
Side-channel countermeasures utilizing dynamic logic
reconfiguration: protecting AES/Rijndael and Serpent encryption in
hardware
Petr, S.; Brejník, J.; Balasch, J.; Novotný, M.; Mentens, N.

Citation
Petr, S., Brejník, J., Balasch, J., Novotný, M., & Mentens, N. (2020). Side-channel
countermeasures utilizing dynamic logic reconfiguration: protecting AES/Rijndael and
Serpent encryption in hardware. Microprocessors And Microsystems, 78.
doi:10.1016/j.micpro.2020.103208

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3455301

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3455301

Microprocessors and Microsystems 78 (2020) 103208

A
0

S
P
P
a

b

c

d

e

A

K
I
E
C
S
D

1

o
(
m
s
m
t
a
a
b
t
t
r

(

h
R

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

ide-channel countermeasures utilizing dynamic logic reconfiguration:
rotecting AES/Rijndael and Serpent encryption in hardware
etr Socha a,∗, Jan Brejník a, Josep Balasch b,c, Martin Novotný a, Nele Mentens d,c,e

Czech Technical University in Prague, Faculty of Information Technology, Czech Republic
KU Leuven, eMedia lab, Belgium
KU Leuven, imec-COSIC/ESAT, Belgium
KU Leuven, ES&S, Belgium
Leiden University, LIACS, The Netherlands

R T I C L E I N F O

eywords:
nternet of things
mbedded security
ryptography
ide-channel analysis
ynamic logic reconfiguration

A B S T R A C T

Dynamic logic reconfiguration is a concept that allows for efficient on-the-fly modifications of combinational
circuit behavior in both ASIC and FPGA devices. The reconfiguration of Boolean functions is achieved by
modification of their generators (e.g., shift register-based look-up tables) and it can be controlled from within
the chip, without the necessity of any external intervention. This hardware polymorphism can be utilized
for the implementation of side-channel attack countermeasures, as demonstrated by Sasdrich et al. for the
lightweight cipher PRESENT.

In this work, we adapt these countermeasures to two of the AES finalists, namely Rijndael and Serpent.
Just like PRESENT, both Rijndael and Serpent are block ciphers based on a substitution–permutation network.
We describe the countermeasures and adjustments necessary to protect these ciphers using the resources
available in modern Xilinx FPGAs. We describe our implementations and evaluate the side-channel leakage
and effectiveness of different countermeasures combinations using a methodology based on Welch’s t-test.
Furthermore, we attempt to break the protected AES/Rijndael implementation using second-order DPA/CPA
attacks.

We did not detect any significant first-order leakage from the fully protected versions of our implemen-
tations. Using one million power traces, we detect second-order leakage from Serpent encryption, while AES
encryption second-order leakage is barely detectable. We show that the countermeasures proposed by Sasdrich
et al. are, with some modifications, successfully applicable to AES and Serpent.
. Introduction

The use of computers and various embedded systems has become
ur daily routine in the past years. In the upcoming Internet-of-Things
IoT) era, smart cities and smart homes are expected to bring even
ore embedded devices into our everyday lives. The presence of such

mart devices, including personal assistants, cars, and many more,
akes our private lives more vulnerable than ever before. In order

o protect sensitive information, various authentication, authorization,
nd encryption schemes need to be employed. Even though these
lgorithms may be considered secure, their implementations may still
e vulnerable to side-channel attacks. These attacks exploit the fact
hat sensitive information may leak through side channels, such as
he power consumption of the device [1,2] or its electromagnetic
adiation [3]. Given the typical deployment of IoT devices, where the

∗ Corresponding author.
E-mail addresses: petr.socha@fit.cvut.cz (P. Socha), brejnjan@fit.cvut.cz (J. Brejník), josep.balasch@kuleuven.be (J. Balasch), novotnym@fit.cvut.cz

attacker may easily gain physical access and tamper with the device,
these attacks pose a severe threat.

Many different countermeasures have been proposed to prevent
side-channel attacks. Masking is a popular approach based on random-
izing intermediate cipher values by introducing a random mask [4,5],
making it difficult for an attacker to predict the processed values.
Another approach, called hiding, tries to hide the information leakage,
e.g. through the use of dual-rail logic [6]. Dynamic reconfiguration
has been proposed as another hiding countermeasure to achieve side-
channel resistance [7]. A combination of countermeasures implemented
using dynamic logic reconfiguration is proposed in [8] and evaluated
on the lightweight block cipher PRESENT [9].

In this paper, we extend the work presented in [8] by using dy-
namic logic reconfiguration to secure two of the Advanced Encryption
vailable online 3 August 2020
141-9331/© 2020 Elsevier B.V. All rights reserved.

M. Novotný), nele.mentens@kuleuven.be (N. Mentens).

ttps://doi.org/10.1016/j.micpro.2020.103208
eceived 11 December 2019; Received in revised form 20 July 2020; Accepted 21
 July 2020

http://www.elsevier.com/locate/micpro
http://www.elsevier.com/locate/micpro
mailto:petr.socha@fit.cvut.cz
mailto:brejnjan@fit.cvut.cz
mailto:josep.balasch@kuleuven.be
mailto:novotnym@fit.cvut.cz
mailto:nele.mentens@kuleuven.be
https://doi.org/10.1016/j.micpro.2020.103208
https://doi.org/10.1016/j.micpro.2020.103208
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2020.103208&domain=pdf

Microprocessors and Microsystems 78 (2020) 103208P. Socha et al.
Fig. 1. AES/Rijndael encryption.

Standard (AES) competition finalists, Rijndael [10] (winner of the
competition, nowadays therefore known as the AES) and Serpent [11].
We describe our implementations and the non-straightforward way in
which we tailored the countermeasures in [8] to AES and Serpent.
We evaluate the side-channel leakage and the effectiveness of different
countermeasures combinations.

2. Theoretical background

In this work, we intend to secure AES and Serpent using the ap-
proach described in [8]. In the following subsections, we first describe
both AES/Rijndael and Serpent. Then we explain the concept of dy-
namic logic reconfiguration on FPGA, and finally, we describe the
implemented and evaluated countermeasures.

2.1. AES finalists: Rijndael and Serpent

Both ciphers share common features [12]. They are iterated
substitution–permutation networks (SPN) with a block size of 128 bits
and possible key sizes of 128, 192, or 256 bits. The plaintext (i.e. the
data to be encrypted) is transformed into a ciphertext by iteratively
applying a number of operations. Each iteration is called a round.
Both ciphers also describe a method for expanding the secret key into
a number of subkeys, which are used as an input to each round.

2.1.1. AES/Rijndael
Rijndael [10] consists of 10, 12, or 14 rounds (depending on the

key length). First, the secret key is XORed with the plaintext. After that,
a number of round transformations is performed. Each round consists of
four layers: a non-linear substitution layer (SubBytes, i.e., 16 parallel
applications of an 8-bit substitution box or S-box), two linear mixing
layers (ShiftRows and MixColumns) and an XOR with the round subkey
(AddRoundKey). In the last round, the MixColumns transformation is
omitted. The Rijndael encryption is depicted in Fig. 1.
2

Fig. 2. Serpent encryption.

2.1.2. Serpent
Serpent [11] consists of 32 rounds. First, an initial permutation is

applied, and then the round transformations take place. Each round
consists of three layers: an XOR with the round subkey, a non-linear
substitution layer (i.e., 32 parallel applications of one of the eight
specified 4-bit S-boxes, which are different in the consecutive rounds),
and a linear transformation. In the last round, a second XOR takes place
instead of the linear transformation. In the end, the final permutation
is applied. The Serpent encryption is depicted in Fig. 2.

2.2. Dynamic logic reconfiguration

Dynamic logic reconfiguration is a concept that allows for effi-
cient on-the-fly modifications of combinational circuit behavior in both
ASIC [13,14] and FPGA devices. In FPGAs, combinational circuits are
typically implemented using Look-Up Tables (LUTs), i.e., configurable
primitives which store truth tables of 𝑘-input Boolean functions 𝑓 ∶
B𝑘 → B. Dynamic logic reconfiguration allows for the run-time al-
teration of the circuit behavior by modifying the content of specific
look-up tables, while leaving the routing intact. The reconfiguration of
LUTs is done from within the chip itself and can be achieved, e.g., by
using a shift register (allowing for serial programming) and a cascade
of addressing multiplexers. This concept is demonstrated in Fig. 3.

In Xilinx FPGAs [15], this functionality is provided by 𝑘-input Con-
figurable Look-Up Tables (CFGLUTs) with a serial configuration input
and output (allowing to connect CFGLUTs in separate configuration
chains). In Xilinx Spartan-6 FPGAs, 5-input CFGLUTs are available.

In order to implement dynamically reconfigurable Boolean func-
tions 𝑓 ∶ B𝑛 → B, where 𝑛 > 𝑘, multiple 𝑘-input CFGLUTs are
required in combination with addressing multiplexers (using Boole’s ex-
pansion, also referred to as the Shannon expansion [16]). Specifically,
to implement an 𝑛-input function using 𝑘-input CFGLUTs and 2-to-1
multiplexers, we need 2𝑛−𝑘 CFGLUTs and 2𝑛−𝑘 − 1 multiplexers.

Multiple-output Boolean functions 𝑓 ∶ B𝑛 → B𝑚 can be trivially
𝑛
implemented as 𝑚 single-output Boolean functions 𝑓𝑖 ∶ B → B.

Microprocessors and Microsystems 78 (2020) 103208P. Socha et al.

2

p
s

2

i
i
c
i
b

a
s
f
s

c
i
f
o
a

2

(
X
w

b

u
S
t

w
e
𝑓

T

Fig. 3. Example of a 2-input reconfigurable look-up table with serial programming
I/O.

Fig. 4. S-box Decomposition.

.3. Countermeasures

To protect AES and Serpent, we have implemented countermeasures
roposed (and evaluated on PRESENT) by Sasdrich et al. in [8]. In this
ubsection, we briefly describe these countermeasures.

.3.1. S-box decomposition
Since information leakage often occurs based on changing values

n registers, and since the output of the non-linear substitution layer
s a frequent target of side-channel attacks, the S-box decomposition
ountermeasure is based on avoiding the storage of the S-box outputs
nto such registers. This is done by decomposing the S-box into two
ijections 𝑅1, 𝑅2, where

S−box(𝑥) = 𝑅2(𝑅1(𝑥)), (1)

nd by placing the register in between the two bijections. The decompo-
ition is demonstrated in Fig. 4. The number of possible 𝑛-bit bijections
or 𝑅1 is equal to (2𝑛)!. For each option, a bijection 𝑅2 can be found
uch that Eq. (1) holds.

Thanks to dynamic logic reconfiguration, different bijections 𝑅1, 𝑅2
an easily be used for every encryption. Starting with 𝑅1 being an
dentity and 𝑅2 being the actual S-box (or vice versa), the bijections
or the next encryption are computed by randomly selecting pair(s)
f elements in the 𝑅1 mapping, swapping them, and recomputing 𝑅2
ccordingly.

.3.2. Boolean masking
In order to randomize intermediate values, a random mask is added

XORed) to the data prior to encryption, and subtracted (i.e. once again
ORed) after the encryption. For the cipher to produce valid results
orking with masked data, various alterations must be done.

Boolean masking can be combined with the previously mentioned
ijective S-box decomposition and can once again take advantage of
3

i

Fig. 5. S-box Decomposition + Masking: all the three operations (unmasking, bijection
and masking) are performed as a single table lookup, therefore unmasked data does
not appear on any wires at any time.

dynamic logic reconfiguration. Two different random masks 𝑚1, 𝑚2 are
sed for every encryption: mask 𝑚1 is used outside the decomposed
-box, and mask 𝑚2 is used inside of it. If the substitution layer were
he only layer in the round, the previously mentioned bijections 𝑅1, 𝑅2

would get adjusted as follows:

𝑅′
1(𝑥) = 𝑅1(𝑥 ⊕ 𝑚1)⊕𝑚2, (2)

𝑅′
2(𝑥) = 𝑅2(𝑥 ⊕ 𝑚2)⊕𝑚1. (3)

The function 𝑅′
1 first subtracts/removes mask 𝑚1, then performs the 𝑅1

bijection mapping, and finally masks this value using 𝑚2. The output
of this function is stored in the register. Analogically, the function 𝑅′

2
subtracts the mask 𝑚2, does the 𝑅2 mapping, and masks the result using
𝑚1. This is demonstrated in Fig. 5. This way, the same CFGLUTs can be
used for both the S-box decomposition and the masking, saving both
area and reconfiguration time.

However, to deal with the linear transformation layers, further
alterations to the 𝑅′

1, 𝑅
′
2 bijections need to be done. We can exploit one

of these two facts:

𝑓 (𝑥) = 𝑓 (𝑥 ⊕ 𝑓−1(𝑚))⊕𝑚, (4)

𝑓 (𝑥) = 𝑓 (𝑥 ⊕ 𝑚)⊕ 𝑓 (𝑚), (5)

hich both hold when 𝑓 is a linear mapping. These give us two differ-
nt and fairly straightforward approaches to take linear transformations
into account.
One option is to alter 𝑅′

2 function in terms of Eq. (4) so that 𝑚1
processed by the inverse transformation is used to mask the data,
allowing to subtract 𝑚1 in 𝑅′

1:

𝑅′
1(𝑥) = 𝑅1(𝑥 ⊕ 𝑚1)⊕𝑚2, (6)

𝑅′
2(𝑥) = 𝑅2(𝑥 ⊕ 𝑚2)⊕ 𝑓−1(𝑚1). (7)

The second option is to use 𝑚1 for masking in 𝑅′
2, and to alter 𝑅′

1
according to Eq. (5), so that 𝑚1 processed by the linear transformation
gets subtracted:

𝑅′
1(𝑥) = 𝑅1(𝑥 ⊕ 𝑓 (𝑚1))⊕𝑚2, (8)

𝑅′
2(𝑥) = 𝑅2(𝑥 ⊕ 𝑚2)⊕𝑚1. (9)

Notice that further alterations may be required for the first and the
last round, depending on the selected approach.

The last obstacle is the subkey XOR layer, which can be considered
an affine transformation. Suppose we have a vector 𝑥, which gets
XORed with the subkey: 𝑥 ⊕ 𝑘. Suppose we process masked data the
same way: (𝑥 ⊕ 𝑚) ⊕ 𝑘, then by subtracting the mask 𝑚 with no
alterations we have:

(((𝑥 ⊕ 𝑚)⊕ 𝑘)⊕𝑚) = 𝑥 ⊕ 𝑘. (10)

herefore, no further alterations need to be done to take the XOR layer

nto account.

Microprocessors and Microsystems 78 (2020) 103208P. Socha et al.

w
a
t
a
i

3

S
a
S

d
a
d
a

3

a
S

Fig. 6. S-box Decomposition + Masking + Register Precharge.

2.3.3. Register precharge
Because the same masks are used for the whole encryption (i.e., for

every round), the leakage occurs in the register, since

HD(𝑥 ⊕ 𝑚, 𝑦 ⊕ 𝑚) = HD(𝑥, 𝑦), (11)

here HD(𝑥, 𝑦) denotes the Hamming distance between 𝑥 and 𝑦. To
void this leakage, the register is duplicated, as shown in Fig. 6, and
he processed data are interleaved with random data. This technique
voids leakage; however, it reduces the throughput of the circuit when
t is implemented using an architecture that is not fully unrolled.

. Secure cipher design

In this section, we examine the specifics of both AES/Rijndael and
erpent and we propose a manner in which these ciphers can be secured
gainst side-channel attacks using the countermeasures explained in
ection 2.3.

In order for our implementations to fit into a Xilinx Spartan-6 FPGA
evice, we take into account that CFGLUTs with at most 5 input bits
re available. When a platform with smaller CFGLUTs is available, the
ynamic logic reconfiguration method can be implemented using the
pproach described in Section 2.2.

.1. AES/Rijndael

Rijndael employs an 8 × 8 S-box, which can be considered as
function S-boxRijndael ∶ B8 → B8. Therefore, to implement the Rijndael
-box using reconfigurable logic, 8 ⋅ 28−5 = 64 (5-input) CFGLUTs and

8 ⋅ (28−5 − 1) = 56 (2-to-1) multiplexers are necessary. Moreover, the S-
box decomposition countermeasure suggests the S-box to be split into
two bijections 𝑅1, 𝑅2 ∶ B8 → B8, which doubles the amount of CFGLUTs
and multiplexers in the secured version. Since the Rijndael algorithm
applies 16 S-boxes in parallel, this brings the total count up to 2048
(5-input) CFGLUTs and 1792 (2-to-1) multiplexers.

The decomposition into two bijections is done in a similar fashion
as described in Section 2.3, with the round register being placed in
between the two bijections. For the AES algorithm, we have decided to
swap eight pairs of elements in the 𝑅1 bijection after every encryption
(in contrast to the PRESENT 4-bit S-box decomposition in [8], where
only a single pair gets swapped).

To implement the Boolean masking countermeasure as described in
Section 2.3, bijections 𝑅′

1, 𝑅
′
2 (i.e. the decomposed S-box combined with

masking) must be altered. We choose the option where 𝑅′
2 adds the

mask 𝑚1 and 𝑅′
1 subtracts 𝑚1 processed by the linear transformations

(see Eq. (8)):

𝑅′
1(𝑥) = 𝑅1(𝑥 ⊕MixColumns(Shif tRows(𝑚1)))⊕𝑚2, (12)

𝑅′
2(𝑥) = 𝑅2(𝑥 ⊕ 𝑚2)⊕𝑚1. (13)

Note that the data are masked by 𝑚1 in the second bijection 𝑅2
and that this mask is subtracted in the following round. Therefore prior
to the first round, the input data must be masked properly. Also, the
last round of Rijndael omits the MixColumns operation, so additional
unmasking of the output must be done with this in mind.

The implementation of the register precharge requires the register
to be duplicated and the controller to be adjusted appropriately, such
that the processed data are interleaved with random data.
4

Fig. 7. Serpent S-boxes decomposition; notice the demultiplexer, which is necessary to
prevent glitches.

3.2. Serpent

Unlike Rijndael or PRESENT, Serpent defines eight different 4 × 4
S-boxes. Each S-box is used in a different round. One way to implement
the S-box decomposition is to decompose each of these S-boxes into
two bijections, resulting in 16 bijections in total. We have decided for
an approach where the first bijection 𝑅1 is shared among all S-boxes,
while the other eight bijections 𝑅𝑖

2, 𝑖 ∈ {0,… , 7}, implement the eight
S-boxes, with the correct output being selected by a multiplexer. The
eight decomposed Serpent S-boxes are depicted in Fig. 7. Notice the
demultiplexer, which selects the right 𝑅𝑖

2 bijection, while the other
bijections are fed with zeros. This demultiplexer is necessary to prevent
glitches that lead to information leakage. Since the Serpent S-boxes
implement the functions S-boxiSerpent ∶ B4 → B4, only four CFGLUTs are
necessary to implement the bijection. Given the selected architecture,
4+8⋅4 = 36 CFGLUTs are required to decompose all eight S-boxes. Since
the S-box is applied 32 times in parallel, this results in 1152 CFGLUTs
in total.

Boolean masking is implemented similarly to the Rijndael algo-
rithm, with 𝑚1, processed by the linear transformation, being sub-
tracted in the 𝑅′

1 bijection (see Eq. (8)). Suppose the Serpent linear
transformation is 𝐿𝑆𝑒𝑟𝑝𝑒𝑛𝑡, then:

𝑅′
1(𝑥) = 𝑅1(𝑥 ⊕ LSerpent (𝑚1))⊕𝑚2, (14)

𝑅′
2(𝑥) = 𝑅2(𝑥 ⊕ 𝑚2)⊕𝑚1. (15)

Regarding the first round, similarly to the Rijndael approach, appropri-
ate initial masking of the input data must be performed first. Also, there
is no linear transformation in the last round; therefore the unprocessed
mask 𝑚1 gets subtracted during the final unmasking.

Register precharge is once again implemented simply by dupli-
cating the round register and altering the controller appropriately to
interleave the processed data with random data.

3.3. Latency and area utilization

For every encryption, new bijections are generated (as described in
Section 2.3), as well as new masks 𝑚1, 𝑚2. This requires the CFGLUTs
configurations to be computed and loaded prior to every encryption.
The reconfiguration of all CFGLUTs can be done using different levels
of parallelism (the CFGLUTs ‘‘programming’’ I/O can be variously
chained, given its shift register nature). The serial reconfiguration of
𝑛-input CFGLUT requires 2𝑛 cycles, therefore selected reconfiguration
strategy has a direct impact on the overall latency, as well as on the
area utilization.

Table 1 presents a comparison of the latency and the area of both

unprotected and protected AES/Rijndael and Serpent encryption im-

Microprocessors and Microsystems 78 (2020) 103208P. Socha et al.
Table 1
Latency and area utilization.

Implementation Area Latency (clock cycles)

Memory (FFs) Logic (LUTs) Encryption Extra Total

Unprotected AES/Rijndael, LUT-based S-Boxes 278 1,304 10 0 10
Protected AES/Rijndael, 2 CFGLUT chains 1,073 2,652 20 4,122 4,142
Protected AES/Rijndael, 32 CFGLUT chains 3,229 7,234 20 282 302

Unprotected Serpent, LUT-based S-Boxes 430 1,660 32 0 32
Protected Serpent, 9 CFGLUT chains 2,945 5,696 64 538 602
Protected Serpent, 144 CFGLUT chains 4,441 9,471 64 58 122
Protected Serpent, 288 CFGLUT chains 6,040 13,211 64 42 106
Fig. 8. Results of the AES/Rijndael t-test, where the 𝑡-value is shown on the vertical axis and the time samples during encryption are shown on the horizontal axis.
plementations. The Flip-Flop (FF) and the Look-Up Table (LUT) counts
are Xilinx ISE post-synthesis statistics for Xilinx Spartan-6 FPGA. The
encryption latency of protected implementations is double due to the
5

register precharge. The extra latency is caused mostly by the CFGLUT
serial programming, and it can be reduced by using several parallel
configuration chains, at the expense of the area.

Microprocessors and Microsystems 78 (2020) 103208P. Socha et al.
Fig. 9. Results of the Serpent t-test, where the 𝑡-value is shown on the vertical axis and the time samples during encryption are shown on the horizontal axis.
4. Side-channel leakage evaluation

In this section, we present our experimental setup and a leakage
methodology used to evaluate all combinations of previously described
countermeasures.

4.1. Measurement setup

We choose the Sakura-G board [17] with a Xilinx Spartan-6 FPGA
as our evaluation platform. AES/Rijndael and Serpent VHDL implemen-
tations with a 128-bit key are evaluated. The power traces evaluated
in Sections 4.2, 4.3 and 4.5 are measured using a PicoScope 6406D
oscilloscope and the power traces evaluated in Section 4.4 are measured
using a Textronix DPO 7254 oscilloscope. The current consumption of
the FPGA core is measured as a voltage drop across a shunt resistor in
6

the VCCINT path of the FPGA. The voltage drop is furthermore ampli-
fied using a built-in preamplifier before sampling by the oscilloscope.
The sample rate used for all the measurements is 625 MS/sec.

4.2. First-order test vector leakage assessment

Leakage is evaluated using the non-specific univariate first-order
Welch’s t-test, as described in [18]. This evaluation method consists of
two phases. In the active phase, power traces are collected, each trace
measured while encrypting either a random or a (preselected) constant
plaintext, resulting in two sets of power traces. In the analytical phase
of the evaluation, Welch’s t-test statistic is computed independently at
each time sample:

𝑡 =
�̄�1 − �̄�2

√

𝑠21 +
𝑠22

, (16)
𝑁1 𝑁2

Microprocessors and Microsystems 78 (2020) 103208P. Socha et al.

𝑁
t
h
o
c
b
a
n
o

4

b
g
t
c

m

p
F
t
t
e

t
F
p
s
(
b
i

c
w
u
a
m
l
t
c

4

(
a
l
s
m
s
v

W
t
f
o

s
h

t
e

𝑥

w
t
e

4

a
M
o
s
i
e

where �̄�1, �̄�2 are sample means, 𝑠21, 𝑠22 are sample variances, and
1, 𝑁2 are sample sizes of the two sets of power traces at a given

ime sample, respectively. The Welch’s t-test statistic examines the null
ypothesis of equal population means (where one population consists
f random plaintext measurements and the other population consists of
onstant plaintext measurements). In our case, the null hypothesis can
e formulated in the sense that the two populations are not distinguish-
ble by their sample means, which means that the sample means are
ot data-dependent. The null hypothesis gets rejected for high values
f |𝑡|, the threshold is usually set around 4.5 or 5.

.2.1. Results
The necessary random data (random pairs to be swapped in the

ijection, random masks, register precharge with random values) are
enerated externally and sent to the cryptographic device alongside
he plaintext. This approach allows us to enable or disable specific
ountermeasures easily.

We evaluate every possible combination of the proposed counter-
easures:

(a) Unprotected
(b) Register Precharge
(c) Masking
(d) Masking + Register Precharge
(e) S-box Decomposition
(f) S-box Decomposition + Register Precharge
(g) S-box Decomposition + Masking
(h) S-box Decomposition + Masking + Register Precharge

For every combination, one million power traces are measured and
rocessed using a non-specific first-order t-test, as described earlier.
ig. 8 depicts the t-values during the AES encryption and Fig. 9 depicts
he t-values during the Serpent encryption. The sensitive informa-
ion leakage is the most prominent for the unprotected versions, as
xpected.

It is also visible that different countermeasures and their combina-
ions have various influence on the significance of the detected leakage.
igs. 8(c) and 9(c) show that a countermeasure based on masking
rotects solely the first round of the cipher, while, starting from the
econd round, the leakage is comparable to the unprotected version
cf. Figs. 8(a) and 9(a)). Figs. 8(d) and 9(d) suggest that masking
ecomes more effective in combination with register precharge (which
s expected, as discussed in Section 2.3).

Figs. 8(h) and 9(h) show results with all three countermeasures
ombined. As can be seen, no significant first-order leakage is detected
hen evaluating these fully protected implementations. However, the
sed Test Vector Leakage Assessment (TVLA) methodology is merely
first step in the evaluation of a side-channel security of the imple-
entations and the results do not provide any guarantee of a security

evel [19]. This is not only because of a high risk of both false posi-
ives and false negatives, but also because only univariate statistics is
onsidered in this methodology.

.3. Second-order test vector leakage assessment

Protected implementations which make use of Boolean masking
i.e., splitting a working variable into 𝑑 shares) are typically vulnerable
gainst higher-order DPA attacks [20–22], i.e., attacks which exploit
eakage from several variable shares, either by combining multiple time
amples together (multivariate), or by analyzing higher statistical mo-
ents at a single time sample (univariate). Since a first-order masking

cheme is used to protect our implementations, we assume them to be
ulnerable against univariate second-order DPA.

We evaluate the second-order leakage of our implementations using
elch’s t-test, similar to the first-order leakage evaluation in Sec-

ion 4.2. The first phase of the methodology stays the same —- there-
ore, we can use the same sets of power traces obtained for the first-
7

rder analysis. To analyze the second statistical moment, the power
Fig. 10. Results of the univariate second-order t-test with all the countermeasures
enabled (S-box Decomposition + Masking + Register Precharge), where the 𝑡-value is
hown on the vertical axis and the time samples during encryption are shown on the
orizontal axis.

races are preprocessed, at each time sample independently, by making
very sample mean-free squared:
′ = (𝑥 − �̄�)2, (17)

here �̄� is sample mean at a given time sample. Then the Welch’s
-test statistic is computed, same as in case of the first-order leakage
valuation.

.3.1. Results
We evaluate one million previously captured power traces with

ll the proposed countermeasures enabled (S-box Decomposition +
asking + Register Precharge). Fig. 10 depicts (univariate) second-

rder t-values during AES and Serpent encryption. For AES, there is a
ingle peak reaching as high as 6 halfway the encryption, as can be seen
n Fig. 10(a). Second-order leakage is more prominent during Serpent
ncryption, as can be seen in Fig. 10(b), where the absolute 𝑡-value

reaches as high as 15.
It is fair to assume that with more than one million power traces

available, the second-order leakage would get more prominent and
easier to detect. As shown in [21], the amount of power traces required
to successfully mount a higher-order side-channel attack increases ex-
ponentially with the masking order.

4.4. Second-order attacks

To provide more confidence about the AES/Rijndael implementa-
tion resilience, we attempt to break the fully protected implementation
using second-order attacks [20]. The measured power traces are first
preprocessed in the same fashion as in the case of the univariate second-
order leakage assessment, as described in Section 4.3. Afterward, we
perform the DPA attack [1] (using t-test distinguisher) and the CPA
attack [2], targeting the first and the last cipher round, and considering
both Hamming weight and Hamming distance leakage.

First, we target the AES S-box output after the first round, i.e., 𝑠𝑖 =
S−box(𝑝𝑡𝑖 ⊕ 𝑘𝑒𝑦ℎ𝑦𝑝𝑜𝑖) for some index 1 ≤ 𝑖 ≤ 16, key hypothesis

𝑘𝑒𝑦ℎ𝑦𝑝𝑜𝑖 ∈ [0, 255] and plaintext byte 𝑝𝑡𝑖. Second, we target the AES

Microprocessors and Microsystems 78 (2020) 103208P. Socha et al.
Fig. 11. Second-order DPA attack (using t-test distinguisher) on first and last round AES/Rijndael subkey (byte #1), where the 𝑡-value is shown on the vertical axis and the time
samples during the relevant encryption rounds are shown on the horizontal axis.
Fig. 12. Second-order CPA attack on first and last round AES/Rijndael subkey (byte #1), where the correlation coefficient is shown on the vertical axis and the time samples
during the relevant encryption rounds are shown on the horizontal axis.
S-Box input in the last round by predicting values 𝑠𝑖 = S-box−1(𝑐𝑡𝑖 ⊕
𝑘𝑒𝑦ℎ𝑦𝑝𝑜𝑖) for some index 1 ≤ 𝑖 ≤ 16, key hypothesis 𝑘𝑒𝑦ℎ𝑦𝑝𝑜𝑖 ∈
[0, 255] and ciphertext byte 𝑐𝑡𝑖. These predictions are used directly when
assuming the Hamming weight leakage. For the Hamming distance
leakage model, these predictions are furthermore XORed with the
corresponding input/output bytes.

4.4.1. Results
We mount the attacks on a set of 1.25 million power traces. The

results of the DPA attack (using t-test distinguisher) are shown in
Fig. 11. Figs. 11(a) and 11(c) show the case when targeting S-box
output in the first round, while Figs. 11(b) and 11(d) show the case
when targeting the S-box input in the last round. In all cases, the
8

correct key byte value (in black) is not distinguishable from the other
candidates (in gray), so the attack fails in recovering the key.

Running the CPA attack yields similar results, as shown in Figs. 12(a)
and 12(c) when targeting the first round, and in Figs. 12(b) and 12(d)
when targeting the last round. Note that for these experiments, we
process only samples in the interval corresponding to the first (resp.
last) round, rather than the whole encryption.

4.5. Further experiments

In this subsection, we present additional experiments regarding the
proposed countermeasures and the cipher design, and we summarize
our results.

Microprocessors and Microsystems 78 (2020) 103208P. Socha et al.

b
C
r
n
o
t
a
o
p

4.5.1. Importance of mask 𝑚2

The value stored in the round register is protected by both S-
ox Decomposition and Boolean Masking (using mask 𝑚2, see Fig. 5).
onsidering the CFGLUT based architecture, this masking does not
equire any extra resources. However, to provide more insight about the
ecessity of masking inside the decomposed S-box, we have measured
ne million power traces without it (fully protected encryption, except
hat mask 𝑚2 is set to zeros), and performed the test vector leakage
ssessment as described earlier. In the case of AES/Rijndael, both first-
rder and second-order t-tests turn out very similar to the previously
resented results. However, in the case of Serpent without the 𝑚2 mask,

we have encountered worsening, where the first-order t-test values
reach as high as 10 (second-order t-test, however, still yields results
similar to those presented earlier).

4.5.2. Necessary randomness
The serial configuration I/O of CFGLUTs allows for various re-

configuration strategies (as mentioned in Section 3.3). Furthermore,
a particular number of pairs get swapped when recomputing the S-
box decompositions (as mentioned in Section 2.3.1). Selected strategy
may significantly affect the amount of resources necessary. In this
experiment, we compare implementations where:

• either all S-boxes are reconfigured in parallel based on same
random data, or every S-box is reconfigured separately based on
its own random data,

• the decomposed S-boxes get modified by swapping either one or
eight pairs of elements in the bijection mapping.

All four combinations, for both ciphers, perform equally in test
vector leakage assessment based on 300,000 measured power traces.

5. Conclusion

In this paper, we describe and evaluate side-channel attack pro-
tected AES and Serpent implementations, which are based on an ap-
proach demonstrated by Sasdrich et al. [8] for the PRESENT cipher.
These implementations utilize dynamic logic reconfiguration, which
can be easily deployed in both FPGA and ASIC designs. We describe
a method by means of which a generic substitution–permutation net-
work can be protected against side-channel attacks, and we tailor the
approach to a Xilinx Spartan-6 FPGA for the protection of both AES and
Serpent.

We demonstrate the effectiveness of the implemented countermea-
sures by evaluating the side-channel leakage using Welch’s t-test, with
different combinations of countermeasures in place. We did not detect
any significant first-order leakage from the protected versions of both
AES and Serpent encryption implementations using one million power
traces. Using the same power traces, we detected apparent second-order
leakage from Serpent encryption, while AES encryption second-order
leakage is barely detectable. Furthermore, to provide more confidence
about the implementation resilience, we attempted at breaking the
protected AES implementation using second-order DPA and CPA at-
tacks targeting both first and last round. All these attacks fail with
1.25 million power traces available.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
9

Acknowledgments

This work was partially funded by the Central Europe Leuven
Strategic Alliance (CELSA) project ‘‘DRASTIC: Dynamically Reconfig-
urable Architectures for Side-channel analysis protection of Crypto-
graphic implementations’’ (CELSA/17/033). Some authors were par-
tially supported by the Czech Technical University (CTU) grants No.
SGS17/213/OHK3/3T/18 and SGS20/211/OHK3/3T/18. Computa-
tional resources were partially supplied by the project ‘‘e-Infrastruktura
CZ’’ (e-INFRA LM2018140) provided within the program Projects of
Large Research, Development and Innovations Infrastructures.

References

[1] P. Kocher, J. Jaffe, B. Jun, Differential power analysis, in: M. Wiener (Ed.),
Advances in Cryptology — CRYPTO’ 99: 19th Annual International Cryptology
Conference Santa Barbara, California, USA, August 15–19, 1999 Proceedings,
Springer Berlin Heidelberg, Berlin, Heidelberg, 1999, pp. 388–397.

[2] E. Brier, C. Clavier, F. Olivier, Correlation power analysis with a leakage model,
in: International Workshop on Cryptographic Hardware and Embedded Systems,
Springer, 2004, pp. 16–29.

[3] J.-J. Quisquater, D. Samyde, Electromagnetic analysis (ema): Measures and
counter-measures for smart cards, in: Smart Card Programming and Security,
Springer, 2001, pp. 200–210.

[4] G. Piret, F.-X. Standaert, Security analysis of higher-order Boolean masking
schemes for block ciphers (with conditions of perfect masking), IET Inf. Secur.
2 (1) (2008) 1–11.

[5] S. Nikova, C. Rechberger, V. Rijmen, Threshold implementations against side-
channel attacks and glitches, in: International Conference on Information and
Communications Security, Springer, 2006, pp. 529–545.

[6] D. Sokolov, J. Murphy, A. Bystrov, A. Yakovlev, Design and analysis of dual-rail
circuits for security applications, IEEE Trans. Comput. 54 (4) (2005) 449–460.

[7] N. Mentens, B. Gierlichs, I. Verbauwhede, Power and fault analysis resistance
in hardware through dynamic reconfiguration, in: International Workshop on
Cryptographic Hardware and Embedded Systems, Springer, 2008, pp. 346–362.

[8] P. Sasdrich, A. Moradi, O. Mischke, T. Güneysu, Achieving side-channel pro-
tection with dynamic logic reconfiguration on modern FPGAs, in: 2015 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST), IEEE,
2015, pp. 130–136.

[9] A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J. Robshaw,
Y. Seurin, C. Vikkelsoe, PRESENT: An ultra-lightweight block cipher, in: Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems, Springer,
2007, pp. 450–466.

[10] J. Daemen, V. Rijmen, AES Proposal: Rijndael, 1999.
[11] E. Biham, R. Anderson, L. Knudsen, Serpent: A new block cipher proposal,

in: International Workshop on Fast Software Encryption, Springer, 1998, pp.
222–238.

[12] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti, E. Roback,
Report on the development of the advanced encryption standard (AES), J. Res.
Natl. Inst. Stand. Technol. 106 (3) (2001) 511.

[13] M. Alle, K. Varadarajan, A. Fell, N. Joseph, S. Das, P. Biswas, J. Chetia, A. Rao,
S. Nandy, R. Narayan, Redefine: Runtime reconfigurable polymorphic asic, ACM
Trans. Embedded Comput. Syst. (TECS) 9 (2) (2009) 1–48.

[14] S. Das, S. Nandy, A flexible crypto-system based upon the REDEFINE
polymorphic asic architecture, Def. Sci. J. 62 (1) (2012) 25–31.

[15] Xilinx, Spartan-6 Libraries Guide for HDL Designs, [Online] Available:
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/
spartan6_hdl.pdf.

[16] F.M. Brown, Boolean Reasoning: The Logic of Boolean Equations, Springer
Science & Business Media, 2012.

[17] H. Guntur, J. Ishii, A. Satoh, Side-channel attack user reference architecture
board SAKURA-G, in: Consumer Electronics (GCCE), 2014 IEEE 3rd Global
Conference on, IEEE, 2014, pp. 271–274.

[18] T. Schneider, A. Moradi, Leakage assessment methodology, J. Cryptogr. Eng. 6
(2) (2016) 85–99.

[19] F.-X. Standaert, How (not) to use welch’s t-test in side-channel security eval-
uations, in: International Conference on Smart Card Research and Advanced
Applications, Springer, 2018, pp. 65–79.

[20] T.S. Messerges, Using second-order power analysis to attack DPA resistant
software, in: International Workshop on Cryptographic Hardware and Embedded
Systems, Springer, 2000, pp. 238–251.

[21] S. Chari, C.S. Jutla, J.R. Rao, P. Rohatgi, Towards sound approaches to coun-
teract power-analysis attacks, in: Annual International Cryptology Conference,
Springer, 1999, pp. 398–412.

[22] E. Prouff, M. Rivain, Masking against side-channel attacks: A formal security
proof, in: Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Springer, 2013, pp. 142–159.

http://refhub.elsevier.com/S0141-9331(20)30373-2/sb1
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb1
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb1
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb1
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb1
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb1
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb1
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb2
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb2
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb2
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb2
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb2
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb3
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb3
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb3
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb3
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb3
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb4
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb4
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb4
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb4
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb4
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb5
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb5
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb5
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb5
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb5
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb6
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb6
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb6
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb7
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb7
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb7
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb7
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb7
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb8
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb8
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb8
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb8
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb8
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb8
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb8
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb9
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb9
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb9
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb9
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb9
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb9
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb9
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb10
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb11
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb11
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb11
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb11
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb11
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb12
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb12
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb12
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb12
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb12
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb13
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb13
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb13
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb13
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb13
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb14
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb14
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb14
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/spartan6_hdl.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/spartan6_hdl.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/spartan6_hdl.pdf
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb16
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb16
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb16
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb17
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb17
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb17
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb17
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb17
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb18
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb18
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb18
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb19
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb19
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb19
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb19
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb19
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb20
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb20
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb20
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb20
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb20
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb21
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb21
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb21
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb21
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb21
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb22
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb22
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb22
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb22
http://refhub.elsevier.com/S0141-9331(20)30373-2/sb22

Microprocessors and Microsystems 78 (2020) 103208P. Socha et al.
Petr Socha received his master in embedded system de-
sign from Czech Technical University in Prague in 2019.
Currently, Petr is a Ph.D. student at the Faculty of Infor-
mation Technology, Czech Technical University in Prague.
His research interests include digital design, cryptographic
hardware, and side-channel security.

Jan Brejník is a student at Czech Technical University in
Prague, Faculty of Information Technology. His research
interests are digital design and side-channel security. He
also works as an embedded software developer.

Josep Balasch obtained a joint Ph.D. degree from KU
Leuven and Radboud University Nijmegen in 2014. Be-
tween 2014 and 2019 he was postdoctoral researcher at
the COSIC research group, KU Leuven. He is currently
visiting professor at the eMedia Lab, Faculty of Engineering
Technology, KU Leuven. His research interests are in the
area of embedded security, particularly on design meth-
ods and hardware/software architectures for cryptographic
implementations. Josep has co-authored more than 35 pub-
lications in peer-reviewed journals and conferences, and
serves in the program committee of several venues on
embedded security.
10
Martin Novotný graduated in electrical engineering from
the Czech Technical University in Prague, the Czech Repub-
lic, in 1992. He received his Ph.D. degree in information
security from Ruhr-University Bochum, Germany, in 2009.
Currently, he is an assistant professor and the head of the
Embedded Security Lab at the Czech Technical University
in Prague. His research interests include arithmetic units,
hardware for cryptography and cryptanalysis, efficient im-
plementations of cryptographic algorithms, and embedded
systems. Martin serves as a program committee member in
several international conferences focusing on cryptography
and digital design. He was a program co-chair of DSD 2017,
program chair of DSD 2018, and a general chair of CARDIS
2019 conferences. He is an author or co-author of 60+
journal and conference papers and book chapters.

Nele Mentens received her master and Ph.D. degree from
KU Leuven in 2003 and 2007, respectively. Currently, Nele
is a professor at Leiden University and KU Leuven. Her
research interests are in the domains of hardware security
and configurable computing. Nele was a visiting researcher
for three months at Ruhr University Bochum in 2013
and at EPFL in 2017. She was/is the PI in around 15
finished and ongoing research projects with national and
international funding. She serves as a program committee
member of renowned international conferences on security
and hardware design, such as NDSS, CHES, DAC, DATE,
ESSCIRC and FPL. She was the general co-chair of FPL in
2017 and the program chair of FPL and CARDIS in 2020.
Nele is (co-)author in over 100 publications in international
journals, conferences and books. She won best paper awards
and nominations at DATE’16, AsianHOST’17 and CHES’19.
Nele is an associate editor of IEEE Transactions on Informa-
tion Forensics and Security and IEEE Circuits and Systems
Magazine. She is a Senior Member of the IEEE and serves
as an expert for the European Commission.

	Side-channel countermeasures utilizing dynamic logic reconfiguration: Protecting AES/Rijndael and Serpent encryption in hardware
	Introduction
	Theoretical background
	AES finalists: Rijndael and Serpent
	AES/Rijndael
	Serpent

	Dynamic logic reconfiguration
	Countermeasures
	S-box decomposition
	Boolean masking
	Register precharge

	Secure cipher design
	AES/Rijndael
	Serpent
	Latency and area utilization

	Side-channel leakage evaluation
	Measurement setup
	First-order test vector leakage assessment
	Results

	Second-order test vector leakage assessment
	Results

	Second-order attacks
	Results

	Further experiments
	Importance of mask m2
	Necessary randomness

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

