumer devices, energy effi-

ciency is a first-class concern due to the limited battery

capacity and the stringent thermal power budget. We

find that data movement is a major contributor to the

total system energy and execution time in modern con-

sumer devices. Across all of the popular modern appli-

cations we study (described in the next paragraph), we

find that a massive 62.7% of the total system energy, on

average, is spent on data movement across the memory

hierarchy [7].

We comprehensively analyze the energy and perfor-

mance impact of data movement for several widely-

used Google consumer workloads [7], which account

for a significant portion of the applications executed

on consumer devices. These workloads include (1) the

Chrome web browser [194], which is a very popular

browser used in mobile devices and laptops; (2) Tensor-

Flow Mobile [195], Google’s machine learning frame-

work, which is used in services such as Google Trans-

late, Google Now, and Google Photos; (3) the VP9

video playback engine [196], and (4) the VP9 video cap-

ture engine [196], both of which are used in many video

services such as YouTube and Google Hangouts. We

find that offloading key functions to the logic layer can

greatly reduce data movement in all of these workloads.

However, there are challenges to introducing PIM in

consumer devices, as consumer devices are extremely

stringent in terms of the area and energy budget they

can accommodate for any new hardware enhancement.

As a result, we need to identify what kind of in-memory

logic can both (1) maximize energy efficiency and (2) be

implemented at minimum possible cost, in terms of both

area overhead and complexity.

We find that many of target functions for PIM in con-

sumer workloads are comprised of simple operations

such as memcopy, memset, basic arithmetic and bitwise

operations, and simple data shuffling and reorganiza-

tion routines. Therefore, we can relatively easily im-

plement these PIM target functions in the logic layer

of 3D-stacked memory using either (1) a small low-

power general-purpose embedded core or (2) a group of

small fixed-function accelerators. Our analysis shows

that the area of a PIM core and a PIM accelerator take

up no more than 9.4% and 35.4%, respectively, of the

area available for PIM logic in an HMC-like [197] 3D-

stacked memory architecture. Both the PIM core and

PIM accelerator eliminate a large amount of data move-

ment, and thereby significantly reduce total system en-

ergy (by an average of 55.4% across all the workloads)

and execution time (by an average of 54.2%).

5.2.3. GPU Applications

In the last decade, Graphics Processing Units (GPUs)

have become the accelerator of choice for a wide vari-

ety of data-parallel applications. They deploy thousands

of in-order, SIMT (Single Instruction Multiple Thread)

cores that run lightweight threads. Their multithreaded

architecture is devised to hide the long latency of mem-

ory accesses by interleaving threads that execute arith-

metic and logic operations. Despite that, many GPU ap-

plications are still very memory-bound [198, 199, 200,

201, 202, 203, 204, 205, 206, 207], because the limited

off-chip pin bandwidth cannot supply enough data to the

running threads.

3D-stacked memory architectures present a promis-

ing opportunity to alleviate the memory bottleneck in

GPU systems. GPU cores placed in the logic layer of

a 3D-stacked memory can be directly connected to the

DRAM layers with high bandwidth (and low latency)

connections. In order to leverage the potential perfor-

mance benefits of such systems, it is necessary to en-

able computation offloading and data mapping to mul-

tiple such compute-capable 3D-stacked memories, such

that GPU applications can benefit from processing-in-

memory capabilities in the logic layers of such memo-

ries.

TOM (Transparent Offloading and Mapping) [59]

proposes two mechanisms to address computation of-

floading and data mapping in such a system in a

programmer-transparent manner. First, it introduces

new compiler analysis techniques to identify code sec-

tions in GPU kernels that can benefit from PIM of-

floading. The compiler estimates the potential mem-

ory bandwidth savings for each code block. To this

end, the compiler compares the bandwidth consumption

of the code block, when executed on the regular GPU

cores, to the bandwidth cost of transmitting/receiving in-

put/output registers, when offloading to the GPU cores
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in the logic layers. At runtime, a final offloading deci-

sion is made based on system conditions, such as con-

tention for processing resources in the logic layer. Sec-

ond, a software/hardware cooperative mechanism pre-

dicts the memory pages that will be accessed by of-

floaded code, and places such pages in the same 3D-

stacked memory cube where the code will be executed.

The goal is to make PIM effective by ensuring that the

data needed by the PIM cores is in the same memory

stack. Both mechanisms are completely transparent to

the programmer, who only needs to write regular GPU

code without any explicit PIM instructions or any other

modification to the code. TOM improves the average

performance of a variety of GPGPU workloads by 30%

and reduces the average energy consumption by 11%

with respect to a baseline GPU system without PIM of-

floading capabilities.

A related work [60] identifies GPU kernels that are

suitable for PIM offloading by using a regression-based

affinity prediction model. A concurrent kernel manage-

ment mechanism uses the affinity prediction model and

determines which kernels should be scheduled concur-

rently to maximize performance. This way, the pro-

posed mechanism enables the simultaneous exploitation

of the regular GPU cores and the in-memory GPU cores.

This scheduling technique improves performance and

energy efficiency by an average of 42% and 27%, re-

spectively.

5.2.4. PEI: PIM-Enabled Instructions

PIM-Enabled Instructions (PEI) [35] aims to provide

the minimal processing-in-memory support to take ad-

vantage of PIM using 3D-stacked memory, in a way that

can achieve significant performance and energy benefits

without changing the computing system significantly.

To this end, PEI proposes a collection of simple instruc-

tions, which introduce negligible changes to the comput-

ing system and no changes to the programming model

or the virtual memory system, in a system with 3D-

stacked memory. These instructions, inserted by the

compiler/programmer to code written in a regular pro-

gram, are operations that can be executed either in a tra-

ditional host CPU (that fetches and decodes them) or the

PIM engine in 3D-stacked memory.

PIM-Enabled Instructions are based on two key ideas.

First, a PEI is a cache-coherent, virtually-addressed

host processor instruction that operates on only a sin-

gle cache block. It requires no changes to the sequential

execution and programming model, no changes to vir-

tual memory, minimal changes to cache coherence, and

no need for special data mapping to take advantage of

PIM (because each PEI is restricted to a single mem-

ory module due to the single cache block restriction

it has). Second, a Locality-Aware Execution runtime

mechanism decides dynamically where to execute a PEI

(i.e., either the host processor or the PIM logic) based

on simple locality characteristics and simple hardware

predictors. This runtime mechanism executes the PEI at

the location that maximizes performance. In summary,

PIM-Enabled Instructions provide the illusion that PIM

operations are executed as if they were host instructions.

Examples of PEIs are integer increment, integer min-

imum, floating-point addition, hash table probing, his-

togram bin index, Euclidean distance, and dot prod-

uct [35]. Data-intensive workloads such as graph pro-

cessing, in-memory data analytics, machine learning,

and data mining can significantly benefit from these

PEIs. Across 10 key data-intensive workloads, we ob-

serve that the use of PEIs in these workloads, in com-

bination with the Locality-Aware Execution runtime

mechanism, leads to an average performance improve-

ment of 47% and an average energy reduction of 25%

over a baseline CPU.

6. Enabling the Adoption of PIM

Pushing some or all of the computation for a program

from the CPU to memory introduces new challenges for

system architects and programmers to overcome. These

challenges must be addressed in order for PIM to be

adopted as a mainstream architecture in a wide variety

of systems and workloads, and in a seamless manner

that does not place heavy burden on the vast majority

of programmers. In this section, we discuss several of

these system-level and programming-level challenges,

and highlight a number of our works that have addressed

these challenges for a wide range of PIM architectures.

6.1. Programming Model and Code Generation

Two open research questions to enable the adoption

of PIM are 1) what should the programming models be,

and 2) how can compilers and libraries alleviate the pro-

gramming burden.

While PIM-Enabled Instructions [35] work well for

offloading small amounts of computation to memory,

they can potentially introduce overheads while taking

advantage of PIM for large tasks, due to the need to

frequently exchange information between the PIM pro-

cessing logic and the CPU. Hence, there is a need for

researchers to investigate how to integrate PIM instruc-

tions with other compiler-based methods or library calls

that can support PIM integration, and how these ap-

proaches can ease the burden on the programmer, by
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enabling seamless offloading of instructions or func-

tion/library calls.

Such solutions can often be platform-dependent. One

of our recent works [59] examines compiler-based

mechanisms to decide what portions of code should be

offloaded to PIM processing logic in a GPU-based sys-

tem in a manner that is transparent to the GPU program-

mer. Another recent work [60] examines system-level

techniques that decide which GPU application kernels

are suitable for PIM execution.

Determining effective programming interfaces and

the necessary compiler/library support to perform PIM

remain open research and design questions, which are

important for future works to tackle.

6.2. PIM Runtime: Scheduling and Data Mapping

We identify four key runtime issues in PIM: (1) what

code to execute near data, (2) when to schedule execu-

tion on PIM (i.e., when is it worth offloading computa-

tion to the PIM cores), (3) how to map data to multi-

ple memory modules such that PIM execution is viable

and effective, and (4) how to effectively share/partition

PIM mechanisms/accelerators at runtime across mul-

tiple threads/cores to maximize performance and en-

ergy efficiency. We have already proposed several ap-

proaches to solve these four issues.

Our recent works in PIM processing identify suit-

able PIM offloading candidates with different granulari-

ties. PIM-Enabled Instructions [35] propose various op-

erations that can benefit from execution near or inside

memory, such as integer increment, integer minimum,

floating-point addition, hash table probing, histogram

bin index, Euclidean distance, and dot product. In [7],

we find simple functions with intensive data movement

that are suitable for PIM in consumer workloads (e.g.,

Chrome web browser, TensorFlow Mobile, video play-

back, and video capture), as described in Section 5.2.2.

Bulk memory operations (copy, initialization) and bulk

bitwise operations are good candidates for in-DRAM

processing [82, 83, 86, 93]. GPU applications also con-

tain several parts that are suitable for offloading to PIM

engines [59, 60].

In several of our research works, we propose runtime

mechanisms for dynamic scheduling of PIM offloading

candidates, i.e., mechanisms that decide whether or not

to actually offload code that is marked to be potentially

offloaded to PIM engines. In [35], we develop a locality-

aware scheduling mechanism for PIM-enabled instruc-

tions. For GPU-based systems [59, 60], we explore the

combination of compile-time and runtime mechanisms

for identification and dynamic scheduling of PIM of-

floading candidates.

The best mapping of data and code that enables the

maximal benefits from PIM depends on the applications

and the computing system configuration. For instance,

in [59], we present a software/hardware mechanism

to map data and code to several 3D-stacked memory

cubes in regular GPU applications with relatively reg-

ular memory access patterns. This work also deals with

effectively sharing PIM engines across multiple threads,

as GPU code sections are offloaded from different GPU

cores. Developing new approaches to data/code map-

ping and scheduling for a large variety of applications

and possible core and memory configurations is still nec-

essary.

In summary, there are still several key research ques-

tions that should be investigated in runtime systems

for PIM, which perform scheduling and data/code map-

ping:

• What are simple mechanisms to enable and dis-

able PIM execution? How can PIM execution

be throttled for highest performance gains? How

should data locations and access patterns affect

where/whether PIM execution should occur?

• Which parts of a given application’s code should

be executed on PIM? What are simple mechanisms

to identify when those parts of the application code

can benefit from PIM?

• What are scheduling mechanisms to share PIM en-

gines between multiple requesting cores to maxi-

mize benefits obtained from PIM?

• What are simple mechanisms to manage access to

a memory that serves both CPU requests and PIM

requests?

6.3. Memory Coherence

In a traditional multithreaded execution model that

makes use of shared memory, writes to memory must be

coordinated between multiple CPU cores, to ensure that

threads do not operate on stale data values. Since CPUs

include per-core private caches, when one core writes

data to a memory address, cached copies of the data

held within the caches of other cores must be updated

or invalidated, using a mechanism known as cache co-

herence. Within a modern chip multiprocessor, the per-

core caches perform coherence actions over a shared in-

terconnect, with hardware coherence protocols.

Cache coherence is a major system challenge for en-

abling PIM architectures as general-purpose execution

engines, as PIM processing logic can modify the data

it processes, and this data may also be needed by CPU
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cores. If PIM processing logic is coherent with the pro-

cessor, the PIM programming model is relatively sim-

ple, as it remains similar to conventional shared mem-

ory multithreaded programming, which makes PIM ar-

chitectures easier to adopt in general-purpose systems.

Thus, allowing PIM processing logic to maintain such

a simple and traditional shared memory programming

model can facilitate the widespread adoption of PIM.

However, employing traditional fine-grained cache co-

herence (e.g., a cache-block based MESI protocol [208])

for PIM forces a large number of coherence messages to

traverse the narrow processor-memory bus, potentially

undoing the benefits of high-bandwidth and low-latency

PIM execution. Unfortunately, solutions for coherence

proposed by prior PIM works [35, 59] either place some

restrictions on the programming model (by eliminat-

ing coherence and requiring message passing based pro-

gramming) or limit the performance and energy gains

achievable by a PIM architecture.

We have developed a new coherence protocol,

LazyPIM [70, 209], that maintains cache coherence

between PIM processing logic and CPU cores with-

out sending coherence requests for every memory ac-

cess. Instead, LazyPIM efficiently provides coherence

by having PIM processing logic speculatively acquire

coherence permissions, and then later sends compressed

batched coherence lookups to the CPU to determine

whether or not its speculative permission acquisition vi-

olated the coherence semantics. As a result of this ”lazy”

checking of coherence violations, LazyPIM approaches

near-ideal coherence behavior: the performance and en-

ergy consumption of a PIM architecture with LazyPIM

are, respectively, within 5.5% and 4.4% the perfor-

mance and energy consumption of a system where co-

herence is performed at zero latency and energy cost.

Despite the leap that LazyPIM [70, 209] represents

for memory coherence in computing systems with PIM

support, we believe that it is still necessary to explore

other solutions for memory coherence that can effi-

ciently deal with all types of workloads and PIM offload-

ing granularities.

6.4. Virtual Memory Support

When an application needs to access its data inside

the main memory, the CPU core must first perform an

address translation, which converts the data’s virtual ad-

dress into a physical address within main memory. If the

translation metadata is not available in the CPU’s trans-

lation lookaside buffer (TLB), the CPU must invoke the

page table walker in order to perform a long-latency

page table walk that involves multiple sequential reads

to the main memory and lowers the application’s perfor-

mance. In modern systems, the virtual memory system

also provides access protection mechanisms.

A naive solution to reducing the overhead of page

walks is to utilize PIM engines to perform page table

walks. This can be done by duplicating the content of

the TLB and moving the page walker to the PIM pro-

cessing logic in main memory. Unfortunately, this is

either difficult or expensive for three reasons. First, co-

herence has to be maintained between the CPU’s TLBs

and the memory-side TLBs. This introduces extra com-

plexity and off-chip requests. Second, duplicating the

TLBs increases the storage and complexity overheads

on the memory side, which should be carefully con-

tained. Third, if main memory is shared across CPUs

with different types of architectures, page table struc-

tures and the implementation of address translations can

be different across the different architectures. Ensuring

compatibility between the in-memory TLB/page walker

and all possible types of virtual memory architecture de-

signs can be complicated and often not even practically

feasible.

To address these concerns and reduce the overhead of

virtual memory, we explore a tractable solution for PIM

address translation as part of our in-memory pointer

chasing accelerator, IMPICA [62]. IMPICA exploits

the high bandwidth available within 3D-stacked mem-

ory to traverse a chain of virtual memory pointers within

DRAM, without having to look up virtual-to-physical

address translations in the CPU translation lookaside

buffer (TLB) and without using the page walkers within

the CPU. IMPICA’s key ideas are 1) to use a region-

based page table, which is optimized for PIM accelera-

tion, and 2) to decouple address calculation and mem-

ory access with two specialized engines. IMPICA im-

proves the performance of pointer chasing operations

in three commonly-used linked data structures (linked

lists, hash tables, and B-trees) by 92%, 29%, and 18%,

respectively. On a real database application, DBx1000,

IMPICA improves transaction throughput and response

time by 16% and 13%, respectively. IMPICA also

reduces overall system energy consumption (by 41%,

23%, and 10% for the three commonly-used data struc-

tures, and by 6% for DBx1000).

Beyond pointer chasing operations that are tackled by

IMPICA [62], providing efficient mechanisms for PIM-

based virtual-to-physical address translation (as well as

access protection) remains a challenge for the general-

ity of applications, especially those that access large

amounts of virtual memory [210, 211, 212]. We believe

it is important to explore new ideas to address this PIM

challenge in a scalable and efficient manner.
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6.5. Data Structures for PIM

Current systems with many cores run applications

with concurrent data structures to achieve high perfor-

mance and scalability, with significant benefits over se-

quential data structures. Such concurrent data structures

are often used in heavily-optimized server systems to-

day, where high performance is critical. To enable the

adoption of PIM in such many-core systems, it is neces-

sary to develop concurrent data structures that are specif-

ically tailored to take advantage of PIM.

Pointer chasing data structures and contended data

structures require careful analysis and design to lever-

age the high bandwidth and low latency of 3D-stacked

memories [72]. First, pointer chasing data structures,

such as linked-lists and skip-lists, have a high degree

of inherent parallelism and low contention, but a naive

implementation in PIM cores is burdened by hard-to-

predict memory access patterns. By combining and par-

titioning the data across 3D-stacked memory vaults, it is

possible to fully exploit the inherent parallelism of these

data structures. Second, contended data structures, such

as FIFO queues, are a good fit for CPU caches because

they expose high locality. However, they suffer from

high contention when many threads access them con-

currently. Their performance on traditional CPU sys-

tems can be improved using a new PIM-based FIFO

queue [72]. The proposed PIM-based FIFO queue uses

a PIM core to perform enqueue and dequeue operations

requested by CPU cores. The PIM core can pipeline

requests from different CPU cores for improved perfor-

mance.

As recent work [72] shows, PIM-managed concurrent

data structures can outperform state-of-the-art concur-

rent data structures that are designed for and executed

on multiple cores. We believe and hope that future work

will enable other types of data structures (e.g., hash ta-

bles, search trees, priority queues) to benefit from PIM-

managed designs.

6.6. Benchmarks and Simulation Infrastructures

To ease the adoption of PIM, it is critical that we ac-

curately assess the benefits and shortcomings of PIM.

Accurate assessment of PIM requires (1) a preferably

large set of real-world memory-intensive applications

that have the potential to benefit significantly when ex-

ecuted near memory, (2) a rigorous methodology to

(automatically) identify PIM offloading candidates, and

(3) simulation/evaluation infrastructures that allow ar-

chitects and system designers to accurately analyze the

benefits and overheads of adding PIM processing logic

to memory and executing code on this processing logic.

In order to explore what processing logic should be

introduced near memory, and to know what properties

are ideal for PIM kernels, we believe it is important to

begin by developing a real-world benchmark suite of a

wide variety of applications that can potentially bene-

fit from PIM. While many data-intensive applications,

such as pointer chasing and bulk memory copy, can po-

tentially benefit from PIM, it is crucial to examine im-

portant candidate applications for PIM execution, and

for researchers to agree on a common set of these candi-

date applications to focus the efforts of the community

as well as to enable reproducibility of results, which

is important to assess the relative benefits of different

ideas developed by different researchers. We believe

that these applications should come from a number of

popular and emerging domains. Examples of potential

domains include data-parallel applications, neural net-

works, machine learning, graph processing, data analyt-

ics, search/filtering, mobile workloads, bioinformatics,

Hadoop/Spark programs, security/cryptography, and in-

memory data stores. Many of these applications have

large data sets and can benefit from high memory band-

width and low memory latency benefits provided by

computation near memory. In our prior work, we have

started identifying several applications that can bene-

fit from PIM in graph processing frameworks [34, 35],

pointer chasing [33, 62], databases [62, 70, 71, 209],

consumer workloads [7], machine learning [7], and

GPGPU workloads [59, 60]. However, there is signif-

icant room for methodical development of a large-scale

PIM benchmark suite, which we hope future work pro-

vides.

A systematic methodology for (automatically) iden-

tifying potential PIM kernels (i.e., code portions that

can benefit from PIM) within an application can, among

many other benefits, 1) ease the burden of programming

PIM architectures by aiding the programmer to identify

what should be offloaded, 2) ease the burden of and im-

prove the reproducibility of PIM research, 3) drive the

design and implementation of PIM functional units that

many types of applications can leverage, 4) inspire the

development of tools that programmers and compilers

can use to automate the process of offloading portions

of existing applications to PIM processing logic, and 5)

lead the community towards convergence on PIM de-

signs and offloading candidates.

We also need simulation infrastructures to accurately

model the performance and energy of PIM hardware

structures, available memory bandwidth, and communi-

cation overheads when we execute code near or inside

memory. Highly-flexible and commonly-used memory

simulators (e.g., Ramulator [213, 214], SoftMC [29,
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215]) can be combined with full-system simulators

(e.g., gem5 [216], zsim [217], gem5-gpu [218], GPG-

PUSim [219]) to provide a robust environment that can

evaluate how various PIM architectures affect the entire

compute stack, and can allow designers to identify mem-

ory, workload, and system characteristics that affect the

efficiency of PIM execution. We believe it is critical to

support the open source development such simulation

and emulation infrastructures for assessing the benefits

of a wide variety of PIM designs.

7. Conclusion and Future Outlook

Data movement is a major performance and energy

bottleneck plaguing modern computing systems. A

large fraction of system energy is spent on moving data

across the memory hierarchy into the processors (and

accelerators), the only place where computation is per-

formed in a modern system. Fundamentally, the large

amounts of data movement are caused by the processor-

centric design of modern computing systems: process-

ing of data is performed only in the processors (and ac-

celerators), which are far away from the data, and as a

result, data moves a lot in the system, to facilitate com-

putation on it.

In this work, we argue for a paradigm shift in the de-

sign of computing systems toward a data-centric design

that enables computation capability in places where data

resides and thus performs computation with minimal

data movement. Processing-in-memory (PIM) is a fun-

damentally data-centric design approach for computing

systems that enables the ability to perform operations in

or near memory. Recent advances in modern memory

architectures have enabled us to extensively explore two

novel approaches to designing PIM architectures. First,

with minimal changes to memory chips, we show that

we can perform a number of important and widely-used

operations (e.g., memory copy, data initialization, bulk

bitwise operations, data reorganization) within DRAM.

Second, we demonstrate how embedded computation

capability in the logic layer of 3D-stacked memory can

be used in a variety of ways to provide significant perfor-

mance improvements and energy savings, across a large

range of application domains and computing platforms.

Despite the extensive design space that we have stud-

ied so far, a number of key challenges remain to enable

the widespread adoption of PIM in future computing

systems [94, 95]. Important challenges include devel-

oping easy-to-use programming models for PIM (e.g.,

PIM application interfaces, compilers and libraries de-

signed to abstract away PIM architecture details from

programmers), and extensive runtime support for PIM

(e.g., scheduling PIM operations, sharing PIM logic

among CPU threads, cache coherence, virtual memory

support). We hope that providing the community with

(1) a large set of memory-intensive benchmarks that can

potentially benefit from PIM, (2) a rigorous methodol-

ogy to identify PIM-suitable parts within an application,

and (3) accurate simulation infrastructures for estimat-

ing the benefits and overheads of PIM will empower re-

searchers to address remaining challenges for the adop-

tion of PIM.

We firmly believe that it is time to design principled

system architectures to solve the data movement prob-

lem of modern computing systems, which is caused

by the rigid dichotomy and imbalance between the

computing unit (CPUs and accelerators) and the mem-

ory/storage unit. Fundamentally solving the data move-

ment problem requires a paradigm shift to a more data-

centric computing system design, where computation

happens in or near memory/storage, with minimal move-

ment of data. Such a paradigm shift can greatly push

the boundaries of future computing systems, leading to

orders of magnitude improvements in energy and perfor-

mance (as we demonstrated with some examples in this

work), potentially enabling new applications and com-

puting platforms.
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