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ABSTRACT

This work proposes three different methods to automatically characterize heterogeneous MPSoCs com- posed of a variable number of masters (in the
form of processors) and hardware accelerators (HWaccs). These hardware accelerators are given as Behavioral IPs (BIPs) mapped as loosely coupled
accelerators on a shared bus system (ie. AHB, AXI). BIPs have a distinct advantage over traditional RT-level based IPs given VHDL or Verilog: The
ability to generate micro-architectures with different area vs. perfor- mance trade-offs from the same description. This is usually done by specifying
different synthesis direc- tives in the form of pragmas. This in turn implies that using different mixes of the accelerators’ micro- architectures lead
to SoCs with unique area vs. performance trade-offs.

Two of the three methods proposed are based on cycle-accurate simulations of the complete MPSoC, while the third method accelerates this
exploration by performing it on a Configurable SoC FPGA. Exten- sive experimental results compare these three methods and highlight their

strengths and weaknesses.
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1. Introduction

VLSI circuits are reaching complexities never seen before. One
solution that is being proposed is to customize the comput-
ing platforms to the application domain, also known as domain-
specific computing. At the chip level, this is accomplished by de-
signing heterogeneous Multiprocessor Systems-on-Chips (MPSoCs)
with dedicated hardware accelerators (HWAcc). These dedicated
accelerators execute dedicated tasks faster than general purpose
architectures by exploiting the inherent parallelism of some ap-
plication (e.g. image processing applications), while consuming a
fraction of the power.

Due to the pressure to tape-out these chips at shorter design
cycles, companies often rely on third party Intellectual Proper-
ties (3PIPs) to meet their tight schedules. Companies have also
started to rely on High-Level Synthesis (HLS) to increase their de-
sign productivity. Thus, third party behavioral IPs (3PBIPs) are of-
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ten used as HWAccs on these heterogeneous MPSoCs. The Inter-
national Technology Roadmap for Semiconductors (ITRS) already
suggested in 2013 that by 2020 a 10x productivity increase for
designing complex SoCs was needed [1]. Two main factors were
predicted to help to achieve this goal. The first is the re-use of
components. ITRS estimates that around 90% of the SoCs will be
composed of re-used components. Secondly, the use of new design
methodologies to raise the level of abstraction i.e. HLS. The use
of HLS has led to a new market for 3PBIPs. One of the main ad-
vantages of BIPs is that they are much easier to re-use than tradi-
tional RT-level IPs. Moreover, micro-architectures of different area
vs. performance trade-offs can be easily obtained by synthesizing
the behavioral description with different synthesis options. This is
typically done by setting different synthesis options in the form
of pragmas (comments) inserted directly into the source code or
through global synthesis options. For example, these options can
control how to synthesize arrays (register or RAM), if a function
should be inlined or not and if loops should be fully unrolled, par-
tially unrolled, not unrolled or pipelined.

FPGA vendors have also embraced this new paradigm and have
released their own Programmable or Configurable SoCs (CSoCs),
e.g. Altera’s Cyclone V SoC and Xilinx’s Zynq FPGA. These CSoCs
contain multiple embedded cores mainly in the form of ARM
Cortex A9 and reconfigurable fabric onto which to map the
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Fig. 1. Shared bus heterogenous MPSoC target platform and overview and the different system-level design space exploration methods proposed in this work.

accelerators, all interconnected through a standard bus e.g. AMBA
AHB/AXI. Concurrently, these FPGA vendors have also extended
their design flows to include HLS as a vehicle to program their FP-
GAs and to simplify the creation of these heterogeneous systems
using high-level languages (e.g. Xilinx’s Vivado HLS and Altera’s
OpenCL SDK).

It should be noted that HLS is still far away from a push-button
solution. Thus, not any software description can be synthesized.
The design flow advocated in this work is that hardware design-
ers will now spend time optimizing a behavioral description in any
high-level language (e.g. C/C++) to make it synthesizable instead
of writing RTL code. The hardware designer can then either manu-
ally or automatically perform a HLS Design Space Exploration (DSE)
setting different synthesis attributes to obtain a trade-off curve of
Pareto-optimal designs. These optimal designs are in turn passed
to the system integrator who will then choose one of these micro-
architectures for each accelerator for that particular MPSoC. The
problem that arises now for the system integrator is to determine
which micro-architecture is the best in terms of area, performance
and/or power efficiency when mapped onto the SoC. This work
addresses this issue and compares three characterization meth-
ods previously introduced [2-4], each with different characteris-
tics, to automatically find system configurations with unique area
vs. performance trade-offs composed of different mixes of micro-
architectures for each hardware accelerator.! In particular, this pa-
per makes the following contributions:

« Propose a fully automatic flow to generate system configura-
tions composed of a variable number of hardware accelerators
each with a unique micro-architecture with unique area vs. per-
formance trade-offs.

Introduces three different exploration methods, each with its
own strengths and weaknesses. The first is based on a detailed
cycle-accurate simulation of the complete systems [2], the sec-
ond is also simulation based and accelerates the simulation by
substituting each accelerator with a template that only mimics
the I0 timing, but is empty inside [3], and the last one further
accelerates the exploration by performing it on a configurable
SoC FPGA [4].

! In this work a system is a SoC composed of M masters and N accelerators in-
terconnected through a shared bus.

» Present extensive experimental results comparing the three
methods.

2. Motivational example

Fig. 1 shows the target MPSoC platform used throughout this
work. It is an MPSoC with variable number of processors and a
variable number of slaves mapped as loosely coupled HWAccs on
a memory mapped shared bus.?

This figure also highlights the benefit of designing the hardware
accelerators at the behavioral level instead of traditional RT-level
(Verilog or VHDL). A variety of micro-architectures with unique
trade-offs can be generated without the need to modify the input
description. Out of all the different micro-architecture, we are only
interested in the Pareto-optimal, which confirm the dominating
trade-off curve. In the RTL case, the micro-architecture is fixed and
corresponds to a single design. In this case it is impractical to man-
ually generate all the different design variants. To circumvent this
problem, some research work has focused on converting RTL de-
scriptions into behavioral descriptions to maximize HLS DSE [5,6].
As shown in Fig. 1 too, using different mixes of micro-architectures
for each accelerator leads to system configurations with unique
area vs. performance trade-offs, where in this case the area only
indicates the area of the slaves (excluding the masters’ area as this
does not change). Each point on the diagram represents a unique
task mapping within the specified number of masters. In particu-
lar, when using for every accelerator the fastest micro-architecture,
but also the largest a system with area Apa is obtained. At the
same time, if the smallest, but slowest micro-architectures for all
the accelerators are used, then a system of area A, is created.
As shown, different mixes of accelerators lead to different area vs.
performance trade-offs. In particular it can be seen that a smaller
system (Ag) with the same performance as Amax can be found,
mainly because of bus contention issues.

In addition to the micro-architecture chosen for each accelera-
tor, the tasks’ mapping onto the different masters also leads to sys-
tems with different performances, but the same area. This is clearly
shown in Fig. 1, by a row of points with same area, but different

2 In this work the term master and processor will be used interchangeably to
denote a system component which originates the data for the slaves and initiates
the communication sequence. This work also makes use of the term slaves, BIP, HW
kernel or HW accelerator interchangeably.



Table 1
Exploration result and task mappings on different number of masters (1-3) in
motivational example in Fig. 1 with 3 slaves and effect on the area.

M  Mappings Num  Ared,;;  Areag Al%]
1 {(1,2,3} 1 1321 992 26.1
2 {(1)2,3)} {2)(1,3)}, {(3),(1,2)} 3 1321 1002 25.3
3 {(2.06% 1 1321 1048 219

throughputs. Table 1 shows the different possible tasks mappings
on the motivational example with different number of masters,
ranging from 1 to 3, and 3 slaves, and how the area savings that
can be achieve by choosing different mixes of micro-architectures
as compared to only using the fastest micro-architectures but also
largest.

Several observations can be made from these results:

Observation 1: Different task mappings for the same acceler-
ator implementations lead to different system performance, while
consuming the same area. Hence, there is a task mapping which
dominates the others. This fact is mainly due to the fact that the
masters cannot feed the slaves continuously with data due to bus
congestion problems. The bus arbitration policy also affects this. In
this work the bus arbiter is set in all cases to round robin arbitra-
tion as this is the most widely used arbitration policy.

Observation 2: Based on observation 1 it can be further ob-
served that for each BIP, there are smaller designs, which can lead
to the same performance of the entire system, while consuming
less area than an equivalent system composed of only BIPs of high-
est performance and largest area. It is therefore not needed to fully
parallelize the BIPs to achieve the highest performance. Hence a
slower, but smaller version of these BIPs can be used in each of
the MPSoC configurations. The smallest micro-architecture for each
BIP depends on the number of masters on the MPSoC and on the
mapping of tasks on each master.

Observation 3: The number of mappings follows the Stirling
numbers of the second kind sequence. In this work we do not con-
sider the task execution order once the tasks are mapped onto the
same master. For the first case only a single task mapping is pos-
sible, because there is only a single master available ({1, 2, 3}) as
shown in Table 1. Similarly, only one task assignment is possible in
the case that 3 masters are available as each task is mapped onto
its own master ({(1), (2), (3)}). For the case of two masters, 3 task
mappings are possible. This will be explained in more detail in the
next sections as this impacts the running time of our technique.

The features that enable our work to identify the amount of
performance degradation allowed by each accelerator and the abil-
ity to generate smaller designs are: First, the use of BIPs for each
of the accelerators and second, the ability to generate fast cycle-
accurate models for the entire MPSoC to accurately estimate the
idle time of each slave and the performance of the entire system.
Other works make use of virtual platforms which model the com-
munication part loosely through payloads. The problem with this
approach is that the exact idle time of each HW module cannot
be accurately measured and hence previous work cannot exactly
determine the idle time of each module. This combined with the
fact that our method takes as inputs BIPs which can be synthesized
into different micro-architectures automatically are key differenti-
ating elements in this work.

This work will make use of these observations in order to find
the dominating configurations trade-off curves efficiently. Thus, the
problem that this work deals with can be formulated as:

Problem definition: Given N BIPs to be mapped onto a mem-
ory mapped shared bus MPSoC as loosely-coupled HWAccs, each
with a testbench BIP;/TB;,BIP,/TB,, ..., BIPy/TBy firstly explore
each BIP; to obtain a trade-off curve (TDC) of Pareto-optimal micro-
architectures for each BIP TDC(BIP;) = {microq, micro,, ..., microp}

with the following area {A(micro;) > A(microy), ..., > A(microp)}
and latencies {L(microy) < L(microy), ..., < L(microp)}. Secondly,
given M masters find a Pareto-optimal system-level trade-off curve,
such that the TDC is composed of unique micro-architectures for
each BIP TDC; = {BIP; (microy), BIP, (microy), ..., BIPy(micro(z))}.

3. Previous work

On-chip hardware accelerators can be coarsely classified as
tightly coupled accelerators and loosely coupled. In the first case,
the accelerator is directly attached to a specific core. Some ex-
amples of this include [7,8]. In the latter case, the accelerator is
directly attached to a global bus and is shared among multiple
cores, the authors in [9] developed MorphoSys, a reconfigurable
computing system which combines reconfigurable hardware with
general-purpose processors for word-level, computation-intensive
applications. In [10] the authors proposed a loosely coupled re-
targetable Loop Accelerator (LA). To ensure that the accelerator de-
sign is broad enough to accelerate different applications the au-
thors perform a DSE on the LA. However, the architecture does not
fit all situations, requiring the re-design of the LA for different ap-
plications. Tabkhi et al. [11] introduced Function-Level Processors
(FLPs) to fill the gap between Instruction Level Processors (ILPs)
and dedicated HWAccs. FLPs are comprised of configurable Func-
tion Blocks (FBs) implementing selected functions which are then
interconnected via programmable point-to-point connections con-
structing an extensible/configurable macro data-path. This work fo-
cuses on these second type of accelerators, which can be accessed
by different masters in the system, which in [12] was shown to
lead to very good results for particular systems (e.g. applications
with clear memory access patterns).

Some work on loosely coupled accelerators connect these ac-
celerators through custom interconnects e.g. NoCs combined with
DMAs for quick data transfer. In [13] the authors present a global
management of NoCs in accelerator-rich architectures. In our case,
the accelerator is connected to the system through a standard
AMBA AHB/AXI bus.

Regarding MPSoC Design Space Exploration (DSE), much work
has been done in the past. We thus, only highlight some repre-
sentative work. Most previous works can be classified into three
different categories: (a) Using aggressive pruning techniques to re-
duce the search space [14,15] (b) make use of meta-heuristics to
search the design space [16,17] or (c) use static analytical tech-
niques to guide the explorer [18,19]. Once the candidate solutions
have been generated, these have to be evaluated either through
simulation (i.e. [19]) or through predictive models (i.e. [18]). Closer
to this work, the authors in [20,21], use compositional techniques
to explore the design space of SoCs composed of multiple accel-
erators generated from HLS which have a set of Pareto-optimal
configurations to choose from. The main idea is to use composi-
tional techniques to reduce the number of invocations of the HLS
tools as the explore the accelerators’ micro-architecture and the
system at the same time. The same authors extended this work in
[22] to deal with memory optimizations. The authors in [23] pre-
sented a flow that allows to generate and explore complete SoCs
at the behavioral level by creating a synthesizable library of com-
ponents and present a prototype of an SoC interconnected through
a Networks-on-Chip (NoCs) architecture. The main problem with
all this previous work as that they still require to perform a full
system-level simulation to measure the performance of each newly
generated SoC.

With regard to the use of higher levels of abstraction to create
HWAccs more efficiently, Corre et al. [24,25] proposed the use of
HLS for HWAccs in heterogeneous MPSoCs, similar to this proposal,
but for tightly coupled HWAccs. The authors make use of fast an-
alytical estimators for the area and performance, hence, different



workloads, bus congestion and bus arbitration policies cannot be
modeled by their work. Their work assumes fixed regular static
access patterns, which is not too realistic. The authors in [26] pro-
pose a virtual platform for accelerating the exploration of many-
accelerator systems.

Previous work, vary based on the type of simulation abstraction
used to model the MPSoC ranging from sequential simulators (e.g.
QEMU [27] and SimpleScalar [28]), transaction level models (TLM)
(e.g. OVP [29]) to cycle-accurate modeling (e.g. HORNET [30]). In
most of this previous work, the main objective is to explore sys-
tem parameters like e.g. cache sizes, number of processors, bus
bitwidth, memory latency.

Similar to our work [31] uses HLS to design the HWaccs in
MPSoCs and develop an HLS DSE method to obtain MPSoCs with
unique area vs. latencies. In this work a fast static area and la-
tency estimator is used, hence the bus congestion is not taken into
account in their work. In [12] the authors use HLS to generate a
set of dominating micro-architectures mapped as loosely coupled
HWaccs in a SoC, similar to this work. They then propose a system-
level exploration method based on a pre-defined system template
and emulate these configurations on an FPGA.

In these previous works, the access pattern and workload was
always considered regular. The authors in [32] showed that work-
loads in modern MPSoC-based embedded systems are becoming
increasingly dynamic, which can cause changes in the nature of
the workload demand over time. They introduce the concept of
system scenarios, which group system behaviors that are similar
in such a way that the system can be configured to exploit this
cost similarity. Quan et al. [33] extended this work by introduc-
ing a hybrid task mapping method that combines static mapping
exploration and a dynamic mapping optimizer.

A hybrid approach is taken by Renesas Electronics, which com-
mercializes a run-time reconfigurable coarse grain FPGA IP called
Stream Transpose Processor (STP) which can be embedded into
SoCs to accelerate any datapath [34]. To facilitate the programma-
bility of this IP, the STP is configured using HLS technology [35]. A
set of contexts are generated from an untimed C description that
are loaded onto the reconfigurable fabric every clock cycle. This
also helps saving area as the STP can be configured to execute dif-
ferent tasks.

Finally, with regard to in situ characterization, the authors in
[36] propose an in situ characterization to perform DSE for multi-
core systems targeting Intel Core i7-2600 with 4 cores and Xil-
inx Zynq-7000 with two ARM cores. In this previous work, no
hardware accelerators are used. Closer to this work, the authors
in [37] proposes a method called hArtes, which is a toolchain
that maps applications specified in high-level languages into plat-
forms composed of general-purpose processor, DSPs and FPGAs.
This work makes extensive use of pragmas to control what is exe-
cuted where.

Our work is different from the above previous works in various
aspects. First, we assume that the overall system architecture has
already been fixed. This implies that the bus structure, memories,
HWACccs have already been fixed. This also implies that the HW/SW
partition is fixed. Previous work done in the area of automatic
HW/SW partitioning can be fully leveraged to further automate the
complete flow [38-40]. Hence, our proposed flow is fully orthogo-
nal to this work. Secondly, we take as inputs BIPs in the form of
explorable C/SystemC inputs. This allows us to generated a variety
of micro-architectures of unique area vs. performance trade-offs for
each BIP. Finally, we propose and compare three methods. Two are
simulation based, while the last one is in-situ based, where the ex-
ploration runs on a Configurable SoC FPGA. If this hardware plat-
form is also the final target product, then this method also leads
to 100% accurate. On another dimension, this work also considers
how different micro-architectures of individual accelerator impacts

the entire system. Thus, the input to our system explorer is a set
of trade-off curves for each slave and the objective of our work
is to find unique combinations of micro-architectures of each BIP
which lead to Pareto-optimal system configurations, once the over-
all architecture, including number of masters, bus type, arbitration
policy, etc., has already been fixed.

We believe that this work is extremely important for system
integrators to help them decide either which micro-architecture
to choose from when integrating BIPs in complex SoCs or which
method to use. It should be noted that previous work on system-
level design could be extended by adding our proposed BIP
micro-architecture search method as another search dimension.
We thus believe that our work is fully orthogonal to previous
work.

4. Proposed system exploration methods

Fig. 2 shows the complete flow diagram of our three different
proposed methods, called Fast Explorer for Behavioral Systems FEBS.
All three methods takes as inputs N behavioral IPs (BIPs) given in
synthesizable ANSI-C or SystemC and their testbenches (TB), which
form a complete System S, S = {BIP;/TBy, BIP,/TB,, ..., BIPy/TBy}.
Therefore the HW/SW partition is already decided a priori. The TB
will be executed on the SoC as a master and acts as traffic gener-
ator, while the BIPs are synthesized and mapped as slaves in the
system. The output of our method is a set of dominating systems
with unique area vs. performance (throughout) and different task
mapping combinations. Based on the number of masters in the
system, this means that all the tasks can be either mapped onto
a single master or each task can have its own master or any com-
bination in-between. The core of the system explorer is the op-
timization of each slave’s micro-architecture for each unique task
mapping. The task mapping is important because it decides upon
the ultimate workload pattern in the SoC. The next subsection de-
scribes this optimization first.

4.1. Single mapping behavioral IPs optimization

The core of our fast exploration method is the optimization of
the individual IPs for a specific task mapping. This step is com-
posed of 4 main steps and 1 pre-characterization phase as follow:

Pre-step: BIP design space exploration. As a pre-
characterization step, our method starts by performing an HLS
DSE for each individual BIP. As mentioned previously, C-based
design has the advantage over traditional RTL-based design that
micro-architectures with unique area vs. performances (in this
case latencies) can be obtained by setting different synthesis
options. The pre-characterization step of our flow is based on a
genetic algorithm to explore just the synthesis directives of each
BIP. The HLS DSE used in this stage is a modified genetic algorithm
presented in [41]. Other methods have been proposed in the past
using other meta-heuristics [42]. These methods could be easily
incorporated into our flow, but are out of the scope of this paper
as we only use the dominating designs as an input to our main
flow. We will not go into details about how the GA works as it has
been presented in previous work. Basically, each explorable oper-
ation OP is represented as a gene to which a synthesis attribute
(pragma) p or global option opt is assigned. These OP include ar-
rays, functions and loops. The list of all genes built a chromosome
Cr, which is then combined and mutated based on pre-defined
crossover and mutation probabilities (pc and pm). Each new con-
figuration is synthesized using as many FUs as needed to fully
parallelize the generated micro-architecture. The result of this step
is a trade-off curve of dominating designs for each BIP with unique
micro-architectures, TDC(BIP,) = {microy, micro,, ..., microp}.
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Fig. 2. Proposed methods flow diagram. (a) Offline simulation based method without template. (b) Offline simulation based method with template. (c) In situ system level

exploration.

Step 1: SoC generation. This first step automatically generates
the SoCs based on the number of masters and slaves specified and
for each new configuration generates all possible task mappings.
The order in which the tasks are executed on each master is not
considered as all tasks are completely independent of each other.
This work also considers that tasks are repeatedly executed.

The number of mappings follows the Stirling numbers of the
second kind sequence if the task execution order is not considered.
If it is considered, all possible permutations would be required.
Based on preliminary simulation results, we could observe that for
the case of periodically repeating tasks this was not the case and
thus the task execution order is not considered. The Stirling num-
bers of the second kind S(n, k) count the ways to divide a set of n
objects into k nonempty subsets. In our case n =N, and k =[1,N]
where N is equal to the total number of slaves (BIPs).

Fig. 1 illustrated the effect of different tasks mappings on the
area and overall system throughput as well as on the number of
combinations. When the system only has 1 master (M = 1) only
one mapping exists, which also leads to the slowest of all sys-
tem configurations because the master now executes all the tasks,
as indicated in Table 1. This case corresponds to S(N,1) = 1. The
number of task mapping combinations grows with the number of
masters in the SoC, more task mapping combinations exists until
N/2, which has the largest number of task mapping combinations
(S(N, N/2)). Finally increasing the number of masters until M =N
leads again to a single task mapping as each task is mapped onto
its own master, hence S(N, N) = 1. This configuration also typically
leads to the fastest system. It should be noted that if the area of
the masters is ignored, the total system area is virtually the same
for all systems, as each system has the same number of slaves
(although the bus complexity increases slightly with the number
of masters and hence its area). In contrast, the performance will

change with different mappings. The numbers of mappings in each
case can be calculated as [43]:

0

where n is the number of slaves, which is always constant = N and
k is the number of masters (M).

To generate valid mappings which can be simulated and syn-
thesized, the original behavioral descriptions have to be modified
to include a bus interface. For this purpose, commercial HLS tools
provide a set of synthesizable APIs for different standard buses,
i.e. AMBA AHB and AXI. The tasks merged into the same master
must write to the correct memory mapped slave, by calling the API
with its assigned address, while the slaves listen until a master ini-
tiates the communication with them. The Masters can send data
in burst mode or as individual data (when possible burst mode
is chosen in this work), while the slaves wait for the masters to
transmit the data. Because the entire system should be synthesiz-
able, the testbenches should also be given in synthesizable C or
SystemC code. The output is hence a list of synthesizable behav-
ioral descriptions for the masters MList = {M1,M», ..., Mp} and for
the slaves SList = {S1,S5....,Sn}.

This step also generates the bus definition file, which the bus
generator in the next step takes as input in order to create a com-
plete C-based SoC. This bus definition file includes: (1) arbiter pro-
tocol (fixed or round robin), (2) memory map, (3) number of mas-
ters and slaves, (4) bus type (AHB or AXI) and (5) bus bitwidth. By
default the values for (1) (4) and (5) are set to round robin, AHB
and 32-bits, but can be set to any other values externally. It should
be noted that our proposed method works with any arbitration
policy and even other bus structures including Networks-on-Chip.

k
S(1.K) = o5 (- M

i=0



API_poll_req(&stat);

if(stat_r.reqg=READ_REQ){
API_set_response(OK);
API_write_data(odata);}

API_poll_req(&stat);
if(stat_r.req=WRITE_REQ){
API_set_response(OK);
while(x<SIZE)
idata[x++])=AP|_read_data();}}

Computation Computation

Fig. 3. Task execution schedule example including synthesizable read and write
APIs.

In this case we would have to manually create the synthesizable
API as no commercial tool, up to date, include synthesizable NoC
interfaces.

Step 2: System generation. Once the system has been char-
acterized in the previous step, the bus generator is called. This
bus generator reads in the bus definition file created in the pre-
vious step and creates the synthesizable ANSI-C or SystemC code
for the masters’ (MIFList = {MIF;,MIF,, ..., MIF;}) and slaves’ inter-
faces (SIFList = {SIF;, SIF,, ..., SIFy}) as well as for the bus (bus) it-
self and the top module (top) which instantiates all the compo-
nents in the system. The commercial HLS tools used in this work
(NEC's CyberWorkBench [44]) includes a bus generator that gen-
erates these automatically given the bus definition file created in
step 1.

Step 3: HLS and cycle-accurate model generation. Once the
system has been generated, each of the behavioral descriptions
generated previously are synthesized. Because HLS is a single pro-
cess synthesis method, each of them is synthesized individually
with its own set of constraints. Once each of them is synthesized,
a cycle-accurate model is generated in SystemC for the entire sys-
tem. State of the art HLS tools also typically come with different
model generators in order to verify the design at different levels of
abstractions, e.g. behavioral-level (to verify the data type conver-
sion) and cycle-accurate (to verify the timing). Once the system'’s
cycle-accurate model is created, it is compiled using g++ and exe-
cuted. All the BIPs used in this work were slightly modified to re-
port the total time they remained in idle mode and the total time
they were actively performing some computation. The results of
the execution is a timing report indicating the idle and computa-
tional time of each of the slaves.

Step 4: Slave (BIP) optimizations. Based on the timing report
obtained in the previous step, our method assigns to each slave
a new micro-architecture from the trade-off curve generated for
each BIP. Fig 3 graphically shows the report. It can be observed
that at regular intervals the BIP receives the data from the mas-
ter and computes it. It takes each BIP L; cycles to finish the com-
putation, where L; = {L;eqq + Leomp + Lyrite}, With Lyggq the time re-
quired to read the data sent from the master, which is always con-
stant once the communication has been established, Lcomp the time
taken to compute the new output and L., the time taken to write
the data back to the master. The only factor which changes be-
tween two executions of the same task is Lyyite, as the master has
to retrieve the control over the bus, which might change between
two executions. Moreover, the main difference in the execution of
the task is in the waiting time between two consecutive execu-
tions. Based on the number of other tasks being executed, their
bandwidth required to send and receive data and the arbiter’s pri-
ority, which in the round robin case keeps changing. In this case
W3 <W; <Ws.

Our work considers these waiting cycles as positive slack,
where the smallest waiting period (i.e. W3) is the maximum slack.
because the goal of our method is to find the smallest design

which can sustain the same performance. This means that a micro-
architecture with latency Lecomp new = floor (Lcomp +Whyin) is chosen
from the pre-characterized micro-architectural exploration trade-
off curve and the BIP substituted. Because the dominating curve
does not contain designs of all latencies, the closest smallest value
is chosen. This analysis is done for each of the slaves. Once all of
the BIPs are substituted by their respective smallest designs, a new
system is generated, re-synthesized and re-simulated to get accu-
rate performance values. The same system choosing the smallest
micro-architecture for each BIP is also generated as reference for
each mapping in order to provide the user the range of systems
that can be generated.

4.2. System exploration

Our exploration method uses the previously introduced slave
optimization technique as its core to obtain dominating trade-off
curve for systems with different number of masters and accel-
erators as well as the best task mapping (MP) on each of the
masters. Hence, the result of our method is a trade-off curve
(TDC) composed of unique micro-architectures (microy) of each BIP
found in the pre-characterization stage when each BIP is explored,
TDC = {BIP; (microp), BIR, (microg), .. ., BIPy(microw)} and the best
task mapping (MP). The best task mapping is the most efficient
workload distribution among masters to maximize the throughput
of the system. Nevertheless, our proposed method can also be set
up to report a trade-off curve for the least favorable task mapping
to take into account worst-case scenarios.

The complete exploration can be subdivided into 2 main steps.
Algorithm 1 summarizes these steps, shown also graphically in
Fig. 4 for a particular number of master. The main step can be
summarized as follows:

Algorithm 1: System exploration.

input : BIPL = {BIP; = {(Aq,L;).Ap.Lp}). ...}, N}

BIPL: BIP list pre-characterized after DSE
N: Maximum number of masters

output: TDCL =

{(TDCy=1, MPy), (TDCy=2, MB,), ..., (TDCy=n, MFy)}

TDIC: Trade of curves List for different masters
TDCy—n: Trade of curve for system with N masters
MPy: Task mapping for system with N masters

1 [* Step 1:;
2 Fastest Systems Generation */
3 foreach N do

4 | BIPLmax = select_fastest_microarch(BIPL);
5 foreach MP do

6 | Sseea(A, P) = simulate_system(BIPLmax);
7 end

8 end

9 [* Step 2: Explore each Fastest Design */
10 foreach N do

n foreach S,y ((A, P) do

12 while (BIPs not smallest) do

13 Snew (A, P, Slack) = simulate_system(S);
1 optimize_micro(S_new(Slack), BIPL);

15 select_new_BIP_smaller (BIPL);

16 end

v end

18 | TDG = extract_tradeof f(Sq);

19 end

20 return(TDCL);
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Fig. 4. System exploration overview.

Step 1: Fastest systems generations. This very first step selects
the fastest micro-architectures for all of the BIPs and generates sys-
tems with all the different possible task mappings. Because these
micro-architectures are the fastest, but also the largest in terms of
area, they should lead to a system with the highest possible perfor-
mance. These configurations are considered the seed configurations
(Sseeq) used to generate the final trade-off curve. They are depicted
graphically in Fig. 4 by triangles.

Step 2: Single trade-off curve generation. Once the seed con-
figurations have been generated, our explorer continues by follow-
ing the steps described in the previous subsection for each seed
configuration. This results in new systems Sy With the same per-
formance as the Sy, but smaller area. The explorer then contin-
ues choosing a new micro-architecture for the slave which has the
smallest area difference among all the micro-architectures compos-
ing Spew. This leads, as shown in Fig. 4, to a smaller system, but
slower. This step is repeated until a system containing only the
smallest, but slowest micro-architectures are reached (Sgyqpes;) (de-
picted in Fig. 4 as squares). Once this iteration is finished, the next
Sseeq i chosen and the same steps repeated. Once all the seed sys-
tems have been explored, the dominating configurations of all the
configurations are kept and stored in the trade-off curve TDC.

4.3. Behavioral IP template

One of the problems of the proposed method so far, is that al-
though a behavioral level cycle-accurate simulation is faster than
an RT-level simulation, it is still often too slow, especially when
dealing with very large systems. For this purpose, the concept of
BIP templates was introduced in [3] to accelerate the system sim-
ulation. The idea behind these templates is to substitute each BIP
with a template which mimics the BIPs’ I0s behavior, but is empty
inside. This implies that it only reads data from the master and
returns data after X cycles similar to the original BIP, where X is
the latency of the BIP. Although the results returned are function-
ally incorrect, the timing behavior is preserved. This strategy has
several main advantages: Firstly, the workload pattern of the en-
tire system is preserved (considering that the master is not using
the returned data for control actions). Secondly, the compile time
of the entire model is accelerated, as the complexity of these BIP
templates is much lower than that of the actual BIPs (it should
be noted that for larger circuits the compilation time can be sig-
nificant). Thirdly, the cycle-accurate simulation is much faster as
each template does not require to perform any actual computation.
Lastly, it allows the exploration of configuration of any latencies

Latency indatasw outdatap, bus type
v v v i

Behavioral IP template
generator

ANSI-C BIP template

// Part 1: Bus read interface
API_read_bus(indata);

//Part 2: Computational loop
for(x=0;x<size;x++)
outdata[x]=indata[x]+x;

//Part 3: Delay loop
for(x=0;x<latency-1; x++){

S //timing descriptor
}
// Part 4: Bus write interface
API_write_bus(outdata);

Fig. 5. BIP template generator and BIP template overview.

and not just those of the Pareto-optimal trade-off curve of each
BIP. Hence it is very easy to generate different what-if scenarios.

Fig. 5 shows an overview of how these templates are generated
and their main structure. The input to the template generator is
the bitwidth of the inputs and outputs, the latency of the tem-
plate and the bus type (AHB or AXI). The template generator takes
these inputs and generates a synthesizable ANSI-C program. The
template is composed of 4 main parts:

Part 1: Bus read interface. The first part contains the bus in-
terface API required to read data from the bus.

Part 2: Computation loop. The second part performs some ba-
sic computation on the input data. This is important because the
HLS tool would optimize the logic of the entire template away if no
computation is performed. Hence this part ensures that the tem-
plate structure is preserved.

Part 3: Delay loop. The third part is a for loop containing a
timing description and the last part the bus interface API to write
data back to the master. The timing descriptor symbolizes a clock
step. Commercial HLS tools normally support different types of
scheduling modes. The traditional one is the automatic scheduling,
in which the HLS scheduler automatically times the behavioral de-
scription. Another way of doing this is by manually. Thus, these
tools provide manual scheduling capabilities to allow designers to
manually time the behavioral description. In SystemC this is done
with wait statements, while at the ANSI-C level, this is vendor spe-
cific. In the case of the commercial HLS tool used in this work [44],
a § sign is used to denote a clock boundary. Hence when having a
loop with N iterations it will take N cycles to execute the loop.

Part 4: Bus write interface. Finally the last part returns the
data to the master using the synthesizable API for the particular
bus selected.

In order to create a more flexible template, the latency is passed
as an input to each template, thus making it fully parameterizable
at runtime.



4.4. In situ exploration

The draw-back of these cycle-accurate simulation models is that
they can still be relatively slow, because the PC executes these se-
quentially. Another drawback is that the target platform can often
not be exactly modeled, hence the results can slightly differ. For
example in the case of the simulation based methods proposed
previously, the master is modeled as a testbench (traffic genera-
tor). It would be prohibitory expensive to fully model the proces-
sors cycle-accurately. To address this, we also propose an alterna-
tive method based on in situ exploration, which performs the ex-
ploration on a CSoC FPGA. This FPGA contain multiple ARM cores
and reconfigurable fabric onto which multiple accelerators can be
mapped. In case that the actual target platform is also the CSoC
then this method also guarantees achieving 100% accurate results
as the CSoC being used in the exploration is also the final target
architecture.

FPGA vendors provide system-level design tools for their CSoC
design. E.g., Xilinx’s System Builder or Altera’s Qsys. In this work,
only Altera’s CSoCs are targeted and hence only the interface to
Qsys is built. Qsys is used to create the complete system using
its AMBA AXI bus interface, mapping each dominating design ob-
tained in step 1, as a slave in the system with a unique address.
The entire system is synthesized, placed and routed and a con-
figuration file generated (.sof). This configuration file (.sof) is then
converted to raw binary file (.rbf), which enables the embedded
system with the ability to configure the system at runtime.

This method is only constrained by the limited size of the re-
configurable fabric onto which to map the Pareto-optimal designs
(dominating designs) of each of the HWAccs in the system. One
possible solution would be to use a larger CSoC of the same family
to perform the search and then use the system with specific micro-
architectures for the production system, as this will only contain
a single micro-architecture for each HWAcc. This would not jeop-
ardize the quality of the results as the architecture of CSoCs are
exactly the same.

The next section presents the experimental results showing the
effectiveness of our three different proposed methods.

5. Experimental results

Different computational intensive applications, amenable to HW
acceleration, were selected and grouped together into complex sys-
tems in order to test our proposed method. These designs were
taken from the open source Synthesizable SystemC Benchmark
suite (S2CBench) [45]. Table 2 shows how these complex bench-
marks were formed. The first column indicates the name of the
benchmark, the second column indicates the total number of dom-
inating designs reported by the DSE for each benchmark. Columns
S1-S8 indicate the number of instantiations of each test case used
to build each complex benchmark. The last two rows report the
total number of applications used in each system benchmark and

Table 2
Complex system benchmarks.

Bench DSE  S1 S2 S3 S4 S5 S6 S7 S8

md5c 3 1 1 1 1 1
kasumi 2 1 1 1 1 1 1
interp 4 1 1 1 1 1
fir 3 1 1 1 1 1 1
adpcm 2 1 1 1 1 1 1
qsort 3 1 1 1 1 1
aes 2

Tasks 3 3 3 4 4 6
Designs 8 8 9 12 10 14 14 17
Masters 1-3 1-3 1-3 1-4 1-4 1-4 1-4 1-4

total number of design candidates contained (adding up the results
of the DSE of each application).

The experiments were run on an Intel dual 2.40GHz Xeon pro-
cessor machine with 16 GBytes of RAM running Linux Fedora re-
lease 19. The HLS tool used is NEC CyberWorkBench v.6.1 [44]. The
target architecture, as mentioned previously, is a multi-core pro-
cessor system with masters ranging from 1 to 4 depending on the
benchmark. The masters and slaves are connected through a 32-
bit AMBA AHB bus using a round robin arbiter. The HLS target fre-
quency for all of the processes in the system is set to 100MHz.

The reconfigurable computing board used is a Terasic DE1-SoC
Board. This board contains an Altera Cyclone V SoC 5CSEMA5F31
CSoC, which contains a dual-core ARM Cortex A-9 processor.
Ubuntu 32-bit 15.1 was installed on this CSoC.

Due to the limited size of the reconfigurable fabric of the
CSoC used, only 7 different BIPs are used. The size of the recon-
figurable fabric also limits the maximum number of HWaccs in
the experimental section to 17 (S8). When synthesized in Quar-
tus II, the Logic utilization (in ALMs) for the largest system (S8)
is 31,572/32,070 (98%). We believe that the number of HWaccs as
well as dominating designs used in this section should serve as a
proof of concept for our proposed method. A larger FPGA from the
same family could be used in the case that trade-off curves with
larger number of HWaccs need to be explored. The results should
be exactly the same as the underlying architecture is the same and
only the number of logic resources change, thus allowing to map
the additional configurations onto the fabric.

The proposed exploration framework was executed also with
different number of masters ranging from 1 to 4, but because the
target CSoC only contains a dual-core ARM processor, results up to
two masters are only shown for the in-situ exploration.

Tables 3 and 4 show the qualitative and quantitative results
respectively of our method without behavioral templates (FEBS),
making use of the behavioral templates to speed up the simula-
tion (FEBStempiae) and also an in situ search (FEBSjg,). The pro-
posed methods are compared against a brute force search method
without templates which for each system tries all possible micro-
architectures reported by the DSE.

The main problem when comparing different multi-objective
function optimization methods is how to measure the quality of
the results. Closeness to the Pareto front, wider range of diverse
solutions, or other properties are some of them. Several studies can
be found in the literature that address the problem of comparing
approximations of the trade-off surface in a quantitative manner.
Most popular are unary quality measures, i.e. the measure assigns
each approximation set a number that reflects a certain quality as-
pect, and usually a combination of them is used [46,47]. A multi-
tude of unary indicators exist e.g. hypervolume indicator, average
best weight combination, distance from reference set and spacing.
Zitzler et al. provide a good review of all existing methods in [48],
indicating that there isn’t any single indicator able to measure the
quality of the results. Nevertheless quality measures are necessary
in order to compare the outcome of the DSE. In this work we mea-
sure the quality of the different methods using the following crite-
ria, which are also the main indicators used in this field:

Average Distance from Reference Set (ADRS): This measure (ADRS)
indicates how close a Pareto-front is to the reference front.
The smaller the value the closer the obtained approximate front
is to the reference front. Given a reference Pareto front I' =
y1=(a1,h), = (ay,),..., ¥n = (an,ln) and an approximate
Pareto front Q = w; = (aj, 1), wy = (az, 1), ..., wn = (an, Iy) with
a € Aand 1 € L, where A is the designs area and [ its correspon-
dent latency. It follows: ADRS(I", 2) = “l—l > minf(y, ) where

yel we

o —ay | [lp—1,

)

f(y = (ay»ly),w = (aw,lw)) = max{
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Table 3

Experimental results: Quality of Results (QoR) (ADRS and dominance) comparison between
in situ exploration (FEBS;,s,) and proposed method without (FEBS) and with behavioral tem-
plate (FEBStempiaze) taken the BF as reference in %.

FEBS FEBStemplute FEBsinsitu
Bench  Masters  ADRS[%] Dom[%]  ADRS[%] Dom|[%] ADRS[%] Dom([%]
S1 M=1 0.0 100 0 100 0.1 98
M=2 11 50 13 75.0 0.0 100
M=3 18 60 1.5 70.0 - -
S2 M=1 22 65 2.2 65.0 0.7 77
M=2 41 75 41 75.0 0.2 87
M=3 53 43 53 429 - -
S3 M=1 14 71 34 714 0.0 100
M=2 3.7 50 1.2 75.0 2.0 90
M=3 14 71 1.6 66.0 - -
S4 M=1 32 41 32 41 0.1 90
M=2 0.0 100 0.0 100.0 0.0 100
M=3 32 41 3.9 294 - -
M=4 4.6 50 4.6 50.0 - -
S5 M=1 0.0 100 0.0 100.0 0.0 100
M=2 0.0 100 0.0 100.0 0.0 100
M=3 0.4 75 23 50.0 - -
M=4 14 82 14 82 - -
S6 M=1 0.0 100 0.0 100.0 0.0 100
M=2 33 42 39 25.0 1.2 70
M=3 4.2 55 4.5 25.0 - -
M=4 3.8 65 3.9 25.0 - -
S7 M=1 0.0 100 0.0 100.0 0.0 100
M=2 43 42 43 42 0.5 80
M=3 3.8 58 3.8 58 - -
M=4 4.5 75 4.8 25.0 - -
S8 M=1 0.0 100 0.0 100.0 0.0 100
M=2 3.0 43 34 28.6 0.9 85
M=3 2.8 50 4.6 44.0 - -
M=4 32 33 43 32.0 - -
Avg. - 23 65 2.6 59.7 0.35 93
Table 4
Running time results [min].
BF FEBS FEBSemplate FEBS;psitu Comparison
Bench Run[min] Run[min] Run[min] Run[min] Apr_ry ABF_FHT ABF_FHi
S1 58 24 20 10 242 2.90 5.8
S2 113 23 20 85 491 5.65 13.2
S3 70 19 15 12.7 3.68 4,67 55
S4 827 102 50 27 8.11 16.54 30.6
S5 386 69 42 34 5.59 9.19 14
S6 911 534 152 122 171 5.99 75
S7 1514 576 154 113 2.63 9.83 134
S8 1387 2575 542 355 0.54 2.56 39
Avg. - - - - 3.42 6.64 114
Geomean 544 208 90 38 - - -

The lower the distance value (ADRS) is, the more similar two
Pareto sets are. For example, a high ADRS value tells that an entire
region of the reference Pareto-front is missing in the approxima-
tion set.

Pareto Dominance: This index is equal to the ratio between the
total number of designs in the Pareto set being evaluated (obtained
by executing one exploration method), also present in the refer-
ence Pareto set. The reference Pareto set is obtained by combining
the best results of each method over 5 runs. The higher the value,
the better the Pareto set is.

When presenting DSE results it is also often custom to show
the trade-off curves graphically in order to provide a quick visual
representation of the quality of the results. Unfortunately, in this
work 32 trade-off curves would need to be shown making it im-
practical. Nevertheless, Fig. 6 shows the trade-off curves for the
in-situ implementation for our fast search method and the brute
force method which is used as the reference front to compare the

quality of results for three proposed methods for the case of 1 and
2 masters.

Different conclusions can be drawn from the results shown in
Tables 3 and 4.

From Table 4 it can be seen that the in-situ method is the
fastest, followed by the template based method and followed by
the detailed cycle-accurate one. In particular they are on average
14.3 x, 6.0 x, and 2.6 x faster compared to the brute forces based
on the detailed cycle-accurate simulation. It should be noted that
the running times include the time required to place and route the
designs on the FPGA for the in-situ method and the compilation
time for the simulation based methods.

In terms of the Quality of Results (QoR) our three proposed
methods also show to lead to good results with average ADRS of
2.3% and 2.6% without and with template and 0.35% for in situ
method. The template based method works specially very well,
for data-intensive applications with no conditionals that affect the
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Fig. 6. System Exploration trade-off curves for each benchmark for 1 master (M=1) and 2 masters (M=2) comparing the brute force (BF;us) and our proposed fast heuristic

(FEBSinsitu).

Table 5
Comparison between the 3 proposed explo-
ration methods.

Method Speed  Quality of results
FEBS + ++

FEBStempiate ~ ++ +H++

FEBSinsitu 4+ D

2 Better results when no runtime data de-
pendencies in benchmark that affect the la-
tencies.

b Under specific circumstances: (1) Only 2
masters allowed (2) the complete trade-off
curves of all accelerators fits on the reconfig-
urable fabric.

latency of the circuit (.e.g no breaks in for loops). Our previous
work [3] studies this extensively.

Table 5 compares all three methods based on the running time
results and quality of the exploration results. The FEBS is a fast
method that leads to good results. The templates based simula-
tion version FEBS;empqze 1S faster, but leads to slightly worse results,
while the in-situ based method FEBS;;, is the fastest and leads to
the best results subject to different conditions: First, that the SoC
only has 2 master and lastly that the complete trade-off curves of
all the accelerators can be mapped on the reconfigurable fabric of
the FPGA.

It can be therefore concluded that our three methods are very
effective and that they lead to comparable results compared to an
exhaustive search much faster.

6. Summary and conclusions

In this work we have presented three fully automatic methods
to characterize heterogeneous systems composed of multiple mas-
ters and hardware accelerators in shared bus systems. In particular,
this work makes use of advanced features available in state-of-the-
art HLS tools, which allow the generation of complete SoC systems
in C and also their simulation with cycle-accurate models. Because
these BIPs often have to wait for data to be transferred from the
masters and also wait to get permission from the bus arbiter to
access the bus, it was shown that it is not necessary to implement
these BIPs maximizing performance and hence using more hard-
ware resources. For different mappings with different number of
masters generating different traffic patterns, it was shown that our

methods are very effective compared to an exhaustive search while
being much faster. The concept of behavioral IP template was also
introduced to further accelerate the running time of the proposed
method. We have shown that the quality of the results only suffers
minor degradations in designs with data-dependent latencies.

Also, a fast and accurate method to explore the design space of
heterogeneous MPSoCs mapped on a CSoC by performing the ex-
ploration in situ on the same target platform is also presented. This
leads to 100% accurate results, while at the same time accelerates
the exploration time compared to a method based on using cycle-
accurate models. This method is only constrained by the limited
size of the reconfigurable fabric onto which to map the Pareto-
optimal designs (dominating designs) of each of the HWAccs in
the system. One possible solution would be to use a larger CSoC
of the same family to perform the search and then use the system
with specific micro-architectures for the production system, as this
will only contain a single micro-architecture for each HWAcc. This
would not jeopardize the quality of the results as the architecture
of CSoCs are exactly the same.
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