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This work proposes three different methods to automatically characterize heterogeneous MPSoCs com- posed of a variable number of masters (in the 
form of processors) and hardware accelerators (HWaccs). These hardware accelerators are given as Behavioral IPs (BIPs) mapped as loosely coupled

accelerators on a shared bus system ( i.e. AHB, AXI). BIPs have a distinct advantage over traditional RT-level based IPs given VHDL or Verilog: The
ability to generate micro-architectures with different area vs. perfor- mance trade-offs from the same description. This is usually done by specifying

different synthesis direc- tives in the form of pragmas. This in turn implies that using different mixes of the accelerators’ micro- architectures lead

to SoCs with unique area vs. performance trade-offs.

Two of the three methods proposed are based on cycle-accurate simulations of the complete MPSoC, while the third method accelerates this 
exploration by performing it on a Configurable SoC FPGA. Exten- sive experimental results compare these three methods and highlight their
strengths and weaknesses.
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. Introduction

VLSI circuits are reaching complexities never seen before. One

olution that is being proposed is to customize the comput-

ng platforms to the application domain, also known as domain-

pecific computing. At the chip level, this is accomplished by de-

igning heterogeneous Multiprocessor Systems-on-Chips (MPSoCs) 

ith dedicated hardware accelerators (HWAcc). These dedicated

ccelerators execute dedicated tasks faster than general purpose

rchitectures by exploiting the inherent parallelism of some ap-

lication ( e.g . image processing applications), while consuming a

raction of the power. 

Due to the pressure to tape-out these chips at shorter design

ycles, companies often rely on third party Intellectual Proper-

ies (3PIPs) to meet their tight schedules. Companies have also

tarted to rely on High-Level Synthesis (HLS) to increase their de-

ign productivity. Thus, third party behavioral IPs (3PBIPs) are of-
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chafer).
en used as HWAccs on these heterogeneous MPSoCs. The Inter-

ational Technology Roadmap for Semiconductors (ITRS) already

uggested in 2013 that by 2020 a 10x productivity increase for

esigning complex SoCs was needed [1] . Two main factors were

redicted to help to achieve this goal. The first is the re-use of

omponents. ITRS estimates that around 90% of the SoCs will be

omposed of re-used components. Secondly, the use of new design

ethodologies to raise the level of abstraction i.e . HLS. The use

f HLS has led to a new market for 3PBIPs. One of the main ad-

antages of BIPs is that they are much easier to re-use than tradi-

ional RT-level IPs. Moreover, micro-architectures of different area

s. performance trade-offs can be easily obtained by synthesizing

he behavioral description with different synthesis options. This is

ypically done by setting different synthesis options in the form

f pragmas (comments) inserted directly into the source code or

hrough global synthesis options. For example, these options can

ontrol how to synthesize arrays (register or RAM), if a function

hould be inlined or not and if loops should be fully unrolled, par-

ially unrolled, not unrolled or pipelined. 

FPGA vendors have also embraced this new paradigm and have

eleased their own Programmable or Configurable SoCs (CSoCs),

.g . Altera’s Cyclone V SoC and Xilinx’s Zynq FPGA. These CSoCs

ontain multiple embedded cores mainly in the form of ARM

ortex A9 and reconfigurable fabric onto which to map the





Table 1

Exploration result and task mappings on different number of masters (1–3) in

motivational example in Fig. 1 with 3 slaves and effect on the area.

M Mappings Num Area orig Area fit �[%]

1 {(1,2,3} 1 1321 992 26.1

2 {(1),(2,3)}, {(2),(1,3)}, {(3),(1,2)} 3 1321 1002 25.3

3 {(1),(2),(3)} 1 1321 1048 21.9
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hroughputs. Table 1 shows the different possible tasks mappings

n the motivational example with different number of masters,

anging from 1 to 3, and 3 slaves, and how the area savings that

an be achieve by choosing different mixes of micro-architectures

s compared to only using the fastest micro-architectures but also

argest. 

Several observations can be made from these results: 

Observation 1: Different task mappings for the same acceler-

tor implementations lead to different system performance, while

onsuming the same area. Hence, there is a task mapping which

ominates the others. This fact is mainly due to the fact that the

asters cannot feed the slaves continuously with data due to bus

ongestion problems. The bus arbitration policy also affects this. In

his work the bus arbiter is set in all cases to round robin arbitra-

ion as this is the most widely used arbitration policy. 

Observation 2: Based on observation 1 it can be further ob-

erved that for each BIP, there are smaller designs, which can lead

o the same performance of the entire system, while consuming

ess area than an equivalent system composed of only BIPs of high-

st performance and largest area. It is therefore not needed to fully

arallelize the BIPs to achieve the highest performance. Hence a

lower, but smaller version of these BIPs can be used in each of

he MPSoC configurations. The smallest micro-architecture for each

IP depends on the number of masters on the MPSoC and on the

apping of tasks on each master. 

Observation 3: The number of mappings follows the Stirling

umbers of the second kind sequence. In this work we do not con-

ider the task execution order once the tasks are mapped onto the

ame master. For the first case only a single task mapping is pos-

ible, because there is only a single master available ({1, 2, 3}) as

hown in Table 1 . Similarly, only one task assignment is possible in

he case that 3 masters are available as each task is mapped onto

ts own master ({(1), (2), (3)}). For the case of two masters, 3 task

appings are possible. This will be explained in more detail in the

ext sections as this impacts the running time of our technique. 

The features that enable our work to identify the amount of

erformance degradation allowed by each accelerator and the abil-

ty to generate smaller designs are: First, the use of BIPs for each

f the accelerators and second, the ability to generate fast cycle-

ccurate models for the entire MPSoC to accurately estimate the

dle time of each slave and the performance of the entire system.

ther works make use of virtual platforms which model the com-

unication part loosely through payloads. The problem with this

pproach is that the exact idle time of each HW module cannot

e accurately measured and hence previous work cannot exactly

etermine the idle time of each module. This combined with the

act that our method takes as inputs BIPs which can be synthesized

nto different micro-architectures automatically are key differenti-

ting elements in this work. 

This work will make use of these observations in order to find

he dominating configurations trade-off curves efficiently. Thus, the

roblem that this work deals with can be formulated as: 

Problem definition: Given N BIPs to be mapped onto a mem-

ry mapped shared bus MPSoC as loosely-coupled HWAccs, each

ith a testbench BIP 1 /T B 1 , BIP 2 /T B 2 , . . . , BIP N /T B N firstly explore

ach BIP i to obtain a trade-off curve ( TDC ) of Pareto-optimal micro-

rchitectures for each BIP T DC(BIP i ) = { micro 1 , micro 2 , . . . , micro p }
ith the following area { A (micro 1 ) > A (micro 2 ) , . . . , > A (micro p ) }
nd latencies { L (micro 1 ) < L (micro 2 ) , . . . , < L (micro p ) } . Secondly,

iven M masters find a Pareto-optimal system-level trade-off curve,

uch that the TDC is composed of unique micro-architectures for

ach BIP T DC i = { BI P 1 (micro x ) , BI P 2 (micro y ) , . . . , BI P N (micro(z)) } .

. Previous work

On-chip hardware accelerators can be coarsely classified as

ightly coupled accelerators and loosely coupled. In the first case,

he accelerator is directly attached to a specific core. Some ex-

mples of this include [7,8] . In the latter case, the accelerator is

irectly attached to a global bus and is shared among multiple

ores, the authors in [9] developed MorphoSys, a reconfigurable

omputing system which combines reconfigurable hardware with

eneral-purpose processors for word-level, computation-intensive 

pplications. In [10] the authors proposed a loosely coupled re-

argetable Loop Accelerator (LA). To ensure that the accelerator de-

ign is broad enough to accelerate different applications the au-

hors perform a DSE on the LA. However, the architecture does not

t all situations, requiring the re-design of the LA for different ap-

lications. Tabkhi et al. [11] introduced Function-Level Processors

FLPs) to fill the gap between Instruction Level Processors (ILPs)

nd dedicated HWAccs. FLPs are comprised of configurable Func-

ion Blocks (FBs) implementing selected functions which are then

nterconnected via programmable point-to-point connections con- 

tructing an extensible/configurable macro data-path. This work fo-

uses on these second type of accelerators, which can be accessed

y different masters in the system, which in [12] was shown to

ead to very good results for particular systems (e.g. applications

ith clear memory access patterns). 

Some work on loosely coupled accelerators connect these ac-

elerators through custom interconnects e.g. NoCs combined with

MAs for quick data transfer. In [13] the authors present a global

anagement of NoCs in accelerator-rich architectures. In our case,

he accelerator is connected to the system through a standard

MBA AHB/AXI bus. 

Regarding MPSoC Design Space Exploration (DSE), much work

as been done in the past. We thus, only highlight some repre-

entative work. Most previous works can be classified into three

ifferent categories: (a) Using aggressive pruning techniques to re-

uce the search space [14,15] (b) make use of meta-heuristics to

earch the design space [16,17] or (c) use static analytical tech-

iques to guide the explorer [18,19] . Once the candidate solutions

ave been generated, these have to be evaluated either through

imulation (i.e. [19] ) or through predictive models (i.e. [18] ). Closer

o this work, the authors in [20,21] , use compositional techniques

o explore the design space of SoCs composed of multiple accel-

rators generated from HLS which have a set of Pareto-optimal

onfigurations to choose from. The main idea is to use composi-

ional techniques to reduce the number of invocations of the HLS

ools as the explore the accelerators’ micro-architecture and the

ystem at the same time. The same authors extended this work in

22] to deal with memory optimizations. The authors in [23] pre-

ented a flow that allows to generate and explore complete SoCs

t the behavioral level by creating a synthesizable library of com-

onents and present a prototype of an SoC interconnected through

 Networks-on-Chip (NoCs) architecture. The main problem with

ll this previous work as that they still require to perform a full

ystem-level simulation to measure the performance of each newly

enerated SoC. 

With regard to the use of higher levels of abstraction to create

WAccs more efficiently, Corre et al. [24,25] proposed the use of

LS for HWAccs in heterogeneous MPSoCs, similar to this proposal,

ut for tightly coupled HWAccs. The authors make use of fast an-

lytical estimators for the area and performance, hence, different
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workloads, bus congestion and bus arbitration policies cannot be

modeled by their work. Their work assumes fixed regular static

access patterns, which is not too realistic. The authors in [26] pro-

pose a virtual platform for accelerating the exploration of many-

accelerator systems. 

Previous work, vary based on the type of simulation abstraction

used to model the MPSoC ranging from sequential simulators (e.g.

QEMU [27] and SimpleScalar [28] ), transaction level models (TLM)

(e.g. OVP [29] ) to cycle-accurate modeling (e.g. HORNET [30] ). In

most of this previous work, the main objective is to explore sys-

tem parameters like e.g. cache sizes, number of processors, bus

bitwidth, memory latency. 

Similar to our work [31] uses HLS to design the HWaccs in

MPSoCs and develop an HLS DSE method to obtain MPSoCs with

unique area vs. latencies. In this work a fast static area and la-

tency estimator is used, hence the bus congestion is not taken into

account in their work. In [12] the authors use HLS to generate a

set of dominating micro-architectures mapped as loosely coupled

HWaccs in a SoC, similar to this work. They then propose a system-

level exploration method based on a pre-defined system template

and emulate these configurations on an FPGA. 

In these previous works, the access pattern and workload was

always considered regular. The authors in [32] showed that work-

loads in modern MPSoC-based embedded systems are becoming

increasingly dynamic, which can cause changes in the nature of

the workload demand over time. They introduce the concept of

system scenarios, which group system behaviors that are similar

in such a way that the system can be configured to exploit this

cost similarity. Quan et al. [33] extended this work by introduc-

ing a hybrid task mapping method that combines static mapping

exploration and a dynamic mapping optimizer. 

A hybrid approach is taken by Renesas Electronics, which com-

mercializes a run-time reconfigurable coarse grain FPGA IP called

Stream Transpose Processor (STP) which can be embedded into

SoCs to accelerate any datapath [34] . To facilitate the programma-

bility of this IP, the STP is configured using HLS technology [35] . A

set of contexts are generated from an untimed C description that

are loaded onto the reconfigurable fabric every clock cycle. This

also helps saving area as the STP can be configured to execute dif-

ferent tasks. 

Finally, with regard to in situ characterization, the authors in

[36] propose an in situ characterization to perform DSE for multi-

core systems targeting Intel Core i7-2600 with 4 cores and Xil-

inx Zynq-70 0 0 with two ARM cores. In this previous work, no

hardware accelerators are used. Closer to this work, the authors

in [37] proposes a method called hArtes , which is a toolchain

that maps applications specified in high-level languages into plat-

forms composed of general-purpose processor, DSPs and FPGAs.

This work makes extensive use of pragmas to control what is exe-

cuted where. 

Our work is different from the above previous works in various

aspects. First, we assume that the overall system architecture has

already been fixed. This implies that the bus structure, memories,

HWAccs have already been fixed. This also implies that the HW/SW

partition is fixed. Previous work done in the area of automatic

HW/SW partitioning can be fully leveraged to further automate the

complete flow [38–40] . Hence, our proposed flow is fully orthogo-

nal to this work. Secondly, we take as inputs BIPs in the form of

explorable C/SystemC inputs. This allows us to generated a variety

of micro-architectures of unique area vs. performance trade-offs for

each BIP. Finally, we propose and compare three methods. Two are

simulation based, while the last one is in-situ based, where the ex-

ploration runs on a Configurable SoC FPGA. If this hardware plat-

form is also the final target product, then this method also leads

to 100% accurate. On another dimension, this work also considers

how different micro-architectures of individual accelerator impacts
he entire system. Thus, the input to our system explorer is a set

f trade-off curves for each slave and the objective of our work

s to find unique combinations of micro-architectures of each BIP

hich lead to Pareto-optimal system configurations, once the over-

ll architecture, including number of masters, bus type, arbitration

olicy, etc., has already been fixed. 

We believe that this work is extremely important for system

ntegrators to help them decide either which micro-architecture

o choose from when integrating BIPs in complex SoCs or which

ethod to use. It should be noted that previous work on system-

evel design could be extended by adding our proposed BIP

icro-architecture search method as another search dimension.

e thus believe that our work is fully orthogonal to previous

ork. 

. Proposed system exploration methods

Fig. 2 shows the complete flow diagram of our three different

roposed methods, called Fast Explorer for Behavioral Systems FEBS .

ll three methods takes as inputs N behavioral IPs (BIPs) given in

ynthesizable ANSI-C or SystemC and their testbenches ( TB ), which

orm a complete System S , S = { BIP 1 /T B 1 , BIP 2 /T B 2 , . . . , BIP N /T B N } .
Therefore the HW/SW partition is already decided a priori. The TB

ill be executed on the SoC as a master and acts as traffic gener-

tor, while the BIPs are synthesized and mapped as slaves in the

ystem. The output of our method is a set of dominating systems

ith unique area vs. performance (throughout) and different task

apping combinations. Based on the number of masters in the

ystem, this means that all the tasks can be either mapped onto

 single master or each task can have its own master or any com-

ination in-between. The core of the system explorer is the op-

imization of each slave’s micro-architecture for each unique task

apping. The task mapping is important because it decides upon

he ultimate workload pattern in the SoC. The next subsection de-

cribes this optimization first. 

.1. Single mapping behavioral IPs optimization 

The core of our fast exploration method is the optimization of

he individual IPs for a specific task mapping. This step is com-

osed of 4 main steps and 1 pre-characterization phase as follow: 

Pre-step: BIP design space exploration . As a pre-

haracterization step, our method starts by performing an HLS

SE for each individual BIP. As mentioned previously, C-based

esign has the advantage over traditional RTL-based design that

icro-architectures with unique area vs. performances (in this

ase latencies) can be obtained by setting different synthesis

ptions. The pre-characterization step of our flow is based on a

enetic algorithm to explore just the synthesis directives of each

IP. The HLS DSE used in this stage is a modified genetic algorithm

resented in [41] . Other methods have been proposed in the past

sing other meta-heuristics [42] . These methods could be easily

ncorporated into our flow, but are out of the scope of this paper

s we only use the dominating designs as an input to our main

ow. We will not go into details about how the GA works as it has

een presented in previous work. Basically, each explorable oper-

tion OP is represented as a gene to which a synthesis attribute

pragma) p or global option opt is assigned. These OP include ar-

ays, functions and loops. The list of all genes built a chromosome

r , which is then combined and mutated based on pre-defined

rossover and mutation probabilities ( pc and pm ). Each new con-

guration is synthesized using as many FUs as needed to fully

arallelize the generated micro-architecture. The result of this step

s a trade-off curve of dominating designs for each BIP with unique

icro-architectures, T DC(BIP i ) = { micro 1 , micro 2 , . . . , micro p } .
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4.4. In situ exploration 

The draw-back of these cycle-accurate simulation models is that

they can still be relatively slow, because the PC executes these se-

quentially. Another drawback is that the target platform can often

not be exactly modeled, hence the results can slightly differ. For

example in the case of the simulation based methods proposed

previously, the master is modeled as a testbench (traffic genera-

tor). It would be prohibitory expensive to fully model the proces-

sors cycle-accurately. To address this, we also propose an alterna-

tive method based on in situ exploration, which performs the ex-

ploration on a CSoC FPGA. This FPGA contain multiple ARM cores

and reconfigurable fabric onto which multiple accelerators can be

mapped. In case that the actual target platform is also the CSoC

then this method also guarantees achieving 100% accurate results

as the CSoC being used in the exploration is also the final target

architecture. 

FPGA vendors provide system-level design tools for their CSoC

design. E.g. , Xilinx’s System Builder or Altera’s Qsys. In this work,

only Altera’s CSoCs are targeted and hence only the interface to

Qsys is built. Qsys is used to create the complete system using

its AMBA AXI bus interface, mapping each dominating design ob-

tained in step 1, as a slave in the system with a unique address.

The entire system is synthesized, placed and routed and a con-

figuration file generated (.sof). This configuration file (.sof) is then

converted to raw binary file (.rbf), which enables the embedded

system with the ability to configure the system at runtime. 

This method is only constrained by the limited size of the re-

configurable fabric onto which to map the Pareto-optimal designs

(dominating designs) of each of the HWAccs in the system. One

possible solution would be to use a larger CSoC of the same family

to perform the search and then use the system with specific micro-

architectures for the production system, as this will only contain

a single micro-architecture for each HWAcc. This would not jeop-

ardize the quality of the results as the architecture of CSoCs are

exactly the same. 

The next section presents the experimental results showing the

effectiveness of our three different proposed methods. 

5. Experimental results

Different computational intensive applications, amenable to HW

acceleration, were selected and grouped together into complex sys-

tems in order to test our proposed method. These designs were

taken from the open source Synthesizable SystemC Benchmark

suite (S2CBench) [45] . Table 2 shows how these complex bench-

marks were formed. The first column indicates the name of the

benchmark, the second column indicates the total number of dom-

inating designs reported by the DSE for each benchmark. Columns

S1-S8 indicate the number of instantiations of each test case used

to build each complex benchmark. The last two rows report the

total number of applications used in each system benchmark and
Table 2

Complex system benchmarks.

Bench DSE S1 S2 S3 S4 S5 S6 S7 S8

md5c 3 1 1 1 1 1

kasumi 2 1 1 1 1 1 1

interp 4 1 1 1 1 1

fir 3 1 1 1 1 1 1

adpcm 2 1 1 1 1 1 1

qsort 3 1 1 1 1 1

aes 2

Tasks 3 3 3 4 4 5 5 6

Designs 8 8 9 12 10 14 14 17

Masters 1–3 1–3 1–3 1–4 1–4 1–4 1–4 1–4

i  

s  

r

 

i  

T  

i  

γ  

P  

a  

d

otal number of design candidates contained (adding up the results

f the DSE of each application). 

The experiments were run on an Intel dual 2.40GHz Xeon pro-

essor machine with 16 GBytes of RAM running Linux Fedora re-

ease 19. The HLS tool used is NEC CyberWorkBench v.6.1 [44] . The

arget architecture, as mentioned previously, is a multi-core pro-

essor system with masters ranging from 1 to 4 depending on the

enchmark. The masters and slaves are connected through a 32-

it AMBA AHB bus using a round robin arbiter. The HLS target fre-

uency for all of the processes in the system is set to 100MHz. 

The reconfigurable computing board used is a Terasic DE1-SoC

oard. This board contains an Altera Cyclone V SoC 5CSEMA5F31

SoC, which contains a dual-core ARM Cortex A-9 processor.

buntu 32-bit 15.1 was installed on this CSoC. 

Due to the limited size of the reconfigurable fabric of the

SoC used, only 7 different BIPs are used. The size of the recon-

gurable fabric also limits the maximum number of HWaccs in

he experimental section to 17 ( S 8). When synthesized in Quar-

us II, the Logic utilization (in ALMs) for the largest system ( S 8)

s 31,572/32,070 (98%). We believe that the number of HWaccs as

ell as dominating designs used in this section should serve as a

roof of concept for our proposed method. A larger FPGA from the

ame family could be used in the case that trade-off curves with

arger number of HWaccs need to be explored. The results should

e exactly the same as the underlying architecture is the same and

nly the number of logic resources change, thus allowing to map

he additional configurations onto the fabric. 

The proposed exploration framework was executed also with

ifferent number of masters ranging from 1 to 4, but because the

arget CSoC only contains a dual-core ARM processor, results up to

wo masters are only shown for the in-situ exploration. 

Tables 3 and 4 show the qualitative and quantitative results

espectively of our method without behavioral templates ( FEBS ),

aking use of the behavioral templates to speed up the simula-

ion ( FEBS template ) and also an in situ search ( FEBS insitu ). The pro-

osed methods are compared against a brute force search method

ithout templates which for each system tries all possible micro-

rchitectures reported by the DSE. 

The main problem when comparing different multi-objective

unction optimization methods is how to measure the quality of

he results. Closeness to the Pareto front, wider range of diverse

olutions, or other properties are some of them. Several studies can

e found in the literature that address the problem of comparing

pproximations of the trade-off surface in a quantitative manner.

ost popular are unary quality measures, i.e . the measure assigns

ach approximation set a number that reflects a certain quality as-

ect, and usually a combination of them is used [46,47] . A multi-

ude of unary indicators exist e.g . hypervolume indicator, average

est weight combination, distance from reference set and spacing.

itzler et al. provide a good review of all existing methods in [48] ,

ndicating that there isn’t any single indicator able to measure the

uality of the results. Nevertheless quality measures are necessary

n order to compare the outcome of the DSE. In this work we mea-

ure the quality of the different methods using the following crite-

ia, which are also the main indicators used in this field: 

Average Distance from Reference Set (ADRS) : This measure ( ADRS )

ndicates how close a Pareto-front is to the reference front.

he smaller the value the closer the obtained approximate front

s to the reference front. Given a reference Pareto front � =
1 = (a 1 , l 1 ) , γ2 = (a 2 , l 2 ) , . . . , γn = (a n , l n ) and an approximate

areto front � = ω 1 = (a 1 , l 1 ) , ω 2 = (a 2 , l 2 ) , . . . , ω n = (a n , l n ) with

 ∈ A and l ∈ L , where A is the designs area and l its correspon-

ent latency. It follows: ADRS (�, �) = 

1 
| �| 

∑ 

γ ∈ �
min 
ω∈ �

f (γ , ω) where 

f (γ = (a γ , l γ ) , ω = (a ω , l ω )) = max 

{∣∣∣∣a ω − a γ

a γ

∣∣∣∣, 
∣∣∣∣ l ω − l γ

l γ

∣∣∣∣ .



                 

Table 3 

Experimental results: Quality of Results (QoR) (ADRS and dominance) comparison between 

in situ exploration ( FEBS insitu ) and proposed method without ( FEBS ) and with behavioral tem- 

plate ( FEBS template ) taken the BF as reference in %. 

FEBS FEBS template FEBS insitu 

Bench Masters ADRS[%] Dom[%] ADRS[%] Dom[%] ADRS[%] Dom[%] 

S1 M = 1 0.0 100 0 100 0.1 98 

M = 2 1.1 50 1.3 75.0 0.0 100 

M = 3 1.8 60 1.5 70.0 – –

S2 M = 1 2.2 65 2.2 65.0 0.7 77 

M = 2 4.1 75 4.1 75.0 0.2 87 

M = 3 5.3 43 5.3 42.9 – –

S3 M = 1 1.4 71 3.4 71.4 0.0 100 

M = 2 3.7 50 1.2 75.0 2.0 90 

M = 3 1.4 71 1.6 66.0 – –

S4 M = 1 3.2 41 3.2 41 0.1 90 

M = 2 0.0 100 0.0 100.0 0.0 100 

M = 3 3.2 41 3.9 29.4 – –

M = 4 4.6 50 4.6 50.0 – –

S5 M = 1 0.0 100 0.0 100.0 0.0 100 

M = 2 0.0 100 0.0 100.0 0.0 100 

M = 3 0.4 75 2.3 50.0 – –

M = 4 1.4 82 1.4 82 – –

S6 M = 1 0.0 100 0.0 100.0 0.0 100 

M = 2 3.3 42 3.9 25.0 1.2 70 

M = 3 4.2 55 4.5 25.0 – –

M = 4 3.8 65 3.9 25.0 – –

S7 M = 1 0.0 100 0.0 100.0 0.0 100 

M = 2 4.3 42 4.3 42 0.5 80 

M = 3 3.8 58 3.8 58 – –

M = 4 4.5 75 4.8 25.0 – –

S8 M = 1 0.0 100 0.0 100.0 0.0 100 

M = 2 3.0 43 3.4 28.6 0.9 85 

M = 3 2.8 50 4.6 44.0 – –

M = 4 3.2 33 4.3 32.0 – –

Avg. – 2.3 65 2.6 59.7 0.35 93 

Table 4 

Running time results [min]. 

BF FEBS FEBS template FEBS insitu Comparison 

Bench Run[min] Run[min] Run[min] Run[min] �BF −F H �BF −F HT �BF −F HI 

S1 58 24 20 10 2.42 2.90 5.8 

S2 113 23 20 8.5 4.91 5.65 13.2 

S3 70 19 15 12.7 3.68 4.67 5.5 

S4 827 102 50 27 8.11 16.54 30.6 

S5 386 69 42 34 5.59 9.19 11.4 

S6 911 534 152 122 1.71 5.99 7.5 

S7 1514 576 154 113 2.63 9.83 13.4 

S8 1387 2575 542 355 0.54 2.56 3.9 

Avg. – – – – 3.42 6.64 11.4 

Geomean 544 208 90 38 – – –
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The lower the distance value (ADRS) is, the more similar two

areto sets are. For example, a high ADRS value tells that an entire

egion of the reference Pareto-front is missing in the approxima-

ion set. 

Pareto Dominance : This index is equal to the ratio between the

otal number of designs in the Pareto set being evaluated (obtained

y executing one exploration method), also present in the refer-

nce Pareto set. The reference Pareto set is obtained by combining

he best results of each method over 5 runs. The higher the value,

he better the Pareto set is. 

When presenting DSE results it is also often custom to show

he trade-off curves graphically in order to provide a quick visual

epresentation of the quality of the results. Unfortunately, in this

ork 32 trade-off curves would need to be shown making it im-

ractical. Nevertheless, Fig. 6 shows the trade-off curves for the

n-situ implementation for our fast search method and the brute

orce method which is used as the reference front to compare the
uality of results for three proposed methods for the case of 1 and

 masters. 

Different conclusions can be drawn from the results shown in

ables 3 and 4 . 

From Table 4 it can be seen that the in-situ method is the

astest, followed by the template based method and followed by

he detailed cycle-accurate one. In particular they are on average

4.3 × , 6.0 × , and 2.6 × faster compared to the brute forces based

n the detailed cycle-accurate simulation. It should be noted that

he running times include the time required to place and route the

esigns on the FPGA for the in-situ method and the compilation

ime for the simulation based methods. 

In terms of the Quality of Results (QoR) our three proposed

ethods also show to lead to good results with average ADRS of

.3% and 2.6% without and with template and 0.35% for in situ

ethod. The template based method works specially very well,

or data-intensive applications with no conditionals that affect the



                 

Fig. 6. System Exploration trade-off curves for each benchmark for 1 master ( M = 1) and 2 masters ( M = 2) comparing the brute force ( BF insitu ) and our proposed fast heuristic 

( FEBSinsitu ). 

Table 5 

Comparison between the 3 proposed explo- 

ration methods. 

Method Speed Quality of results 

FEBS + ++ 

FEBS template ++ + / ++ 

a 

FEBS insitu +++ +++ 

b 

a Better results when no runtime data de- 

pendencies in benchmark that affect the la- 

tencies. 
b Under specific circumstances: (1) Only 2 

masters allowed (2) the complete trade-off

curves of all accelerators fits on the reconfig- 

urable fabric. 
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latency of the circuit (. e.g no breaks in for loops). Our previous

work [3] studies this extensively. 

Table 5 compares all three methods based on the running time

results and quality of the exploration results. The FEBS is a fast

method that leads to good results. The templates based simula-

tion version FEBS template is faster, but leads to slightly worse results,

while the in-situ based method FEBS insitu is the fastest and leads to

the best results subject to different conditions: First, that the SoC

only has 2 master and lastly that the complete trade-off curves of

all the accelerators can be mapped on the reconfigurable fabric of

the FPGA. 

It can be therefore concluded that our three methods are very

effective and that they lead to comparable results compared to an

exhaustive search much faster. 

6. Summary and conclusions 

In this work we have presented three fully automatic methods

to characterize heterogeneous systems composed of multiple mas-

ters and hardware accelerators in shared bus systems. In particular,

this work makes use of advanced features available in state-of-the-

art HLS tools, which allow the generation of complete SoC systems

in C and also their simulation with cycle-accurate models. Because

these BIPs often have to wait for data to be transferred from the

masters and also wait to get permission from the bus arbiter to

access the bus, it was shown that it is not necessary to implement

these BIPs maximizing performance and hence using more hard-

ware resources. For different mappings with different number of

masters generating different traffic patterns, it was shown that our
ethods are very effective compared to an exhaustive search while

eing much faster. The concept of behavioral IP template was also

ntroduced to further accelerate the running time of the proposed

ethod. We have shown that the quality of the results only suffers

inor degradations in designs with data-dependent latencies. 

Also, a fast and accurate method to explore the design space of

eterogeneous MPSoCs mapped on a CSoC by performing the ex-

loration in situ on the same target platform is also presented. This

eads to 100% accurate results, while at the same time accelerates

he exploration time compared to a method based on using cycle-

ccurate models. This method is only constrained by the limited

ize of the reconfigurable fabric onto which to map the Pareto-

ptimal designs (dominating designs) of each of the HWAccs in

he system. One possible solution would be to use a larger CSoC

f the same family to perform the search and then use the system

ith specific micro-architectures for the production system, as this

ill only contain a single micro-architecture for each HWAcc. This

ould not jeopardize the quality of the results as the architecture

f CSoCs are exactly the same. 
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