arXiv:1811.06011v1 [quant-ph] 14 Nov 2018

Faster manipulation of large quantum circuits
using wire label reference diagrams

Alexandru Paler!?, Austin G. Fowler?, Robert Wille?

! Linz Institute of Technology, Johannes Kepler University Linz, Austria
2 Institute for Integrated Circuits, Johannes Kepler University Linz, Austria
3 Google Inc., Santa Barbara, USA

E-mail: alexandru.paler@jku.at

Abstract. Large scale quantum computing is highly anticipated, and quantum
circuit design automation needs to keep up with the transition from small scale to
large scale problems. Methods to support fast quantum circuit manipulations (e.g. gate
replacement, wire reordering, etc.) or specific circuit analysis operations have not been
considered important and have been often implemented in a naive manner thus far.
For example, quantum circuits are usually represented in term of one-dimensional
gate lists or as directed acyclic graphs. Although implementations for quantum
circuit manipulations are often only of polynomial complexity, the sheer number of
possibilities to consider with increasing scales of quantum computations make these
representations highly inefficient — constituting a serious bottleneck. At the same time,
quantum circuits have structural characteristics, which allow for more specific and
faster approaches. This work utilises these characteristics by introducing a dedicated
representation for large quantum circuits, namely wire label reference diagrams. We
apply the representation to a set of very common circuit transformations, and develop
corresponding solutions which achieve orders of magnitude performance improvements
for circuits which include up to 80 000 qubits and 200 000 gates. The implementation
of the proposed method is available online.

1. Introduction

Quantum circuits are gradually reaching a point of industrial relevance [1]. Current
efforts towards building a large scale fault-tolerant quantum computer are of a hardware
nature, where the integration of a large number of qubits is pursued. However, software
should stay in line with potential hardware developments. A large scale computer
will execute large scale computations expressed as fault-tolerant quantum circuits
protected by quantum error correcting codes. Fault-tolerance increases the amount of
computational resources required to execute the computation. As a result, the quantum
circuits operate on a very high amount of qubits and include large numbers of quantum
gates. Consequently, the design automation of corresponding circuits is gaining more
and more attention.

Faster manipulation of large quantum circuits using wire label reference diagrams 2

In order to ease the design of quantum circuits, various methods for design
automation were proposed in the past, including issues of:

e synthesis, i.e. generating initial circuit structures representing the desired quantum
functionality (e.g. [2, B 4], B]),

e optimisation, i.e. improving the resulting circuit structure with respect to different
(often complementary) objectives such as gate costs (e.g. |2, [6]), number of qubits
(e.g. |7, B]), or more dedicated objectives such as ensuring nearest neighbour
compliance (e.g. [9, 10]), or

e decomposition/technology mapping, i.e. mapping a quantum circuit description
e.g. composed of arbitrary /high level gate libraries to a circuit structure composed of
the actually supported elementary operations (e.g. [11} 12} 13]) or a circuit structure
following certain schemes, such as the fault-tolerant ICM form (e.g. [14]).

1.1. Motivation

Large scale quantum circuits are becoming state-of-the-art benchmarks for the
evaluation of design automation methods scalability. Such circuits need to be quantum
error-corrected, and the surface code [15] requires rewriting arbitrary circuits into a
specific fault-tolerant form. In practice, such large fault-tolerant quantum circuits will
be dynamically synthesised into assemblies similar to the one from Fig. [1}

The data structures used by the design automation tools become increasingly
important. Some tools express quantum circuits as gate lists [16], interaction graphs [17]
or assembly languages similar to QASM [I§]. Furthermore, many if not most of the
underlying design automation methods rely on rewriting circuit structures (manipulating
the circuit gates), as well as reordering (manipulating the position of qubits/wires).
More precisely:

e Rewriting is a quantum circuit manipulation in which certain gate sequences are
replaced by other functionally equivalent gate sequences (e.g. in order to reduce the
costs). Rewriting is e.g. applied in [5] [19].

e Reordering is a quantum circuit manipulation where the order of a circuit’s wires
is changed (e.g. in order to make a quantum circuit nearest neighbour compliant).
It does not influence the functionality of the circuit. Reordering is e.g. applied
in |10} 20].

Since both operations come with a polynomial complexity, naive implementations
of the corresponding rewriting and reordering schemes have been sufficient thus far.
Moreover, circuit manipulations are required to maintain the initial circuit’s operations
partial ordering: some operations could be allowed to execute in parallel. However, the
sheer number of possibilities to consider make these implementations highly inefficient
— constituting a serious bottleneck.

In this work we investigate the actual computational complexity of existing state-
of-the-art quantum circuit manipulation with a particular focus on rewriting and

Faster manipulation of large quantum circuits using wire label reference diagrams 3

3
g

5
hardware A
o
3
o

Figure 1. A synthesised assembly of topological structures protected by the surface
code [I5]. The assembly corresponds to the ICM version of a single Toffoli gate.
The green and yellow boxes represent input state preparations. The 3D volume of
the represented structure is an indication of the computational resources required for
executing the circuit.

reordering. It should be noted, that manipulation refers to the classically executed
design procedures, and not the simulation or execution of the circuits. We observe
that — despite the polynomial complexity in theory — existing solutions require rather
non-negligible classical computational efforts. With increasing scales of quantum
computations, as well as corresponding quantum circuits, this becomes a bottleneck for
various design steps. As a consequence, alternative methods for rewriting and reordering
are required.

The basic idea presented in this work is to employ diagram-like structures
to reduce the computational complexity of updating/propagating structural changes
(manipulations) in the circuit. Empiric evaluation results show that speed-ups of orders
of magnitude (i.e. more than 1000x) are possible by using the proposed methods. This
means that the same circuit design steps can be executed a thousand times faster
compared to the naive state-of-the-art implementations.

Faster manipulation of large quantum circuits using wire label reference diagrams 4

+) {H} c) —— c1) —9—
t) —— |c2) —o—
t) ——

(a) (b) (c)

Figure 2. Circuit examples. The e symbol indicates control qubits, and @ target
qubits: a) a single qubit circuit having the input initialised to |4), operated by a gate
H and the qubit is finally measured; b) the CNOT gate; ¢) the Toffoli gate. Qubit
initialisation and measurement were left out in circuits b-c).

1.2. Quantum circuits

In order to keep this paper self-contained, the quantum circuit formalism is briefly
reviewed. This section covers the elements of the fault-tolerant circuits used in this
work.

Quantum computations have a reversible formulation, meaning that the inputs
could be computed from the outputs by applying the circuit backwards. This is possible
because (1) quantum circuit gates have an equal number of inputs and outputs and
(2) gates implement a specific type of operation. Computational reversibility is lost
when quantum measurements are included in the quantum circuit. Measurements are
used to control the computation (in the measurement based computational model), to
control the error-correction mechanisms (e.g. for computing error syndromes) or to read
computational results out.

Classical Boolean circuits can be made reversible by using gates implementing
bijective Boolean functions, and having an equal number of inputs and outputs as
well [12], 21]. Classical reversible circuits do not have the computational power of their
quantum counterparts, but are described using the same circuit formalism and often
serve as initial blueprint [2] 3, [4] [5].

A quantum circuit is a sequence of operations applied to a set of qubits. The
circuit is executed by applying a gate list: an ordered set of operations, which are
generally written from left to right. A time axis running left-to-right can be linked
to any quantum circuit, so that each circuit operation can be identified at a certain
relative point in time. Inputs are on the left and outputs on the right. Fig. [2illustrates
corresponding examples.

A quantum circuit includes three types of operations: (1) qubit initialisation;
(2) quantum gates which operate on qubits; (3) qubit measurement.

In general, wire and qubit are used interchangeably, but it is possible to reuse the
same wire for multiple qubits (e.g. Section. This distinction will become important
in the following sections.

A circuit’s execution starts with qubit initialisation. Particularly in the context
of practical large scale fault-tolerant quantum computation, qubits are initialised with

states [0), [1), [+) = J5(10) + [1)), [Y) = Z(10) +i[1)) and |4) = 5]0) + e™/4|1)).

Faster manipulation of large quantum circuits using wire label reference diagrams)

Qubit states are manipulated by quantum gates, which operate on single or multiple
qubits. Quantum gates are chosen from a universal gate set sufficient for approximating
any quantum computation with arbitrary precision. Currently, the Clifford+7T gate set
receives a lot of attention, because there are known methods to implement it fault-
tolerantly. This set includes the CNOT gate (Fig.) Boolean reversible circuits are
generally expressed using only Toffoli [I2] gates (Fig. 2k). The Toffoli gate is a 3-qubit
gate applying the NOT operation on the target ¢ if both control qubits ¢y, ¢y are |1).

Quantum measurement is the last operation applied to a qubit. The standard
measurement, referred to as a Z-basis measurement, measures if the qubit is in the
|0) or |1) state, collapsing any superposition inconsistent with the measurement result.
Another type of measurement is an X-basis measurement, which measures if the qubit
is in the |4) = % (|0) + |1)) state or the |—) = % (|0) — |1)) state.

2. Methods

Rewriting and reordering represent established methods frequently applied in the design
of quantum circuits. The first part of this section offers a high level perspective and
illustrates the methods on circuit examples. The second part of the section introduces
the proposed solutions for speeding up these circuit manipulations.

It is envisioned that the first reliable quantum computers will be based on
surface quantum error-correcting codes (QECCs) [22], and for practical reasons, this
work focuses on the design automation of large scale fault-tolerant quantum circuits
compatible with such QECCs. The following examples are mostly based on a circuit form
called ICM (Initialisations, CNOTs and Measurements) [I4]. Arbitrary quantum circuits
should, before being executed and if surface QECCs are to be used, be compiled into
this form. Such circuits are universal and include CNOT gates and all the initialisations
and measurements presented in Section [[.2] The methods in this section are applicable
to other types of circuits too, but the focus is on ICM because of its structural simplicity
and ease of illustration.

2.1. High level perspective

Quantum circuit manipulations are not used only for compiling equivalent forms of a
circuit, but also for various circuit optimisations. Quantum circuit optimisation’s task
is to minimise a cost function which can take different forms ranging from number of
gates [2, 6], number of wires |7, [§], number of SWAP gates required to achieve linear
nearest neighbour interactions [9, [10] or the space-time volume necessary to execute the
fault-tolerant version of the circuit [23].

The space-time cost of a quantum circuit continues to receive considerable attention
[23, 24], because it expresses the minimum computational requirements a quantum
computer would need in order to execute the circuit. The number of wires is an
indication of the space (hardware) requirements, and the number of gates (circuit

Faster manipulation of large quantum circuits using wire label reference diagrams 6

depth) an expression of an execution’s time cost. Mapping a quantum circuit to distinct

quantum computing architectures will result in different cost models, but the analogy
will still hold.

2.1.1. Rewrite. Rewriting can be applied to optimise circuits without changing the
used gate set (e.g. replace a CNOT gate sequence with a functionally equivalent
one). It is also used to transform (compile) a circuit from one universal gate set
into another. Arbitrary quantum circuits can be expressed using the Clifford+7 gate
set after decomposing each gate from the initial gate list into a Clifford+T sequence
(e.g. decomposing an arbitrary single qubit Z axis rotation [25]).

Rewriting is used also, for example, to decompose the Toffoli gate into Clifford+7T
gates (e.g. [26]). There are multiple equivalent decompositions: some use ancillae (e.g.
[26]), while others do not (e.g. [12]). For the purpose of the following discussion, rewrites
introducing ancillae are of interest, because ancillae are used as temporary workbenches
and their usage can be optimised (see following section).

Furthermore, rewriting is used for the compilation of ICM circuits, too, by further
decomposing Clifford+7" gates into ICM primitives.

Example 1. A two qubit quantum circuit is rewritten in ICM form (see Fig. [3). The
initial gate list is [h 0, cnot 0 1]. Certain classes of QECCs cannot implement the
Hadamard gate (denoted by h) directly, and the gate is decomposed into a sequence,
such that the resulting gate list is [p 0, v 0, p 0, cnot 0 1], where p is the square root
of the Z gate, and v is the square root of the X gate. Both the p and v gate are
implemented through teleportation in ICM. Therefore, each instance is replaced by an
ancilla initialised into a specific state, a CNOT gate and a single qubit measurement.
After using ancilla initialisation (init) and the measurement (meas), the first replacement
will result in the gate list [init anc, cnot 0 anc, meas 0, v anc, p anc, cnot anc 1|, where
anc is the identifier of the newly introduced ancilla.

0A4Hf—— —PJHVIHPf4— ————iM
= = anc —4 P

Figure 3. Circuit rewrite example: A Bell pair construction circuit is iteratively
rewritten by decomposing first the H gate into a sequence of three gates. One of the
resulting gates (the first P gate) is rewritten using a teleportation, such that a CNOT
gate and an ancilla are included in the circuit. The circuit is not fully ICM at this
point. For this the remaining V and P gates have to be decomposed, too.

2.1.2. Reordering and reachability analysis. Various quantum circuit optimisation
tasks are related to reordering qubits. Moreover, qubits can be ordered in space or
in time. Time optimisation focused on achieving an efficient linear nearest neighbour
interaction, while space optimisation is used to reduce the total number of wires

Faster manipulation of large quantum circuits using wire label reference diagrams 7

(hardware). An example of the latter is wire recycling [§], where multiple qubits are
placed on the same quantum circuit wire. This reflects a temporal ordering between the
circuit’s qubits (e.g. Fig. [d). Space and time reordering of qubits are performed after
analysing the circuit’s structure.

lq0) —~—I lq0) —¢—I lgo) —e—I lg2) ——
lq1) lq1) lq1) —&
|go) ———| lg2) —&—|

(a) (b) (c)

Figure 4. Wire recycling example: three wires, used for three qubits, are reduced to
only two wires holding the same qubits, but the wires are ordered differently in time
[8]. The difference between (a) and (b) is that the three wires have a different time
ordering. In (b) the third wire could be removed, because |g2) is used only after |qo) is
measured. Thus, the two qubit can share the same wire as shown in (c). The temporal
ordering in (b) and (c) is the same.

In the case of recycling, a reachability analysis is performed. The analysis
determines which qubit measurements (outputs) are reached from each qubit
initialisation (inputs). Inputs, from which a particular output is not reached, can be
placed in the circuit after that output. This means, that the initialisations can be placed
on the same wire after the measurement, because those initialisations do not influence
the preceding measurement.

0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1
-)))

2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

Figure 5. Reachability analysis example: A four qubit circuit consisting of three
CNOT gates, and the four results of the reachability analysis starting from each input.

Example 2. Consider a four qubit quantum circuit consisting of three CNOT gates
structured as [init 0...3, cnot 0 1, cnot 1 2, cnot 2 3, meas 0...3] (see Fig. [5). The
initialisation of qubits 0 and 1 has the potential to influence the outputs of qubits 0, 1, 2
and 3. Qubit 2 initialisation reaches the outputs of qubits 1,2 and 3. The initialisation
of qubit 3 reaches only the outputs of qubits 2 and 3. The structure of the circuit was
considered fixed, such that gates are not commuted. Commuting gates could generate
different sets of reached outputs.

The previous reachability analysis shows that, for example, qubit 2 initialisation
could be performed after the measurement of qubit 0. As a result, if the initial circuit
operates on four wires (0...3) each occupied by the four qubits (0...3), after a first
recycling round wire 0 will be used by both qubit 0 and qubit 2.

Recycling qubit 0 and 2 (see Fig. @ on the same wire will result in the gate list
[init 0, cnot 0 1, meas 0, init 1 ...3, cnot 1 0, cnot 0 3, meas 0,1,3]. Having recycled

Faster manipulation of large quantum circuits using wire label reference diagrams 8

wire 0, all the gates have to reference the new wire (0) instead of the old one (2). For
this reason, cnot 1 2 becomes cnot 1 0, and cnot 2 3 becomes cnot 0 3, while meas 2
becomes meas 0.

Figure 6. Wire recycling example: A four qubit circuit consisting of three CNOT
gates has wires 0 and 2 recycled. The resulting circuit has three wires. After recycling
and updating the references (2 is updated to 0), the circuit operates on the wires 0, 1
and 3.

2.1.3. Rewrite vs. Reorder - When ancillae are costly to manipulate There are the
two scenarios regarding the structure of a quantum circuit: a) gates are ordered, but
wires not; b) both gates and wires are ordered. Simultaneously, the following distinction
between rewriting and reordering has to be noted: rewriting has the potential to change
both the number of gates and qubits/wires of a circuit, while reordering does not
influence the number of qubits and gates. Reordering introduces/changes the temporal
ordering of the qubits, and it can lead to changes in the number of wires (as seen in
wire recycling).

There are two rewrite situations: either ancilla qubits (wires) are introduced into
the circuit, or not. The first situation may result in slow manipulations, because wire
labels may need to be updated. The latter is not so complex. In practice, ancillae are
introduced when expressing a gate through an equivalent sub-circuit (e.g. ICM and
Toffoli decompositions in Section . For the ICM case, fault-tolerant single qubit
gates are implemented through teleportation mechanisms which require at least a single
ancilla, the use of single qubit measurement, single qubit initialisation, and CNOT gates.
Introducing a single ancilla is equivalent to splitting a wire in two.

Reordering wires is, in certain cases, the inverse operation of rewriting where
ancillae are introduced: wires are joined, meaning that the same wire is reused by
multiple qubits. This happens during wire recycling, which is motivated by the fact that
the hardware requirements of a large scale quantum circuit can be reduced by reusing the
same wire for multiple qubits. Nevertheless, qubit reordering can affect the number of
SWAP gates required to execute the circuit on quantum computer architectures (chips)
with limited connectivity.

In conclusion, rewrite may split an existing wire into two distinct wires, whereas
recycling joins two wires into a single one.

2.1.4. Random access manipulations. There is a generally accepted workflow of how
quantum circuits are manipulated. Rewrites are the first to be applied in order to
transform the input circuit into a gate set compatible with the underlying quantum

Faster manipulation of large quantum circuits using wire label reference diagrams 9

computing architecture. Reorderings are used for layout optimisation of the resulting
rewritten circuits. Therefore, it is assumed that the rewrites and reorderings are not
applied randomly (in the sense of RAM, and not stochasticity).

This work argues that design automation tools should be able to apply
manipulation, irrespective of their types, randomly. Circuit compilation, optimisation
and execution will not form a linear workflow (one follows the other) but a circular
one (execution results will influence the next compilation and optimisation). The
circular workflow may be applied in an online or offline manner. The first appears
when computations are actually executed on real quantum computers. The latter exists
when quantum circuits are designed before being executed.

The online circular workflow will be used within the control software of large
scale quantum computers. This workflow requires: (1) random access to the quantum
circuit being executed, (2) eliminating unnecessary updates to the input circuit. The
requirements are discussed using a scenario which imagines a situation where gates can
be conditionally inserted into the gate list but can’t be run directly, because they need
to be compiled (as shown in the following).

A quantum computation’s execution starts from a non-fault-tolerant Clifford+T
circuit. The first step is to compile the input circuit to a fault-tolerant circuit, which
consists of QECC structures (e.g. surface code). However, even though the circuit is
error-corrected and fault-tolerant, the execution of certain gates is not deterministic. For
example, this is the case of the T/TT gates which may need the corrective application
of S gates. There are two possibilities: (1) either the S gates are always compiled
into the gate list before executing the circuit, but applied only when needed (simple
situation), or (2) the gates are dynamically inserted into the gate list each time they
are required (complex situation). The first option, compared to the latter, is more
expensive in terms of computational resources after the error corrected quantum ciruits
are compiled. Resource efficiency is one of the most important aspects during fault-
tolerant circuit compilation, such that the complex situation is encountered in practice.

The online circular workflow includes a feedback loop between quantum hardware
and the input non-fault-tolerant Clifford+7" circuit. Quantum computation is halted
whenever non-deterministic T/T" gate performs the undesired operation (determined
based on signals received from the hardware), and the necessary S correction gate is
introduced into the gate list of the input Clifford+7 circuit. The workflow’s complexity
increases additionally if quantum circuit optimisations are dynamically performed based
on the newly inserted correction gates. Circuit execution uses a linear traversal of the
initial gate list and gate corrections are inserted into the list right after the currently
executed gate, but before any other gate that will be executed. However, the control
software cannot execute correction gates directly, because the corrections also need to
be compiled and optimised into QECC structures.

A data structure allowing random access and lazy updates is useful in the online
workflow, because: (1) gate insertions can influence the next gates from the list (gate
type, wires operated on), and those gates have to be easily accessed instead of iterating

Faster manipulation of large quantum circuits using wire label reference diagrams 10

each time to the end of the gate list, (2) multiple updates may be unnecessary (e.g. the
same gate is updated to operate on wire wl, afterwards on wire w2 etc. and until this
gate is executed the gate operates on wire wn).

The offline circular workflow is mostly related to quantum circuit optimisation,
where the goal is to use as few resources as possible to implement a given quantum
computation. Realistically, brute force approaches do not scale for large circuits, such
that heuristics are the methods of choice. Heuristics, as reviewed for example in [2],
include transformation rules and template-based optimisation, which operate locally
on the circuit. More specifically there are heuristics which select a subcircuit and
apply various optimisation methods to it. It can happen that gate optimisations are
followed by methods which add additional wires (qubits) for optimisation purposes etc.
A heuristic works in multiple passes (may include also a few backtracking steps when
modelled as a search problem [2]).

The offline circular workflow takes an input quantum circuit and iteratively
transforms into a more resource efficient quantum circuit. Multiple linear traversals
(passes) of the circuit are repeated and circuit manipulations can be organised into a
hierarchical data structure: the number of the pass is an indication of the hierarchy
level (e.g. a tree where the first pass is at the highest level, and last pass at the lowest
level/leafs). Such a data structure is used to collect multiple distinct manipulations
into a single final manipulation, which is applied in a lazy manner to the input circuit.
The advantage is that unnecessary circuit updates are eliminated. The disadvantage is
that a random access model would be necessary, because: (1) a single update operation
abstracts a sequence of hierarchically organised updates which were not applied, (2) the
single update has to be easily located in the input circuit, (3) it cannot be assumed that
updates are performed respecting the order of the input circuit, (4) it is faster to traverse
the hierarchical updates data structure linearly and to apply the collected updates
randomly to the circuit, than to traverse the input circuit linearly and to determine
on a gate-by-gate basis which collected updates are necessary.

Consequently, in order to speed circuit manipulations, a novel circuit manipulation
data structure has a hierarchical organisation and supports interleaved random access
manipulations of quantum circuits.

2.1.5. Complexity - The naive scenario Reordering and rewriting do not have a
high computational complexity. For a circuit of ¢ qubits and ¢ gates, the naive
implementation of any manipulation will have a worst-case computational complexity
of O(qg): after each manipulation the entire circuit is updated.

Not all circuit manipulations update wire labels from the gates, such as the
Hadamard decomposition from the first example, and the Toffoli gate decomposition
from [II]. However, in the worst case the manipulation of all the gates from a list is
O(qg?): each gate could trigger updates in all other g gates (therefore ¢g?), which in the
worst case operate on the maximum number of wires ¢ (resulting ¢g?).

Although the update complexity is polynomial, the execution times are very slow

Faster manipulation of large quantum circuits using wire label reference diagrams 11

when manipulations are implemented naively (as evaluated by experimental evaluations
summarised later in Section . In the following, we call naive methods the simplistic
implementation of the worst case manipulation scenario: update all the gates after
each manipulation which affects the wires. The issue is that the naive methods do
not recognise if the same update is performed repeatedly for multiple gates, or if some
updates are not necessary because they will be made obsolete by a future manipulation.

This motivates more efficient and elaborated methods for executing quantum circuit
manipulations. The focus will be on rewriting and reordering, which are introduced
in the following sections, because these are necessary for preparing large quantum
circuits. The herein presented methods will offer significant speed-ups, because tree
like structures (wire label reference diagrams) are used to represent structural decisions
taken at each circuit gate (cf. if-then-else). Each circuit manipulation inserts a decision
into the diagram: how is the new wire related to the pre-manipulation structure?

2.2. Wire label reference diagrams

Quantum circuits, as used in the design automation community, consider wire labels an
indication of ordering, and not a reference. This differs from the mathematical formalism
underlying quantum circuits, where |qoq1¢2) and |g1goge) are conceptually the same state
but with reordered qubits.

Faster circuit manipulation can be achieved by treating qubit labels as references
and not order indicators.

From a symbolic perspective, the gates [(@ C NOT] 5 can be applied to both |goq1¢2)
and |q1qog2), because both the gates (e.g. CNOT) and the qubits use references and not
numbers expressing a strict order (e.g. position in a list). In other words, for example,
the gate h 1 is not the application of the Hadamard gate on the first qubit, but on the
qubit having the label 1.

A circuit where no manipulations were performed consists of a gate list, which is
an ordered sequence of operations applied to qubits.

Definition 1. A gate identifier indicates the position of the gate in the ordered gate
list.

Integer numbers are the simplest implementation of gate identifiers (indicated in
this work by the prefix #). For example, in the ordered gate list [p,v,t] the gates are
identified by their order number: the gate p by #1, the gate v by #2, and the gate
t by #3. Fig. [7] illustrates the identifiers in a single-qubit circuit. A general type of
identifiers is presented in Section

#0 #t #9
first {Go}— -+ ~[Gi}- -+ —{Ga}— first

Figure 7. A single wire circuit consisting of g + 1 arbitrary single qubit gates. Gate
identifiers are represented above the gates.

Faster manipulation of large quantum circuits using wire label reference diagrams 12

Definition 2. A wire identifier is the label (name) associated to the qubit, where a
label does not indicate any existing ordering (e.g. between qubits).

Each wire is a distinct object, thus not related in any way to the other wires.
Returning to the state |gog1q2), the three qubits are identified by their names qg, ¢; and
q3. The subscripts do not indicate an ordering, e.g. the 2 in ¢, is just part of the name,
and does mean that this particular qubit is the second one in any list. At this point, it
is possible to define wire label references.

Definition 3. A wire label reference is an indicator to a wire identifier.

Consequently, from a data modelling perspective, each circuit operation has: (1) a
specific identifier, and (2) a list of references to the wires it operates on. Initialisations,
measurements and gates are circuit operations and are, consequently, modelled similarly.

Definition 4. A wire label reference diagram (e.g. Fig. is a tree with nodes
representing label references. Nodes and edges are added to the diagram each time
a manipulation affects the wires (split or joined).

wire0
threshold (#gate0)
#gatex < #gate0 / \#gatex > #gate0
wire1 wire2
threshold (#gate1) threshold (#gate2)

SN

Figure 8. A wire label reference diagram.

Definition 5. A diagram node (e.g. there are three in Fig. 8)) has at most two children,
and contains a label reference (e.g. wire0) and a threshold value (e.g. #gate0).

Definition 6. The threshold value is a gate identifier used to determine at which
position in the circuit there is a decision to be taken about which wire to use.

The per node threshold value is related to the gate identifiers and their
interpretation as indicators of the operation ordering. For a circuit represented
as a sequence of operations Gy,...,Gy,... Gy, the threshold ¢ indicates that after
manipulating operation ¢, the ones preceding t will reference a different wire than the
gates succeeding t.

Definition 7. Diagram traversals are functions of gate identifiers, and are used for
updating the label references associated with each gate.

The application of such diagrams is exemplified using manipulations representative
for large scale fault-tolerant quantum circuits: ICM rewriting and ICM recycling. The
construction and usage of the diagrams will be introduced next.

Faster manipulation of large quantum circuits using wire label reference diagrams 13

2.2.1. Rewrite: ancillae are introduced. The effect of rewrites on a diagram can be
visualised starting from a circuit having a single wire and a (¢ + 1)-long sequence of
arbitrary single qubit gates G. The initial diagram will include a single node.

Rewriting gate G, splits the initial wire (called first) into two distinct wires (first’
and second). The wire label diagram resulting after the rewrite is presented in Fig. |§|
The root node of the figure has the threshold set to #t. The threshold property of the
diagram leaf nodes (first’ and second) is not set (n/a).

The new sub-wires are associated to two new diagram nodes appended as children
of the initial node. The children are called left node, e.g. first’ in Fig.[9] and right node,
e.g. second in Fig.[9] The circuit operations before ¢ will need to reference the left node,
and the operations after ¢ the right node.

The rewrite operation inserts for the new gates the correct wire label references
automatically. However, all other gates will require a reference update. From the
initial, the preceding (with identifiers smaller than #t-1) and succeeding (identifiers
higher than #t-+1) gates still reference the wire first, whose threshold value is set to #t.

first
threshold (#t)

first Rewrite operation G
threshold (n/a) R #O .. #(t-1) <#t #(tH1) ... #g> #t

first' second
threshold (n/a) threshold (n/a)

Figure 9. The initial circuit consists of a single wire. After rewriting an operation
the diagram is updated with two nodes.

If one of the sub-wires (e.g. child nodes first’ or second) is split in a next step,
then their threshold parameter is configured to the gate number that generated the
split. The manner in which new operation identifiers are introduced influences future
threshold values. These details are discussed in Sections [2.2.5

2.2.2. Reordering: wires are reduced (recycled). A recycling example is illustrated in
Fig. , where an initialisation (operating on the qubit labelled as wireinit) can be placed
on the same wire after a measurement (labelled as wiremeas). The reachability analysis
(more details in Section indicated that wiremeas is not reached from wireinit,
such that the two wires are recycled.

It could happen that in the original gate list, the initialisation operation is numbered
#m, and the measurement #n, such that the circuit diagram will represent the
initialisation earlier than the measurement (#m < #n). However, after recycling the
new order will be such that #m > #n, because the initialisation is placed after the
measurement. This is possible because of the result of the reachability analysis: the
initialisation does not influence the state measured. This shows the partial ordering
existing between the circuit operations: in fact the initialisation and the measurement
could have been executed in parallel, but in order to save hardware resources are
executed sequentially and share the same wire.

Faster manipulation of large quantum circuits using wire label reference diagrams 14

wiremeas | Meas

#n
Init |reint wiremeas| Meas |___| Init [wireinit
#m o A
a) b)

Figure 10. Recycling example: a) the initialisation and measurements operate on
different wires; b) initialisation and measurement are on the same wire.

wireinit
threshold (-1)

#gatex > -1

wiremeas
threshold (#gate)

Figure 11. Wire label reference diagram resulting after the recycling from Fig.

The wire label reference diagram resulting after the recycling example from Fig.
is shown in Fig. [1I] All the gates that used wireinit (the wire of the initialisation)
will reference the wire of the measurement (wiremeas). The wiremeas diagram node
is connected as a right child of the wireinit node: the reference of the measurement
wire is reused (recycled) for initialisation. The gates following the initialisation will
have to update their label reference (when needed), and the update process is a search
controlled by the threshold node parameter. Because all gates have an identifier higher
than -1, the threshold of the initialisation wire can be safely set to —1: all gates will
automatically receive the updated reference.

2.2.83. Constructing and using the diagrams. Wire label reference diagrams circumvent
the naive update of wire labels. In a circuit with g gates, each manipulation is generally
applied on a single gate, but its effect on the wire labels has to be propagated to the
other g — 1 gates. Manipulating an entire circuit requires in the worst case g(g — 1)
operation updates.

By using wire label diagrams, each operation can infer its wire labels only when
needed. This saves a large number of unnecessary updates, because eager label
updates are replaced by lazy updates: the most up to date wire labels are determined
before manipulations are performed. The circuit’s structural changes are stored in
the diagram, a binary tree, which is iteratively updated after each circuit’s structural
change. If multiple manipulations have affected the wire labels of a certain gate, the
gate determines its most up to date wire label through a tree search.

The following is an illustration of Example [I] the construction of a Bell pair. Two
rounds of rewrites are performed, followed by a recycling round. Operation identifiers
are integers (a simplification of the solution proposed in Section , and updates are

Faster manipulation of large quantum circuits using wire label reference diagrams 15

forced after each round.

Example 3. The initial circuit consists of two gates (numbered 1 and 2) and two wires
labelled wire0 and wireB in the diagram. The first rewrite replaces the H gate with the
P,V,P sequence. Being the results of a rewrite, the three gates inherit the identifier 1.
The reference diagram is unchanged. The first round of rewrites is finished, all (if any)
gates are updating their label references and the gate list is renumbered.

The second rewrite round replaces the V and P gates with equivalent teleportation-
based sub-circuits. These are in the ICM form, and use the operations described in
Section [I.2] The three rewrites will generate nine obligatory wire updates: there are
three elements in each ICM sub-circuit, and their wire is determined after placing them
in the circuit.

The first rewrite splits wire0 into wirel and wire2. For example, the Z basis
measurement is on wirel, and the |Y) initialisation on wire2. If no diagram would be
used (and labels are order identifiers), because wire2 is introduced between wirel and
wireB, the operations V and P are moved from the first to the second wire. Therefore,
beside updating the newly introduced ICM sequence, in a naive scenario four wires would
be updated (two in the remaining V and P, and two in the last CNOT). Similarly, the
second rewrite splits wire2 into wire3 and wire4. If eager updates are performed, the last
CNOT would generate two additional updates. The third and last rewrite decomposes
the V gate: wire3 is split into wireb5 and wire6. The CNOTs numbered 3 and 4, an
initialisation and a measurement (both numbered 3) need to be updated. Once more,
six additional updates are necessary.

Besides the wire updates incurred by the decompositions would require 4-+2-+6=12
additional updates. The fourth CNOT (the last one) would be updated three times,
because the position of wireB is constantly changed after each rewrite. Such updates
are unnecessary if the diagram is used: it can be seen that wireB is not affected by any
of the rewrites. The speed-up presented in the Results section stems from eliminating
unnecessary updates.

Example 4. (Continuation of the previous one) The potential unnecessary updates
can be illustrated also by the recycling round. The first recycle joins wirel and wire6.
Thus, all operations affecting wire6, wireb, wire4 and wireB would need to be updated.
Unnecessary updates would be generated also after the second recycle, when wireb and
wire4 are joined.

Although this example did not illustrate this, diagrams can be used in a random
access mode when rewrites and reorderings are performed in an arbitrary sequence. This
usage would require more general gate identifiers (cf. Section [2.2.5]).

2.2.4. Reference updates. Fach quantum gate will have to update its list of label
references. The update will take place either before the operation is manipulated or, at
the latest, when the entire circuit manipulation is finished. The update process is based
on a diagram traversal controlled by the threshold values stored per node. This process

Faster manipulation of large quantum circuits using wire label reference diagrams 16

is analogue to a tree search: a key value is required for finding a specific value in the
tree. Wire labels are the sought values. The keys for searching label references in the
diagram are the operation identifiers.

Wire labels are updated by traversing the diagram from the per gate referenced
nodes towards the correct diagram leaf node. Assume that a gate, which references
wire(, identified as #gatex, wants to determine the actual wire it is operating on. The
gate queries the label reference (assume the top node from Fig. , by sending its number
(identifier). A diagram traversal is started and, during this process, the nodes are chosen
based on how the per node thresholds compare to the #gatex value. If the threshold
is higher than #gatex (e.g. #gate0 > #gatex), the left child is chosen. Otherwise, the
right child is chosen (#gate0 < #gatex). The search ends when the reached node has
no threshold value set (n/a), or no children. For Fig.[§] the search stops if the thresholds
#gatel and #gate2 would equal n/a.

Diagram searches do not have a constant time cost, but one that depends on the
length of the path between the node referenced by an operation and the most up-to-date
reference node. However, this cost is smaller than the amount of unnecessary updates.

2.2.5. Identifiers of rewritten operations. FEach gate identifier is related to the position
of the gate in the circuit’s ordered gate list. It was mentioned that it is possible to
consider these identifiers as numbers (integers). However, there are disadvantages by
doing this. This section introduces a general format of the identifiers, but in order to
motivate it the issue of using numbers is first discussed.

Rewrite operations, which introduce ancilla, introduce operations into the circuit,
too. The gate list is already ordered and the operations are numbered. It would seem
that the entire circuit’s operation sequence and diagram threshold node values need to
be updated. This is not always necessary, because the new operations can take the
number of the rewritten gate. This is due to the way the diagrams are used, and is
shown in the following.

Assume once more that a single wire circuit is described by the g + 1 operations
Go,...,Gy,... G, (Fig. , and operation t is rewritten by a v + 1-long sequence
Ry, ..., Ryy. After the rewrite the circuit will be Gy, ..., Ry, ..., Ryw, ... G4 All G
operations will still hold references to the initial wire node, whose threshold is set to t.
Let this wire node be denoted by first. The circuit will consist of two wires, and the R
operations will reference, by construction, one or both children of first.

#0 #t #t #g
first e T it
second —{ = second

Figure 12. Gate G, is rewritten using a sequence of gates called R. The wire first is
split into first’ and second.

It is possible to use the t identifier for all the R operations, because all the G

Faster manipulation of large quantum circuits using wire label reference diagrams 17

operations have an identifier different from ¢ (either larger or smaller, but not equal).
As a result, if one of the G-operations would update its references, it would point also to
one of the children of first. This shows that, after a first round of initial circuit rewrites,
the operation sequence does not need to be renumbered.

The identifier cannot be kept (e.g. ¢, in Fig. marked t') if a second round of
rewrites is performed. Consider that a second rewrite affects one of the R operations and
not the G operations (otherwise the scenario would be similar to the previous rewrite).
The operation R, is rewritten, and introduces the u+ 1-long sequence Sy, . . . , Sy, such
that the resulting circuit is Go,..., Rz0,..., Ro—1, 50, Syu, Rot1, .-, Rau, .., Gy
The wire split by this rewrite is second, one of the children of first. The circuit will have
three wires, all G operations reference the node first, all R operations the children of
first, and all the S operations children of second (e.g. third).

#0 #t #t' #t' #t #9
fz'rst/ e] ...] k...gR *first’
R:}cO thl?"d Sy()*gsyukg Iv*thﬂ“d
second’ — e — - — — second’

Figure 13. Gate R, is rewritten using a sequence of gates called S. The wire second
is split into second’ and third.

If the newly introduced operations can inherit the identifier of the original operation,
it implies that ¢ = x, because 20 = ... = xv = t. Furthermore, y0 = ... = yu =x =t.
The S operations do not need to update their label references, because by construction
they inherit correct children of the wire being split.

The updates of the R operations will use the value ¢ to compare with the node
thresholds. However, it is not clear which of the R operations are before or after R,
(thus, before or after the sequence of S gates), because all have the same identifier (¢).
For the example from Fig. it will not be clear which R gates will reference second’
or third. As a result, before the second round of rewrites the gate list needs to be
renumbered (operation identifiers recomputed - introduces unnecessary updates, which
should be avoided), or another identifier format is required.

#0 #t.0 #t.x.0 #t.x.u #t.v #g
first' e .. k...gR — first’
Ryo| third Syot— -+ —Syut—--+ —_ |-+ —{ Gy |- third
second’ —] e — — second’
Figure 14. Using sequence-based identifiers of the form nrg.nry..... nr instead of
integers.

The solution to circumventing the renumbering of the operation sequence is to use
gate identifiers of the form nrqo.nry..... nry, where nr is an operation sequence identifier
and k£ the number of rewrite rounds. The format allows unambiguous comparisons and

Faster manipulation of large quantum circuits using wire label reference diagrams 18

1 | 1 1
1 0 0 0
i S S
i T 0 0 o O
1 1 1 1
» 4G g
) I Y I
1 1
u ! IGI 1 P
1 1 1 10
t] s 7
1 I 1(}0t
S] T R IS

Figure 15. Reachability analysis example: the circuit is processed backwards from
outputs towards inputs. A bit array is initialised with ones on the position of
the corresponding wire. The arrays are updated, each time a multiple-wire gate is
encountered, by OR~ing the bit arrays of the incident wires.

resembles the sequence-based identifiers used in software versioning (e.g. version 3.1.7,
where nrg = 3, nr; = 1 and nry = 7 for k = 2). For example, if the initial circuit
has 10 operations (g + 1 = 10), t = 2 (the third operation is rewritten first), and the
R sequence has 11 operations (zv + 1 = 11), then the identifiers of the R operations
would be 2.7 for 0 < i < 11. After the second rewrite, if, for example x = 5 and the
S sequence has 7 operations (yu + 1 = 7), the identifiers of the S operations would be
2.5.7 for 0 < j < 7. If the general identifier format is not used, gate references have to
be forcefully updated after each rewrite round.

2.2.6. Reachability analysis using bit arrays. Wire recycling is executed after a
reachability analysis was performed (e.g. Example [2). For large scale circuits,
determining the sets of qubit measurements reached from each qubit initialisation can
easily require a large amount of memory. For this reason, at this point, wire labels
should not be considered references but numbers indicating a certain wire ordering.

This transition enables representing the sets of reached outputs as bits of an
array: 1 indicates that a certain wire measurement is reached. Storing the entire
reachability information requires ¢? bits for a quantum circuit of ¢ wires. Therefore,
for approximately 10° wires, about 1.25 Gbytes of memory are necessary.

The reachability analysis from Fig. [I5]is the representation of Example 2] For each
wire a bit array is initialised at all the positions with zero, and the position indicating
the current wire with one. The bit arrays are updated backwards (from outputs towards
inputs), and all the wires operated by the same gate are updated to the bit-wise OR
of their respective bit arrays. For example, after the right-most gate in Fig. [I5], the bit
arrays are 0011 = 0010/0001.

3. Results

The proposed methods based on reference diagrams were implemented in the software
framework used for the synthesis of topologically quantum error-corrected circuits
(available at github.com/alexandrupaler/tqec/).

Faster manipulation of large quantum circuits using wire label reference diagrams 19

Circuit Wires Gates NaiveT FastT ImprT ICM Wires ICM Ops NaiveR FastR ImprR
add4 10 44 0.039 0.004 9.853 304 1010 0.542 0.038 14.207
add5b 12 55 0.070 0.004 18.501 390 1297 0.980 0.055 17.808
add6 14 66 0.098 0.006 16.012 476 1584 1.613 0.077 21.015
add7 16 7 0.133 0.008 17.129 562 1871 2.318 0.102 22.740
add8 18 88 0.171 0.007 24.666 648 2158 3.217 0.129 25.018
add9 20 99 0.207 0.008 25.444 734 2445 4.201 0.159 26.442
add10 22 110 0.257 0.011 24.137 820 2732 5.696 0.192 29.712
addl1l 24 121 0.312 0.013 24.859 906 3019 6.864 0.227 30.204
add12 26 132 0.376 0.013 29.279 992 3306 8.535 0.266 32.056
addl3 28 143 0.446 0.015 29.478 1078 3593 10.870 0.307 35.394
addl4 30 154 0.511 0.015 33.913 1164 3880 12.289 0.352 34.907
addl5 32 165 0.602 0.017 34.840 1250 4167 14.526 0.399 36.385
add16 34 176 0.758 0.019 40.708 1336 4454 17.122 0.448 38.198
add17 36 187 0.796 0.020 40.007 1422 4741 19.752 0.501 39.460
add18 38 198 0.939 0.020 47.308 1508 5028 21.953 0.556 39.513
add19 40 209 1.001 0.016 62.437 1594 5315 25.346 0.617 41.112
add20 42 220 1.143 0.024 48.514 1680 5602 28.909 0.678 42.644
add100 202 1100 28.469 0.112 254.582 8560 28562 19.039
add200 402 2200 118.100 0.194 608.789 17160 57262 78.679
add300 602 3300 267.400 0.274 976.925 25760 85962 176.396
add400 802 4400 481.833 0.442 1088.953 34360 114662 314.843
add500 1002 5500 750.889 0.582 1289.897 42960 143362 502.329
add600 1202 6600 1087.130 0.702 1549.569 51560 172062 775.861
add700 1402 7700 1492.829 0.837 1783.976 60160 200762 1033.970
add800 1602 8800 1945.277 0.998 1950.002 68760 229462 1261.254
add900 1802 9900 1.017 77360 258162 1621.535
add1000 2002 11000 1.143 85960 286862 1927.034

7

o

ms M
06 %

Table 1. Evaluation results. Quantum circuit adders consisting of Wires wires
and having Gates gates are manipulated. The execution times (seconds) of the
naive (NaiveT) and the fast (FastT) ICM transformations are compared. The
transformations result in circuits consisting of ICM Wires wires and ICM Ops gates.
The improvement columns (ImprT and ImprR) indicate the speed-up achieved by the
fast manipulations.

“a000
8000
3

1000~

1200- o
T 50
7 %
T

Wires 5390 Gates

b)

Figure 16. Plots of the results generated for the Table[I]rows where data was available
(no missing entries). a) The Wires and Gates columns are on the X and Y axis, and
the time needed to transform a Clifford+T circuit into ICM is illustrated on the Z axis.
The data points for the naive and the fast transformation methods are plotted as lines
in the 3D space. The speed-up column (ImprT is not plotted.) b) The ICM Wires
and ICM Ops columns are on the X and Y axis, and the time needed to transform a
Clifford+T circuit into ICM is illustrated on the Z axis. The data points for the naive
and the fast reordering/recycling methods are plotted as lines in the 3D space. The
speed-up column (ImprR is not plotted.)

The performance achieved by using diagrams instead of naive wire label updates

was investigated using quantum addition circuits consisting entirely of Toffoli gates

[27]. Adders form the basis of arithmetic quantum algorithms, which are of particular

practical interest. Simultaneously, the Toffoli gate is the preferred building block in the

Faster manipulation of large quantum circuits using wire label reference diagrams 20

classical reversible circuit research community. A single hardware platform is known to
be able to execute Toffoli based circuits [28], but it can be assumed that their large scale
execution will be performed on universal quantum computers. Furthermore, for the time
being it is assumed that a large scale error corrected quantum computer will execute
Clifford+T" computations, which have to be decomposed into a surface code compatible
form (ICM). Therefore, the overhead of decomposing Toffoli gates, using e.g. rewrite
and reorder operations, into Clifford+7T" and ICM is benchmarked.

This evaluation approach contrasts to synthetic benchmarks using randomly
generated circuits, or benchmarks consisting of circuits formed of generalised Toffoli
gates (more than three inputs/outputs, e.g. RevKit). In order to determine the
practicality of the data structure, the latter circuits would need to be first decomposed
into three qubit Toffoli gates. Afterwards the evaluation would be similar to the one
chosen. As a result, the evaluation is executed as follows: (1) rewriting the Toffoli
gate based adders into the equivalent ICM form [14], and (2) recycling the wires of the
ICM circuits (reordered) [§]. Rewriting is used to obtain the fault-tolerant form of the
adders, and recycling to optimise them without affecting their initialisations, gate lists
or measurements. Thus, the circuits are still fault-tolerant.

The evaluation results are presented in Table [I] and Fig. [16] The execution times
of the naive recycling implementation (NaiveR) and of the fast (FastR) are compared.
The improvement columns (ImprT and ImprR) indicate the speed-up achieved by the
fast manipulations. Both the naive and the fast methods result in the same circuits,
but the methods have different execution times (expressed in seconds).

The empiric evaluations were performed on an i5 machine with 8 GB memory,
and executions longer than 2000 seconds were timed out. The results indicate that
the achieved speed-ups have the same magnitude with the number of wires of the
circuit being manipulated. For example, the add800 circuit has 1602 wires before being
rewritten in ICM, and the new rewrite method is 1950 times faster than the naive
implementation.

It should be noted that reordering (recycling) benefited not only from the wire label
diagrams, but also from the improved reachability analysis (see Sec. . The naive
implementation used standard set libraries for storing and updating the reached outputs,
whereas binary arrays are much faster.

The memory footprint is the performance bottleneck of the reachability analysis.
It is possible to reduce the footprint by using data structures optimised for bit sets (e.g.
[29]), but for this work it was considered that the current performance was sufficient. It
was possible to automatically design circuits with 10 000 qubits.

The results show that currently employed quantum circuit manipulation methods
are computationally intensive although their complexity is only polynomial. There are
sufficiently many possible improvements to achieve faster quantum circuit manipulation,
and the herein presented wire label reference diagrams improve design automation
performance.

Faster manipulation of large quantum circuits using wire label reference diagrams 21

4. Discussion

Wire label reference diagrams were motivated by wire labels being references and not
order identifiers. As illustrated by the evaluation results and discussed in the previous
example, this approach saves a lot of unnecessary updates. This achieves significant
speed-ups for large fault-tolerant quantum circuit compilation and optimisation.

4.1. Diagrammatic (global) vs. per circuit operation (local) view

It is possible to argue against the diagrammatic representation of a circuit’s structural
changes. Instead of storing wire label changes into a diagram, one could directly update
the references associated with the circuit operations. In this section we compare local
with global perspectives of the circuit and use Fig. [I7]to highlight the advantages of the
proposed diagrams.

On the one hand, such an approach is local and straightforward according to the
operation model from Section and the procedure from Fig. [§ if an operation uses
a label reference equal to wire0, depending on its identifier (#gatex), one of the new
references (wirel or wire2) is updated (written) in the reference list. No references
are updated otherwise. This approach affects circuit operations individually without
considering any other identical or similar circuit manipulations. The local approach has
some advantages because of its simplicity: updates are immediate (eager), no additional
data structure is needed (the reference diagram). Nevertheless, eager updates are time
consuming because they do not take into consideration if: a) an update is necessary; b)
memory writes are more expensive than memory reads.

On the other hand, the diagrams offer a global perspective about the circuit
manipulation results, because each node and edge indicate how sets of circuit operations
are affected. The simplest example is the diagram from Fig.[I7, where all operations with
an identifier higher than the threshold of wire0O will use the reference wire2. Therefore,
the diagram abstracts multiple updates by a single path.

Diagrams have at least two advantages. First, the updates are lazy: they are
performed only when necessary. Thus, multiple updates can be combined into a single
one that is actually performed. Second, the diagrams offer the necessary support for
update result reuse: only a first operation from a specific operation needs to call an
update, and the other operations can just reuse the update result. Reuse would employ a
per node cache-similar mechanism implemented through dictionaries: the most relevant
paths searched from that particular node are stored in the dictionary. Relevant could
mean longest, most searched etc. However, being a cache, cache coherence methods
need to be implemented. This work, and the results from Section [3], did not implement
and consider such mechanisms, because of their complexity and empiric calibration
requirements. However, the current results illustrate the speed-up potential of future
label reference diagram improvements. As a result, the global and diagrammatic
perspective of the circuit is better than the local one and is advantageous even when
implemented straightforwardly.

Faster manipulation of large quantum circuits using wire label reference diagrams

1
wireQ 2

wireB o

(wire0) (wireB)
n/a n/a

wire0 2
wireB b

(wire0) (wireB)
n/a n/a

a) | b)
wirel I—Cll—”zl
wire3 Y>323
wire4 ‘Y> D4—
W|re0 wireB e 9_
<) (n/a wlreO (wireB
wirel wire2 <) e
(n/a) (n/a) wrl‘zzl) < W|re2)
wire3 \w*ire4
(n/a) (n/a)
c) | d)
w12 wiel Bz)6 iz
. 2 NG)
wire5 ‘Y X wire5 ‘Y> ‘X
wire6 |Y) 2 ‘23 wired |Y °
wire4 ‘Y> p4— wireB é
ireB B — A
" 9_ | < W|re0)(wrlll;tzB
<1 ereo >(2 WTI‘;ZB w:\;:l)(WII'EZ)
wire wire
n/a) <) /(W|re3) (wrl‘;<;4
(()W“’:)(W[:';:“ (W|re6) (wr:;:S
wire5 wire6
/ /
n/a n/a oln
o 0 T e
wireB wr:zl)(W|re2)
/(W|re3) (er||;§4
(W|re6) (W|re5 /)1
9)

22

Figure 17. Example of using wire label reference diagrams: a) the initial circuit and

diagram; b) -

d) results after rewrite manipulations; e) - g) results after reordering

manipulations. The most up-to-date wire label node has a thicker stroke. Note that in
f) and g) the nodes wire5 and wire6 have swapped positions to simplify the resulting

diagram.

Faster manipulation of large quantum circuits using wire label reference diagrams 23

4.2. Analogies to classical circuit design automation

Wire label reference diagrams share similarities to binary decision diagrams (BDD),
which are a thoroughly investigated topic [30] in computer science. The canonical
interpretation of BDDs is related to Boolean functions and their normal forms. The
state space of an n-bit classical circuit is 2", and BDDs are used to compress losslessly
the exponential representational overhead in order to make circuit manipulations more
efficient. The compression is not often successful, but there are well documented
practical scenarios of efficient manipulations of (conventional) function representations
as well as circuits [31].

Functional representations of quantum circuits are reliant on reducing the amount
of representational redundancy. For example, quantum multiple-valued decision
diagrams (QMDDs) [32] are decision diagrams (similar to binary decision diagrams)
for representing the matrices associated to the quantum gates [12].

Wire label reference diagrams are used for decisions too, but not from an
exponentially large state space, because the search of the updated labels is a tree
traversal using also if-then-else logic. Reference diagrams diagrams, in contrast to BDDs,
do not compress the circuit’s state representational overhead, but are a structured way
of organising the results of quantum circuit manipulation. BDDs are used for functional
decisions, whereas reference diagrams for structural decisions.

The reachability analysis uses the concept of cones, which are very similar to how
it is employed in classical circuit design automation. For example, a fault cone is the
portion of a circuit whose signals are reachable by a forward trace of the circuit topology
starting at the fault site [33]. This work used a backward trace (from outputs to inputs),
which implies that the analysis is not unsimilar to the single-output cones resulting from
circuit segmentation [33].

5. Conclusion

The purpose of this work was to present the problem of large scale quantum circuit
manipulation, and to highlight the potential of straightforward improvements. Future
work will focus on a complexity analysis of the wire label reference diagrams, and on
methods to augment them for even larger circuits.

There are multiple possible improvements regarding the performance of quantum
circuit manipulation ranging from optimising the data structures for reachability
analysis to reducing the number of algorithmic steps in the manipulation procedures.
Future work will also consider fine tuning the methods.

6. Acknowledgements

AP acknowledges support through the Linz Institute of Technology project CHARON.
This work has partially been supported by the European Union through the COST
Action 1C1405.

Faster manipulation of large quantum circuits using wire label reference diagrams 24

[1]

2]

13l

4]

5]
16]
17l
18]
19]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

Masoud Mohseni, Peter Read, Hartmut Neven, Sergio Boixo, Vasil Denchev, Ryan Babbush,
Austin Fowler, Vadim Smelyanskiy, and John Martinis. Commercialize quantum technologies
in five years. Nature, 543(7644):171-174, 2017.

Mehdi Saeedi and Igor L. Markov. Synthesis and optimization of reversible circuits — a survey.
ACM Computing Surveys (CSUR), 45(2):21, 2013.

Vivek V Shende, Aditya K Prasad, Igor L. Markov, and John P Hayes. Synthesis of reversible
logic circuits. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 22(6):710-722, 2003.

Philipp Niemann, Robert Wille, and Rolf Drechsler. Efficient synthesis of quantum circuits
implementing Clifford group operations. In Asia and South Pacific Design Automation
Conference, pages 483-488, 2014.

D Michael Miller, Dmitri Maslov, and Gerhard W Dueck. A transformation based algorithm for
reversible logic synthesis. In Design Automation Conference, pages 318-323, 2003.

D. Michael Miller, Robert Wille, and Rolf Drechsler. Reducing Reversible Circuit Cost by Adding
Lines. In International Symposium on Multiple- Valued Logic, pages 217-222, 2010.

Robert Wille, Mathias Soeken, D. Michael Miller, and Rolf Drechsler. Trading off circuit lines
and gate costs in the synthesis of reversible logic. Integration, 47(2):284-294, 2014.

Alexandru Paler, Robert Wille, and Simon J Devitt. Wire recycling for quantum circuit
optimization. Physical Review A, 94(4):042337, 2016.

Yuichi Hirata, Masaki Nakanishi, Shigeru Yamashita, and Yasuhiko Nakashima. An efficient
conversion of quantum circuits to a linear nearest neighbor architecture. Quantum Information
& Computation, 11(1&2):142-166, 2011.

Robert Wille, Aaron Lye, and Rolf Drechsler. Exact Reordering of Circuit Lines for Nearest
Neighbor Quantum Architectures. IEEE Trans. on CAD of Integrated Circuits and Systems,
33(12):1818-1831, 2014.

Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVincenzo, Norman Margolus,
Peter Shor, Tycho Sleator, John A Smolin, and Harald Weinfurter. Elementary gates for
quantum computation. Physical review A, 52(5):3457, 1995.

Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information.
Cambridge university press, 2010.

Philipp Niemann, Saikat Basu, Amlan Chakrabarti, Niraj K. Jha, and Robert Wille. Synthesis of
Quantum Circuits for Dedicated Physical Machine Descriptions. In International Conference
Reversible Computation, pages 248-264, 2015.

Alexandru Paler, Ilia Polian, Kae Nemoto, and Simon J Devitt. Fault-tolerant, high-level quantum
circuits: form, compilation and description. Quantum Science and Technology, 2(2):025003,
2017.

A.G. Fowler, M. Mariantoni, J.M. Martinis, and A.N. Cleland. Surface Codes, Towards practical
large-scale quantum computation. Phys. Rev. A., 86:032324, 2012.

Mathias Soeken, Stefan Frehse, Robert Wille, and Rolf Drechsler. RevKit: A Toolkit for Reversible
Circuit Design. Multiple-Valued Logic and Soft Computing, 18(1):55-65, 2012.

Simon Anders and Hans J Briegel. Fast simulation of stabilizer circuits using a graph-state
representation. Physical Review A, 73(2):022334, 2006.

Steven Balensiefer, Lucas Kregor-Stickles, and Mark Oskin. An evaluation framework and
instruction set architecture for ion-trap based quantum micro-architectures. In ACM SIGARCH
Computer Architecture News, volume 33, pages 186-196. IEEE Computer Society, 2005.

Dmitri Maslov, Gerhard W Dueck, D Michael Miller, and Camille Negrevergne. Quantum circuit
simplification and level compaction. IFEFE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(3):436-444, 2008.

Alwin Zulehner, Stefan Gasser, and Robert Wille. Exact Global Reordering for Nearest Neighbor
Quantum Circuits Using A*. In International Conference on Reversible Computation, pages
185-201, 2017.

Faster manipulation of large quantum circuits using wire label reference diagrams 25

[21]
22]
23]
24]
[25]

[26]
27]

28]
[29]
[30]
[31]

[32]

33]

Alwin Zulehner and Robert Wille. Make it reversible: Efficient embedding of non-reversible
functions. In Design, Automation & Test in FEurope Conference, pages 458-463, 2017.

Rodney Van Meter and Simon J Devitt. The path to scalable distributed quantum computing.
Computer, 49(9):31-42, 2016.

Austin G Fowler. Time-optimal quantum computation. arXiv preprint arXiv:1210.4626, 2012.

Lev S Bishop, Sergey Bravyi, Andrew Cross, Jay M Gambetta, and John Smolin. Quantum Vol-
ume. https://dal.objectstorage.open.softlayer.com/v1/AUTH 039¢3b{6e6e54d76b8¢66152e2{87877 /community-
documents/quatnum-volumehp08colvboOcc8fr.pdf, 2017.

Neil J Ross and Peter Selinger. Optimal ancilla-free Clifford+T approximation of z-rotations.
arXiww preprint arXiv:1403.2975, 2014.

Peter Selinger. Quantum circuits of T-depth one. Physical Review A, 87(4):042302, 2013.

Steven A Cuccaro, Thomas G Draper, Samuel A Kutin, and David Petrie Moulton. A new
quantum ripple-carry addition circuit. arXiv preprint quant-ph/0410184, 2004.

Claudio Chamon, ER Mucciolo, AE Ruckenstein, and Z-C Yang. Quantum vertex model for
reversible classical computing. Nature Communications, 8, 2017.

Daniel Lemire, Gregory Ssi-Yan-Kai, and Owen Kaser. Consistently faster and smaller compressed
bitmaps with roaring. Software: Practice and Experience, 46(11):1547-1569, 2016.

Randal E Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM
Computing Surveys (CSUR), 24(3):293-318, 1992.

Gary D Hachtel and Fabio Somenzi. Logic synthesis and verification algorithms. Springer Science
& Business Media, 2006.

D Michael Miller and Mitchell A Thornton. QMDD: A decision diagram structure for reversible and
quantum circuits. In Multiple- Valued Logic, 2006. ISMVL 2006. 36th International Symposium
on, pages 30-30. IEEE, 2006.

Michael Bushnell and Vishwani Agrawal. FEssentials of electronic testing for digital, memory and
mized-signal VLSI circuits, volume 17. Springer Science & Business Media, 2004.

	1 Introduction
	1.1 Motivation
	1.2 Quantum circuits

	2 Methods
	2.1 High level perspective
	2.1.1 Rewrite.
	2.1.2 Reordering and reachability analysis.
	2.1.3 Rewrite vs. Reorder - When ancillae are costly to manipulate
	2.1.4 Random access manipulations.
	2.1.5 Complexity - The naive scenario

	2.2 Wire label reference diagrams
	2.2.1 Rewrite: ancillae are introduced.
	2.2.2 Reordering: wires are reduced (recycled).
	2.2.3 Constructing and using the diagrams.
	2.2.4 Reference updates.
	2.2.5 Identifiers of rewritten operations.
	2.2.6 Reachability analysis using bit arrays.

	3 Results
	4 Discussion
	4.1 Diagrammatic (global) vs. per circuit operation (local) view
	4.2 Analogies to classical circuit design automation

	5 Conclusion
	6 Acknowledgements

