
Microprocessors and Microsystems 78 (2020) 103268

A
0

A
D
J
D

A

K
I
D
B
E
S
M

1

a
w
b
r
b
c
t
a
s
w
t
a
T
e
s
e
𝐵
I
l

b

h
R

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

ddress-encoded byte order
avid Guerrero ∗, German Cano-Quiveu, Jorge Juan-Chico, Alejandro Millan, Manuel J. Bellido,
ulian Viejo, Paulino Ruiz-de-Clavijo, Enrique Ostua
epartamento de Tecnología Electrónica, Universidad de Sevilla, 41012 Sevilla, Spain

R T I C L E I N F O

eywords:
SA
ata alignment
yte order
ndianness
hared memory
PSoC

A B S T R A C T

Unaligned accesses are forbidden in many high-performance architectures. In most of these architectures, the
least significant address bits of a multibyte memory access must be zero. Otherwise, the program generating
the access is considered erroneous and an exception is flagged. The objective of this paper is to propose an
alternative behaviour using the least significant address bits to encode the byte order of the accessed data.
Modifying a traditional architecture to support the proposed behaviour presents several advantages, including
backward compatibility at binary-code level, and the possibility of carrying out an endianness conversion
during multibyte memory accesses without increasing the execution time nor using additional opcodes. The
technique is demonstrated by modifying an OpenRISC 1000 implementation without introducing any penalty
in hardware resources or performance. Subroutines written and compiled for the traditional architecture and
originally designed for only the native byte order can, in the modified architecture, read and write data in
a non-native byte order without any need to recompile. The execution of a sample algorithm operating on
non-native byte order shows a reduction of 60% in the user execution time in the modified implementation
when compared to the original implementation.
. Introduction

In the memory model of most modern processors, memory locations
re 8 bits wide, and therefore the minimum unit the processor can
rite or read from memory is a byte. The greatest number that can
e represented by a byte using positional notation is 28 − 1 = 255. To
epresent a greater integer, a processor must use a concatenation of
ytes, known as a word. Using a single instruction, many processors
an read or write a word greater than a byte, although the size of
hat word in bytes must usually be power of 2. Typical sizes for
ccess are 2, 4, and 8 bytes, but many vector processors support larger
izes [1]. The designer of an architecture must decide two main issues
hen the size of a memory access can be greater than the size of

he memory locations. One is data alignment, which determines the
ddresses permitted for accesses that are wider than a memory location.
he other is endianness, which maps the memory locations involved in
ach access to chunks of the same size of the accessed word. Since this
ize is usually a byte, endianness is also referred to as byte order. For
xample, suppose that the word includes at least two bytes, 𝐵𝑚 and
𝑙, and that the bits of 𝐵𝑚 are more significant than the bits of 𝐵𝑙:

n the little-endian byte order, 𝐵𝑚 will be stored in a higher memory
ocation than 𝐵𝑙, while in the big-endian byte order, 𝐵𝑚 will be stored

∗ Corresponding author.
E-mail addresses: guerre@dte.us.es (D. Guerrero), germancq@dte.us.es (G. Cano-Quiveu), jjchico@dte.us.es (J. Juan-Chico), amillan@us.es (A. Millan),

in a lower memory location than 𝐵𝑙 [2,3]. Most architectures use one
of the previous orders. For example, a picoJava processor uses the
little-endian byte order [4], while the SPARC V8 architecture uses the
big-endian byte order [5]. Several architectures, called bi-endian [6],
use both. However, a few use other byte orders called mixed-endian
(or middle-endian). In a mixed-endian order, the most significant half
of a word is stored immediately after or immediately before the least
significant half, depending on the size of that word. For example, in
the vintage PDP-11 processor, words of two bytes are stored in little-
endian order, that is, the most significant byte is stored after the least
significant byte. If this processor stores a word of four bytes, then the
word is split into two subwords of two bytes and the most significant
subword is stored before the least significant subword, whereby each
two-byte subword is still stored in little-endian order.

The communication between systems that use different byte orders
is problematic [7]. Nowadays, heterogeneous Multiprocessor System-
on-Chip (MPSoC) can include several processors with different endian-
ness and therefore these problems can arise even when the systems are
on the same chip [8–10]. For example, if a processor has to submit
an integer to another processor with a different byte order through
shared memory, then a protocol must be established. The first processor
vailable online 12 September 2020
141-9331/© 2020 Elsevier B.V. All rights reserved.

ellido@dte.us.es (M.J. Bellido), julian@us.es (J. Viejo), pruiz@us.es (P. Ruiz-de-Cl

ttps://doi.org/10.1016/j.micpro.2020.103268
eceived 2 December 2019; Accepted 10 September 2020
avijo), ostua@dte.us.es (E. Ostua).

http://www.elsevier.com/locate/micpro
http://www.elsevier.com/locate/micpro
mailto:guerre@dte.us.es
mailto:germancq@dte.us.es
mailto:jjchico@dte.us.es
mailto:amillan@us.es
mailto:bellido@dte.us.es
mailto:julian@us.es
mailto:pruiz@us.es
mailto:ostua@dte.us.es
https://doi.org/10.1016/j.micpro.2020.103268
https://doi.org/10.1016/j.micpro.2020.103268
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2020.103268&domain=pdf

Microprocessors and Microsystems 78 (2020) 103268D. Guerrero et al.

I
o
b
f
o
t
f

could permute the bytes used to code the integer before writing them in
accordance with the order used by the second processor. Alternatively,
the first processor could write the bytes using its native order and
the second should carry out the permutation after reading said bytes.
Similar problems arise when dealing with files. Not all the file formats
use the same byte order. If a system must read or write files with
a format that uses a different byte order, then part of the executed
instructions must be employed to reorder bytes [11]. Byte reordering
also implies a severe penalty in emulators if the endianness of the guest
and the host systems differ [12,13]. This penalty can be considerably
reduced in architectures that have instructions to reorder the bytes
of a register, such as the Intel 486 [14], although the penalty is not
completely removed. It may be deemed that this presents no problem
in bi-endian architectures, but it should be taken into account that,
in certain architectures, application processes cannot change the endi-
anness. This means that application processes must call the operating
system to use the alien byte order. Worse still, library functions will
probably be designed to use the native byte order and hence application
processes will have to carry out a system call to switch to the native
endianness before calling each function and then carry out another
system call after every function call to return to the alien endianness.
Similarly, if a function is going to use a byte order that differs from
that used in the main code, then a system call must be carried out
at the beginning of the function and another call before returning.
Of course, each system call implies a severe overhead. In other bi-
endian architectures, application processes can change the bit of the
configuration register employed to set the endianness and hence they
can switch the byte order with very little penalty [15]. In certain
processors, the operation code specifies the endianness to be used and
hence the penalty can be completely removed. For example, the native
byte order of an x86 processor is little-endian, but if its Instruction Set
Architecture (ISA) includes the MOVBE instruction, then it can carry
out big-endian memory accesses [13]. Obviously, this instruction has
its own operation code. Analogously, including instructions to support
other mixed-endian byte orders would require additional operation
codes. The purpose of this paper is to introduce an efficient way to
encode and implement multi-endian support in architectures with data
alignment restrictions.

The rest of the paper is organized as follows. In the next section,
byte order and data alignment are formally defined. In Section 3,
the proposed functionality is described. In Section 4, implementation
details are discussed. Section 5 details how to write software to take
advantage of the introduced functionality. Experimental performance
results are shown in Section 6. The last section presents a summary of
the conclusions.

2. Background

Hereinafter, we will use the following notation to describe a mem-
ory access:

• 𝑊 : Word to be read or written.
• 𝑁 : Size of 𝑊 in bytes. In this paper we will assume this to be a

power of 2.
• 𝑡: Logarithm of 𝑁 to base 2. Hence 𝑁 = 2𝑡.
• 𝑥: An element of Z𝑁 = {0, 1, 2,… , 𝑁 − 1}.
• 𝑥𝑖: 𝑖th bit of the binary (base 2) representation of 𝑥. Hence 𝑥 =
∑𝑡−1

𝑖=0 𝑥𝑖2
𝑖.

• 𝑊𝑖: 𝑖th bit of 𝑊 , whereby the concatenation of the bits 𝑊8𝑁−1,
. . . , 𝑊1 and 𝑊0 is 𝑊 .

• 𝐵𝑥: concatenation of the bits 𝑊8𝑥+7, . . . , 𝑊8𝑥+1 and 𝑊8𝑥+0, hence
the concatenation of the bytes 𝐵𝑁−1, . . . , 𝐵1 and 𝐵0 is 𝑊 .

• 𝐴: Address of the lowest memory location employed to store 𝑊 .
• 𝐴𝑖: 𝑖th bit of the binary (base 2) representation of 𝐴.

Additionally, we will use the prefix $ for hexadecimal numerals. In the
following subsections, we will detail decisions that must be made when
designing an architecture whenever the size of the memory locations
2

and the size of the words read or written may differ.
Table 1
Permutation used by the PDP-11 in four byte accesses.
𝑥 0 1 2 3

𝑃PDP4B(𝑥) 2 3 0 1

Table 2
Memory dumps of systems using different processors.

Address 𝐴 + 0 𝐴 + 1 𝐴 + 2 𝐴 + 3

Data picoJava $40 $30 $20 $10
Data SPARC V8 $10 $20 $30 $40
Data PDP-11 $20 $10 $40 $30

2.1. Byte order

In most architectures, to access a word 𝑊 of length 𝑁 , the ad-
dress 𝐴 of the lowest memory location to be read or written must be
provided. For example, if it is a write access, the component bytes
𝐵0, 𝐵1,… , 𝐵𝑁−1 of 𝑊 will be stored in the memory locations 𝐴 +
0, 𝐴 + 1,… , 𝐴 + 𝑁 − 1, but not necessarily in that order. The byte
order convention of the architecture maps those bytes to the memory
locations. More formally, each byte 𝐵𝑥 will be read or written in the
memory location 𝐴 + 𝑃𝑁 (𝑥), where 𝑃𝑁 is a permutation of Z𝑁 as
determined by the architecture. The most widely used permutations
include the following:

• Identity function on Z𝑁 : This permutation is defined by 𝑖𝑑Z𝑁
(𝑥) =

𝑥.
• (𝑁 − 1)’s complement: This permutation is defined by 𝐶𝑁−1(𝑥) =
𝑁 − 1 − 𝑥.

Little-endian architectures use the first permutation, while big-endian
architectures use the second. The mixed-endian permutation used by
the PDP-11 in four-byte accesses, which we denote as 𝑃PDP4B, is shown
in Table 1. As an example, Table 2 shows the content of the ac-
cessed memory locations of computers using a PicoJava processor
(little-endian), a SPARC V8 processor (big-endian), and a PDP-11 pro-
cessor (mixed-endian) immediately after storing the word $10203040 at
address 𝐴.

Although other mixed-endian orders are rarely used, we will define
them formally in order to explain the contribution introduced in this
paper. In order to specify a mixed-endian order, it is necessary to set,
for every word size greater than a byte, whether the most significant
half of the word must be stored before or after the least significant half.
Thus, if the size of the word is 𝑁 = 2𝑡 (with 𝑡 > 0) it is necessary to
ascertain:

1. whether the most significant half of each word of size 21 must
be stored before or after the least significant half.

2. whether the most significant half of each word of size 22 must
be stored before or after the least significant half.
⋮

𝑡. whether the most significant half of each word of size 2𝑡 must
be stored before or after the least significant half.

f the same decision is made for every word size, then the resulting
rder will be little-endian or big-endian and therefore little-endian and
ig-endian are particular cases of mixed-endian orders. In general, since
or every size there are two options, the permutation of a mixed-endian
rder can be defined by a string of 𝑡 bits. Let 𝑚𝑡−1 …𝑚1𝑚0 be that string,
he meaning of each bit 𝑚𝑖 can be chosen arbitrarily. For example, the
ollowing convention can be used:

• 𝑚𝑖 = 0: the most significant half of each word of size 2𝑖+1 is stored
in higher memory locations than those of the least significant half
(as in little-endian).

Microprocessors and Microsystems 78 (2020) 103268D. Guerrero et al.

W
t

w
b
t
𝑚
t
b
t
o
t

w
t

m
a
i

s
a
a
l
r
i
s

F
u
a

• 𝑚𝑖 = 1: the most significant half of each word of size 2𝑖+1 is stored
in lower memory locations than those of than the least significant
half (as in big-endian).

e denote the permutation specified by the string 𝑚𝑡−1 …𝑚1𝑚0 using
his convention as 𝑃 𝑙(𝑚𝑡−1..𝑚1𝑚0), since if every 𝑚𝑖 = 0, then the

little-endian order is set. This permutation can be computed with the
formula

𝑃 𝑙(𝑚𝑡−1 …𝑚1𝑚0)(𝑥) =
𝑡−1
∑

𝑖=0
(𝑚𝑖 ⊕ 𝑥𝑖)2𝑖 (1)

here ⊕ is the XOR operator and 𝑥𝑖 is the bit at position 𝑖 of the
inary representation of 𝑥. This is simply a formal way to state that
he binary representation of 𝑃 𝑙(𝑚𝑡−1 …𝑚1𝑚0)(𝑥) is a bitwise XOR of
𝑡−1 …𝑚1𝑚0 and 𝑥𝑡−1 … 𝑥1𝑥0. The reason is simple: if 𝑚𝑖 = 0 then

he storing order of the two halves of each word of size 2𝑖+1 cannot
e different from the little-endian order and therefore the 𝑖th bits of
he binary representations of 𝑥 and 𝑃 𝑙(𝑚𝑡−1 …𝑚1𝑚0)(𝑥) must be equal;
therwise they must be different. An alternative convention can assign
he opposite meaning to each bit 𝑚𝑖 of the string 𝑚𝑡−1 …𝑚1𝑚0, that is:

• 𝑚𝑖 = 1: the most significant half of each word of size 2𝑖+1 is stored
in higher memory locations than those of the least significant half
(as in little-endian).

• 𝑚𝑖 = 0: the most significant half of each word of size 2𝑖+1 is stored
in lower memory locations than those of the least significant half
(as in big-endian).

We denote the permutation specified by the string 𝑚𝑡−1 …𝑚1𝑚0 using
the second convention as 𝑃𝑏(𝑚𝑡−1 …𝑚1𝑚0), since if every 𝑚𝑖 = 0, then
the big-endian order is set. This permutation can be computed with the
formula

𝑃𝑏(𝑚𝑡−1 …𝑚1𝑚0)(𝑥) =
𝑡−1
∑

𝑖=0
(𝑚𝑖 ⊙ 𝑥𝑖)2𝑖 (2)

here ⊙ is the XNOR operator. Again, this is a formal way to state that
he binary representation of 𝑃𝑏(𝑚𝑡−1 …𝑚1𝑚0)(𝑥) is a bitwise XNOR of
𝑚𝑡−1 …𝑚1𝑚0 and 𝑥𝑡−1 … 𝑥1𝑥0. For example, the permutation used by the
PDP-11 in four-byte accesses can be described by the string 𝑚1𝑚0 = 10
using the first convention, or by the string 𝑚1𝑚0 = 01 using the second
convention. Note that 𝑃PDP4B = 𝑃 𝑙(10) = 𝑃𝑏(01) as shown in Table 1.

2.2. Data alignment

By definition, a memory access to a word 𝑊 of 𝑁 bytes at address
𝐴 is aligned if and only if 𝐴 is multiple of 𝑁 . The problems associated
to unaligned accesses arise when designing the interconnection of
the load/store units of a processor with the memory system. Such
interconnection is exemplified in Fig. 1. The system in this example
uses little-endian order, has addresses of 𝑃 bits and general purpose
registers of 2𝑟 bytes with 𝑟 = 2, although it can be easily extrapolated
to other byte orders and values of 𝑟. When a word is read or written,
the load/store unit provides to the memory system all the address
bits except the 𝑟 least significant, i.e. 𝐴𝑝−1𝐴𝑝−2 …𝐴3𝐴2. The memory
system can provide simultaneous access to the memory locations at
the consecutive addresses 𝐴𝑝−1 …𝐴200, 𝐴𝑝−1 …𝐴201, 𝐴𝑝−1 …𝐴210 and
𝐴𝑝−1 …𝐴211. The load/store units generates the respective control
signal 𝐸𝑁00, 𝐸𝑁01, 𝐸𝑁10 and 𝐸𝑁1 to tell the memory system which
of those four bytes memory locations will be accessed. Internally, the
load/store units uses the 𝑟 least significant address bits, i.e. 𝐴1 and 𝐴0,
to map the accessed memory locations to the bytes of the word 𝑊 to be
read or written. For example, if a single byte at a logical address 𝐴 such
that 𝐴1 = 1 and 𝐴0 = 0 is accessed, then the data lines corresponding to
the memory location 𝐴𝑝−1 …𝐴210 will be connected to 𝐵0, i.e. the bits
𝑊7…0 of 𝑊 , and only the control signal 𝐸𝑁10 will be activated. The
same happens if a word of two bytes at the same address is accessed,
3

but additionally the data lines corresponding to the memory location
Fig. 1. Interconnection of a load/store unit with memory.

𝐴𝑝−1 …𝐴211 will be connected to 𝐵1, and the control signal 𝐵11 will be
also activated. In general, in an aligned access to a word of size 𝑁 = 2𝑡,
the logical address 𝐴 of the lowest memory location of those employed
to store the word is a multiple of 2𝑡, that is, the 𝑡 least significant bits of
this logical address are zero. Therefore, all the addresses in the range
[𝐴,𝐴 +𝑁 − 1] match in the 𝑃 − 𝑡 most significant bits. Since 𝑡 ≤ 𝑟, this
implies that the 𝑃 −𝑟 most significant bits of the logical addresses of the

emory locations employed to store the word are the same and can be
ccessed simultaneously. From the load/store unit point of view, this
nvolves a single access to a N-byte width memory.

In order to exemplify why unaligned accesses are more problematic,
uppose that the load/store unit of Fig. 1 must read a word of two bytes
t address 3. The bytes of this word are stored in memory locations 3
nd 4. Since the bits 𝐴2 of the addresses 3 and 4 fail to match, the
oad/store unit has to carry out two consecutive memory accesses to
ead the whole word. In general, any unaligned access has to be split
nto sub-accesses. Hence, implementing unaligned accesses involves
everal drawbacks:

• Unaligned accesses are slower.
• The second sub-access necessary to carry out an unaligned access

can produce a page fault. Taking this into account complicates
page fault management.

• The atomic read–modify–write operations are more complex since
they may require two additional memory sub-accesses.

• The implementation of unaligned accesses requires hardware re-
sources.

or these reasons, many high performance processors do not implement
naligned accesses. As previously mentioned, the 𝑡 least significant
ddress bits 𝐴𝑡−1 …𝐴1𝐴0 of any aligned access to a word of 2𝑡 bytes are

zero. Hereinafter, these bits are denoted LSA bits. If a processor does
not support unaligned accesses, its behaviour when any of the LSA bits
is not zero must be specified. Two alternative behaviours have been
used in existing architectures:

1. One option, used in the Altivec ISA extension [16], is to sim-
ply ignore the 𝑡 LSA bits. Therefore, when the processor is

instructed to access a word at address 𝐴, the starting address of

Microprocessors and Microsystems 78 (2020) 103268D. Guerrero et al.

p
t
c

3

a
l
c
w
r

A

t
t
b
t
e
e
L
i

p
u
t
p
t
s
e
h
a
t
r
k
t
s
a
t
H
h
o
f
f

4

s
t
e
i
I
h
o
i
c
F
e
s
e
t
e
i
o
n
i
d

Fig. 2. Interconnection of a load/store unit implementing the proposed functionality
with memory.

the word that will actually be accessed is 𝐴− (𝐴 mod 2𝑡). An ob-
vious advantage of this option is that it is easily implementable.
Furthermore, no extra instructions are necessary to explicitly
truncate (align-down) an address when handling addresses to the
processor [17].

2. The most widely used option is to assume that a correct program
will never produce such an access. The processor includes hard-
ware to check that the 𝑡 LSA bits are zero and, if any of these bits
are one, then an exception is flagged to report that the program
is erroneous.

In any of the previous options, when correct access to a word of 2𝑡 bytes
is carried out, the 𝑡 LSA bits are meaningless and are not used. This
aper introduces a third alternative behaviour by assigning semantics
o those wasted bits that will be helpful when dealing with endianness
onversion.

. Semantics for the LSA bits

Our objective is to modify architectures that do not support un-
ligned accesses so that a LSA bit that is different from zero will no
onger imply a programming error. Instead, it will indicate that the
orresponding memory access must use a non-native byte order. We
ill define semantics for the LSA bits that will meet the following

equirements:

1. If all the LSA bits are zero, then the memory access will use
the byte order of the original architecture. This will ensure
backward compatibility at binary-code level since no correct
program written for the original architecture will produce a
memory access with an LSA bit that differs from zero.

2. It must be possible to use several byte orders, including at least
little-endian and big-endian, by choosing the values of the LSA
bits of the memory access.

3. The modified architecture must be implementable without any
time penalty with respect to the original architecture.

s in the Altivec ISA extension, when a word of size 𝑁 = 2𝑡 is read
or written using the effective address 𝐴, the starting address of the
word will be 𝐴 − (𝐴 mod 2𝑡). However, in contrast to the Altivec ISA
extension, the byte order will depend on the 𝑡 LSA bits 𝐴𝑡−1 …𝐴1𝐴0. In
particular, the permutation 𝑃 𝑙(𝐴𝑡−1 …𝐴1𝐴0) will be used if the original
4

architecture is little-endian, and the permutation 𝑃𝑏(𝐴𝑡−1 …𝐴1𝐴0) will d
be used if the original architecture is big-endian, where 𝑃 𝑙 and 𝑃𝑏 are
the functions defined by the Eqs. (1) and (2). Note that if every LSA
bit is zero (i.e. 𝐴𝑡−1 …𝐴1𝐴0 = 0…00), then 𝑃 𝑙(𝐴𝑡−1 …𝐴1𝐴0)(𝑥) = 𝑥
and 𝑃𝑏(𝐴𝑡−1 …𝐴1𝐴0)(𝑥) = 𝑁 − 1 − 𝑥, and therefore the permutation
of the original architecture is used and the first requirement is met.
Furthermore, if every LSA bit is one (i.e. 𝐴𝑡−1 …𝐴1𝐴0 = 1…11), then
𝑃 𝑙(𝐴𝑡−1 …𝐴1𝐴0)(𝑥) = 𝑁 − 1 − 𝑥 and 𝑃𝑏(𝐴𝑡−1 …𝐴1𝐴0)(𝑥) = 𝑥 and hence
he permutation used corresponds to big-endian (if the original archi-
ecture is little-endian) or little-endian (if the original architecture is
ig-endian) and the second requirement is met. Moreover, it is possible
o carry out a memory access using any mixed-endian permutation. For
xample, in order to read or write a word of four bytes using the mixed-
ndian permutation 𝑃PDP4B of the PDP-11, we simply have to make the
SA bits 𝐴1𝐴0 equal to 10 if the native byte order is little-endian, or 01
f the native byte order is big-endian.

Since no correct program written for the original architecture will
roduce a memory access with an LSA bit that differs from zero, the
naligned access exception can be eliminated in the modified architec-
ure without losing binary-code compatibility. However, for debugging
urposes, it could be desirable to introduce a way to mask that excep-
ion instead of eliminating it. For example, many architectures include
pecial purpose registers to store information regarding the state of
xecution of the current process. Several bits of these registers often
ave no associated meaning and are reserved for future versions of the
rchitecture. The proposed variation of the architecture may use one of
hese bits to specify whether the unaligned access exception should be
aised when the value of an LSA bit is not zero. If the operating system
eeps a separate value of this special purpose register for every process,
hen every process can enable or disable the exception separately. If the
pecial purpose register can only be modified in supervisor mode, then
n user process that wants to use a non native byte order would have
o call the operating system to disable the unaligned access exception.
owever, this implies very little overhead since the user process only
as to make the call once. The process does not need to make any
ther system calls to disable the new functionality before calling library
unctions written for the old version of the architecture, since these
unctions will work as before.

. Implementation

The implementation of the proposed variation of an architecture is
traightforward. It simply requires a modification of the interconnec-
ion of the load/store units with memory and simple changes in the
xception handling. As an example, Fig. 2 shows a modification of the
nterconnection circuit of Fig. 1 to implement the new functionality.
n general, if the general purpose registers of the modified architecture
ave a size of 2𝑟 bytes, then the memory system can provide simultane-
us access to 2𝑟 consecutive memory locations. The load/store circuitry
ncludes 𝑟 layers of swappers labelled from 0 to 𝑟 − 1. Each swapper
onsists of two multiplexers/demultiplexers in parallel, as shown in
ig. 3. The set of swappers at level 𝑖 will or will not swap both halves of
ach subword of size 2𝑖+1 bytes depending on the value of the control
ignal 𝑆𝑖. If the native order of the architecture is little-endian, then
ach control signal 𝑆𝑖 is connected directly to the address bit 𝐴𝑖. If
he native order of the architecture is big-endian, then the value of
ach control signal 𝑆𝑖 also depends on the size of the accessed word
n the following way: if the accessed word has 2𝑡 bytes then the value
f each control signal 𝑆𝑖 will be 𝐴𝑖 if 𝑖 ≥ 𝑡 or 𝐴𝑖 if 𝑖 < 𝑡. Note that the
ew implementation introduces no time penalty since the delay of the
nterconnection circuits of Figs. 1 and 2 are the same, that is, twice the
elay of a multiplexer/demultiplexer. Therefore, the third requirement

escribed in the previous section is met.

Microprocessors and Microsystems 78 (2020) 103268D. Guerrero et al.

d

Fig. 3. Swapper circuit.

5. Software

In an architecture with the proposed functionality, each multibyte
word 𝑊 of size 𝑁 = 2𝑡 stored in memory can be accessed using 𝑁
ifferent addresses that only differ in the 𝑡 LSA bits. The lowest of

these addresses must be used to read or write 𝑊 using the native byte
order of the architecture, and therefore we will call it the native-endian
address. The highest of these addresses will be called the reverse-endian
address. Hence, the address to be used for access in little-endian,
that is, the little-endian address, is the native-endian address if the
architecture is little-endian, but if the architecture is big-endian, then
the little-endian address is the reverse-endian address. Analogously, the
big-endian address is the native-endian address if the architecture is
big-endian or the reverse-endian address if the architecture is little-
endian. In general, any of the 𝑁 mixed-endian byte orders can be
used by selecting one of the 𝑁 addresses of the word. It could be
thought that taking advantage of this functionality is difficult since
the programmer must use different addresses to access the same word
depending on the byte order to be used. Fortunately, this can be
easily solved in Reduced Instruction Set Computer (RISC) architectures
by using assembler directives, since these architectures include the
following features [18]:

• The only instructions with operands in memory are of load/store
type.

• There are only a few data addressing modes, usually only imme-
diate and register (which do not involve memory) and base plus
displacement.

Therefore, to use a non-native byte order, it is only necessary to define
a pseudoinstruction for every load/store instruction of the ISA. The
assembler will replace every instance of the pseudoinstruction with
the corresponding load/store instruction of the ISA with the same
parameters, but a constant which depends on the desired byte order
will be added to the offset. If this constant is simply the size of the
accessed word in bytes minus one and it is added to a native-endian
address, then the result will be the corresponding reverse-address. For
example, suppose we have modified the OpenRISC 1000 32-bit big-
endian architecture [19] with the proposed semantics. One of the
instructions of its ISA is Load Half Word and Extend with Sign (l.lhs).
We can use assembler directives to define an analogous little-endian
pseudoinstruction l.lelhs so that every line in the form

l.lelhs rD,Ia(rA)

will be replaced with

l.lhs rD,Ib(rA)
5

where the offset Ib is simply Ia plus one (since the size of the access is
two bytes). The same holds for store instructions, such as Store Single
Word (l.sw): an analogous little-endian pseudoinstruction l.lesw
can be defined so that every line in the form

l.lesw Ia(rA),rB

will be replaced with

l.sw Ib(rA),rB

where the offset Ib is Ia plus three (since the size of the access is four
bytes). In this way, the endianness conversion is automatically carried
out by the assembler. The programmer only needs to know that, as in
the original architecture, every access must be aligned. Note that the
memory access and the endianness conversion is carried out using a
single assembler instruction.

Carrying out the endianness conversion in C is also very simple,
even if the underlying architecture is not RISC, by using the macros of
Fig. 4. The parameter of the le and be macros must be an l-value with
a native endian address. The first parameter expands to an l-value with
a little-endian address, while the second expands to an l-value with a
big-endian address. They can be used to read variables in an alien byte
order, but can also be used to write in an alien byte order when they
are the left operand of an assignment. For example, suppose we want
to assign to a variable A the value of another variable B multiplied by
three. If both variables are stored using the native byte order, then the
C code should be the following:

A=3*B;

If B is stored in little-endian and A must be stored in big-endian, then
the code should be:

be(A)=3*le(B);

Note that, on the condition that the addresses of the arguments of
the macros are known at compilation time, the corresponding binary
code would have the same size and execution time and hence the
endianness conversion introduces no penalty. To carry out endianness
conversions involving arrays, the lea and bea macros can also be
used. The parameter of these macros must be a pointer with a native-
endian address to a word. The first macro expands to a pointer with
little-endian address to the same word, while the second expands to a
pointer with big-endian address to the same word. Again, when they
are part of the left operand of an assignment, it is possible to write
in an alien byte order. For example, suppose A is an one-dimensional
array, B is a two-dimensional array, and the value 3*B[2][3] must
be assigned to A[5]. If both arrays are stored using the native byte
order then the following code should be used:

A[5]=3*B[2][3];

If B is stored in little-endian and A must be stored in big-endian, then
the code could be:

bea(A)[5]=3*lea(B)[2][3];

or alternatively:

be(A[5])=3*le(B[2][3]);

Again, the endianness conversion introduces no penalty. This can easily
be extended to include any mixed-endian byte order. For example, the
pdp and pdpa macros of Fig. 4 make it possible to use the byte order
of the PDP-11 architecture.

More advantages arise when dealing with functions with parameters
that are references. To exemplify this, suppose that a library has a
function with the following interface:

Microprocessors and Microsystems 78 (2020) 103268D. Guerrero et al.

v

T
n
r
n
w

f

I
r
t
i
n

b

T

I
f
c
a
a
l

f

O
f

Fig. 4. Macros defined in aebo.h.
oid foo(long* bar, int table[],...);

his is a ‘normal’ function in the sense that the parameters use the
ative byte order of the architecture. If we want the function to
ead and/or write the values of the arguments native_bar and
ative_table in the native endianness, it could be called in this
ay:

oo(&native_bar,native_table,...);

n a conventional architecture, if we wanted the function to be able to
ead and/or write one or more arguments using different byte orders,
hen it would be necessary to introduce at least one new parameter in
ts interface in order to select the desired endianness. Therefore, the
ew version of the function could be called in this way:

iendian_foo(endian_select,&bar,table,...);

his has several drawbacks:

• Obviously, the new function must be written and compiled.
• The new function cannot replace the old function because they

have different interfaces and hence both versions must be main-
tained.

• It is necessary to include code in the new function to evaluate the
new parameter and to act thereon. This introduces a penalty even
if the ISA includes instructions to read and write memory in an
alien byte order.

n contrast, if the architecture were extended to support the proposed
unctionality, then there would be no need to rewrite nor even re-
ompile the function to use selectable endianness as long as it always
ccessed each word as a whole. For example, the arguments my_bar
nd my_table would be accessed by the function in big-endian and
ittle-endian respectively, simply by calling it in this way:

oo(bea(&my_bar),lea(my_table),...);

nce more, there would be no penalty in the execution time of the
6

unction for using an alien byte order.
Fig. 5. Simplified software filter that process data in native byte order.

6. Results

In order to measure the impact of the introduced functionality, the
proposed modification has been applied to the 32-bit OpenRISC 1000
architecture. This architecture was chosen for the following reasons:

• Although an OpenRISC 1000 implementation supporting
unaligned accesses can be carried out, the architecture estab-
lishes that, by default, unaligned accesses are not allowed and
should trigger an exception [19]. For this reason, the proposed
modification can be applied.

• There are open implementations that can easily be modified
and synthesized for the reconfigurable hardware available to the
authors [20].

• There are unrestricted operating systems and tool-chains avail-
able for the architecture that will allow performance measure-
ments [21,22].

The original and modified architectures have been implemented, and
programs with identical functionality have been executed in both im-
plementations. These programs are versions of a basic filter written in
C for the original architecture, which have been improved to process
data in big-endian and little-endian. The original filter simply removes
the DC offset of a set of 32-bit samples written in the native byte order.
A simplification of its code is shown in Fig. 5.

Microprocessors and Microsystems 78 (2020) 103268D. Guerrero et al.

f
T
a
e
r

7

l
e
o

8

i
T

Table 3
Synthesis results.

Architecture Clock frequency LUTs Registers

Original Maximum (100 MHz) 10 619 7779
Modified Maximum (100 MHz) 10 552 7778

Table 4
Execution time comparison.

Original time (s) Modified time (s) Speed up
Mean (Std. Dev.) Mean (Std. Dev.)

User 0.505 (0.023) 0.200 (0.012) 60.46%
System 0.344 (0.040) 0.345 (0.030) −0.26%
Total 0.865 (0.043) 0.559 (0.032) 35.33%

Fig. 6. Simplified improved filter for the original architecture.

6.1. Synthesis

An open implementation of the original architecture called mor1kx
[20] and a modification to support the proposed functionality have
been synthesized for the Digilent Nexys A7 Board [23] featuring a
Xilinx Artix XC7A100T-CSG324 FPGA chip [24]. The only part of the
data unit modified to support the proposed functionality is the com-
binational logic of the load/store unit, and the only difference in the
behaviour of the control unit is that the unaligned access exception is
disabled and hence the number of clock cycles required to execute each
instruction are the same in both implementations. The full projects,
including the bit streams, can be downloaded from [25] and [26].
The default options of the Vivado tool are used for synthesis. Results
are as shown in Table 3. Since both implementations reached the
maximum operation frequency supported by the board, i.e. 100 MHz,
the execution time of a program written for the original architecture is
the same in both. The employed resources were slightly reduced in the
modified version.

6.2. Software test bench

The performance measurement is carried out under the Linux kernel
4.4.0 [21]. Since the proposed semantics ensures backward compatibil-
ity at binary-code level, the implementation of the modified architec-
ture successfully runs the operating system of the original architecture
without modifications. Furthermore, the execution time of the software
written for the original architecture turns out to be the same. The
7

Fig. 7. Simplified improved filter for the modified architecture.

improved versions of the software filter used in the test have to deal
with the fact that the data may be written in little-endian byte order. It
must be noted that the little-endian byte order is optionally supported
by the OpenRISC 1000 architecture. If an implementation supported
said order, then the little-endian byte order would be activated by
setting the Little Endian Enable (LEE) bit of the SR register. However,
it would be helpless in this case since it would not be possible to
selectively change the endianness used by each process, and mor1kx
does not support this functionality. Hence, the improved filter for
the original architecture will carry out the endianness conversion by
software using the endian library of glibc. A modification of the
dc_offset and add_dc library functions used in the program for
the original architecture to deal with arguments in an alien byte order
would be inefficient since the input data should be converted twice.
Instead, the input data will be converted to the native byte order before
processing, and output data will be converted to the target byte order
as shown in Fig. 6. The improved filter for the modified architecture
is much simpler, since only the invocation of the functions have been
modified, as shown in Fig. 7. The full program can be downloaded
from [27]. The programs were compiled using the 5.3.0 version of
the or1k-linux-musl-gcc tool-chain [22]. The execution time of
both programs with random files of 250 K bytes stored in RAM was
measured 100 times. The measurements can be repeated by executing
the test_bench.sh shell script available in [27]. The results are
shown in Table 4. The total execution time was reduced by ca. 35%
with the proposed functionality, while the user execution time was
reduced by over 60%. This result was expected since the OpenRISC
1000 ISA does not include instructions to reorder the bytes of a register
and therefore the program for the original architecture had to carry out
each endianness conversion using several logic and shift instructions.
In particular, for 4-byte words, the endian library uses the internal C
unction __bswap32, which uses many instructions as shown in Fig. 8.
he overhead of these instructions was removed in the modified version
nd hence the execution time was remarkably reduced. The size of the
xecutable was also reduced from 9428 bytes to 9112 bytes, that is, a
eduction of 3.35%.

. Discussion

The processor modification was very straightforward, required neg-
igible engineering cost and does not impact the performance when ex-
cuting legacy code. Because of that it may be desirable independently
f the expected applications of the processor.

. Conclusions

Semantics for the least significant address bits of multibyte accesses
n architectures that only support aligned accesses have been proposed.
hey have the following advantages:

• Existing architectures can easily be modified to include the pro-
posed semantics so that a single instruction can carry out a
memory access and a byte order conversion.

• The modification does not require new instructions nor operation
codes since the least significant address bits are employed to code
the byte order to be used.

Microprocessors and Microsystems 78 (2020) 103268D. Guerrero et al.

D

c
i

A

E
T
o

Fig. 8. Assembler code corresponding to the __bswap32 function.

• Any architecture modified to include the proposed semantics will
be backwards compatible at binary-code level and hence their
implementations will be able to run any software written for the
original architecture.

• The modification does not introduce any penalty.
• Assemblers and C compilers of the original architecture can eas-

ily be employed to take advantage of the new functionality by
defining a few simple preprocessor macros.

• With the new functionality, subroutines written for the original
architecture will be able to process referenced data in an alien
byte order without any penalty being incurred. There is no need
to rewrite nor even recompile these subroutines to take advantage
of this functionality.

• An implementation of a traditional architecture was modified
to support the proposed functionality. The modification did not
introduce any penalty in hardware resources nor in execution
time.

• A test bench processing data in a non native byte order intensively
was executed in the original implementation and in the modified
implementation. There was a reduction of over 35% of the total
execution time and over 60% of the user execution time in the
modified implementation.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgements

This work has been partially supported by the Ministerio de
conomía, Industria y Competitividad of Spain under project
IN2017-89951-P (BootTimeIoT) and by the European Regional Devel-
8

pment Fund (ERDF).
References

[1] K. Cooper, L. Torczon, Engineering a Compiler, Elsevier Science, 2011, URL
https://books.google.es/books?id=_tgh4bgQ6PAC.

[2] D. Cohen, On Holy Wars and a Plea for Peace, Computer 14 (10) (1981) 48–54,
http://dx.doi.org/10.1109/C-M.1981.220208.

[3] IEEE standard for information technology–portable operating system interface
(POSIX(R)) base specifications, Issue 7, in: IEEE Std 1003.1-2017 (Revision of
IEEE Std 1003.1-2008), 2018, pp. 1–3951, http://dx.doi.org/10.1109/IEEESTD.
2018.8277153.

[4] J.M. O’Connor, M. Tremblay, PicoJava-I: the Java virtual machine in hardware,
IEEE Micro 17 (2) (1997) 45–53, http://dx.doi.org/10.1109/40.592314.

[5] M. Garcia, E. Francesquini, R. Azevedo, S. Rigo, HybridVerifier: A cross-platform
verification framework for instruction set simulators, IEEE Embedded Syst. Lett.
9 (2) (2017) 25–28, http://dx.doi.org/10.1109/LES.2016.2626980.

[6] I. Horton, Beginning C++, Apress, Berkeley, CA, 2014, pp. 1–22, http://dx.doi.
org/10.1007/978-1-4842-0007-0_1.

[7] M. Arora, The Art of Hardware Architecture: Design Methods and Techniques
for Digital Circuits, Springer New York, New York, NY, 2012, pp. 155–168,
http://dx.doi.org/10.1007/978-1-4614-0397-5_7.

[8] H.E. Yantir, A. Yurdakul, An efficient Heterogeneous register file implementation
for FPGAs, in: 2014 IEEE International Parallel Distributed Processing Symposium
Workshops, 2014, pp. 293–298, http://dx.doi.org/10.1109/IPDPSW.2014.40.

[9] J.-J. Li, S.-C. Wang, P.-C. Hsu, P.-Y. Chen, J.K. Lee, A multi-core software API for
Embedded MPSoC environments, in: Proceedings of the Second Russia-Taiwan
Conference on Methods and Tools of Parallel Programming Multicomputers,
in: MTPP’10, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 40–50, URL http:
//dl.acm.org/citation.cfm?id=1927517.1927524.

[10] J. Henkel, S. Parameswaran (Eds.), Designing Embedded Processors: A Low
Power Perspective, Springer Netherlands, 2007.

[11] M.A.A. Farhan, D.E. Keyes, Optimizations of unstructured aerodynamics compu-
tations for many-core architectures, IEEE Trans. Parallel Distrib. Syst. 29 (10)
(2018) 2317–2332, http://dx.doi.org/10.1109/TPDS.2018.2826533.

[12] R. Auler, E. Borin, The case for flexible ISAs: Unleashing hardware and software,
in: 2017 29th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), 2017, pp. 65–72, http://dx.doi.org/10.
1109/SBAC-PAD.2017.16.

[13] G. Kondoh, H. Komatsu, Dynamic Binary translation specialized for embedded
systems, SIGPLAN Not. 45 (7) (2010) 157–166, http://dx.doi.org/10.1145/
1837854.1736019, URL http://doi.acm.org/10.1145/1837854.1736019.

[14] M. Souza, D. Nicácio, G. Araújo, ISAMAP: Instruction Mapping driven by
dynamic binary translation, in: A.L. Varbanescu, A. Molnos, R. van Nieuwpoort
(Eds.), Computer Architecture, Springer Berlin Heidelberg, Berlin, Heidelberg,
2012, pp. 117–138.

[15] A. Sloss, D. Symes, C. Wright, in: M. Kaufmann (Ed.), ARM System Developer’s
Guide, 2004, p. 689.

[16] K. Diefendorff, P.K. Dubey, R. Hochsprung, H. Scale, AltiVec extension to
PowerPC accelerates media processing, IEEE Micro 20 (2) (2000) 85–95, http:
//dx.doi.org/10.1109/40.848475.

[17] J. Rentzsch, Data alignment: Straighten up and fly right, 2005, URL https:
//www.ibm.com/developerworks/library/pa-dalign/index.html.

[18] J.L. Hennessy, a.A. Patterson, Computer Architecture: A Quantitative Approach,
Elsevier, 2011.

[19] OpenRISC 1000 Architecture Manual, 2012, URL http://opencores.org/
websvn,filedetails?repname=openrisc&path=%2Fopenrisc%2Ftrunk%2Fdocs%
2Fopenrisc-arch-1.0-rev0.pdf.

[20] mor1kx IP core specification, URL https://github.com/openrisc/mor1kx/blob/
master/doc/mor1kx.asciidoc.

[21] Linux kernel 4.4.0 for OpenRISC, URL https://github.com/openrisc/linux/tree/
for-next/kernel.

[22] or1k-linux-musl-gcc tool-chain, URL https://github.com/openrisc/musl-cross.
[23] Nexys A7 FPGA Trainer Board, URL https://store.digilentinc.com/nexys-a7-fpga-

trainer-board-recommended-for-ece-curriculum/.
[24] Artix-7 devices, URL https://www.xilinx.com/products/silicon-devices/fpga/

artix-7.html.
[25] mor1kx synthesized for the Digilent Nexys 4 DDR board, URL https://gitlab.

com/davidguerrero/mor1kx-synthesized-for-the-digilent-nexys-4-ddr.
[26] A mor1kx implementation modified to implement a variation of the 32 bit

OpenRISC 1000 architecture with multiendian capabilities and synthesized for
the Digilent Nexys 4 DDR board, URL https://gitlab.com/davidguerrero/mor1kx-
multiendian.

[27] Software test bench to compare the 32 bit OpenRISC 1000 architecture with a
variation with multiendian capabilities running Linux, URL https://gitlab.com/
davidguerrero/openrisc-1000-multiendian-test-bench.

https://books.google.es/books?id=_tgh4bgQ6PAC
http://dx.doi.org/10.1109/C-M.1981.220208
http://dx.doi.org/10.1109/IEEESTD.2018.8277153
http://dx.doi.org/10.1109/IEEESTD.2018.8277153
http://dx.doi.org/10.1109/IEEESTD.2018.8277153
http://dx.doi.org/10.1109/40.592314
http://dx.doi.org/10.1109/LES.2016.2626980
http://dx.doi.org/10.1007/978-1-4842-0007-0_1
http://dx.doi.org/10.1007/978-1-4842-0007-0_1
http://dx.doi.org/10.1007/978-1-4842-0007-0_1
http://dx.doi.org/10.1007/978-1-4614-0397-5_7
http://dx.doi.org/10.1109/IPDPSW.2014.40
http://dl.acm.org/citation.cfm?id=1927517.1927524
http://dl.acm.org/citation.cfm?id=1927517.1927524
http://dl.acm.org/citation.cfm?id=1927517.1927524
http://refhub.elsevier.com/S0141-9331(20)30427-0/sb10
http://refhub.elsevier.com/S0141-9331(20)30427-0/sb10
http://refhub.elsevier.com/S0141-9331(20)30427-0/sb10
http://dx.doi.org/10.1109/TPDS.2018.2826533
http://dx.doi.org/10.1109/SBAC-PAD.2017.16
http://dx.doi.org/10.1109/SBAC-PAD.2017.16
http://dx.doi.org/10.1109/SBAC-PAD.2017.16
http://dx.doi.org/10.1145/1837854.1736019
http://dx.doi.org/10.1145/1837854.1736019
http://dx.doi.org/10.1145/1837854.1736019
http://doi.acm.org/10.1145/1837854.1736019
http://refhub.elsevier.com/S0141-9331(20)30427-0/sb14
http://refhub.elsevier.com/S0141-9331(20)30427-0/sb14
http://refhub.elsevier.com/S0141-9331(20)30427-0/sb14
http://refhub.elsevier.com/S0141-9331(20)30427-0/sb14
http://refhub.elsevier.com/S0141-9331(20)30427-0/sb14
http://refhub.elsevier.com/S0141-9331(20)30427-0/sb14
http://refhub.elsevier.com/S0141-9331(20)30427-0/sb14
http://refhub.elsevier.com/S0141-9331(20)30427-0/sb15
http://refhub.elsevier.com/S0141-9331(20)30427-0/sb15
http://refhub.elsevier.com/S0141-9331(20)30427-0/sb15
http://dx.doi.org/10.1109/40.848475
http://dx.doi.org/10.1109/40.848475
http://dx.doi.org/10.1109/40.848475
https://www.ibm.com/developerworks/library/pa-dalign/index.html
https://www.ibm.com/developerworks/library/pa-dalign/index.html
https://www.ibm.com/developerworks/library/pa-dalign/index.html
http://refhub.elsevier.com/S0141-9331(20)30427-0/sb18
http://refhub.elsevier.com/S0141-9331(20)30427-0/sb18
http://refhub.elsevier.com/S0141-9331(20)30427-0/sb18
http://opencores.org/websvn,filedetails?repname=openrisc&path=%2Fopenrisc%2Ftrunk%2Fdocs%2Fopenrisc-arch-1.0-rev0.pdf
http://opencores.org/websvn,filedetails?repname=openrisc&path=%2Fopenrisc%2Ftrunk%2Fdocs%2Fopenrisc-arch-1.0-rev0.pdf
http://opencores.org/websvn,filedetails?repname=openrisc&path=%2Fopenrisc%2Ftrunk%2Fdocs%2Fopenrisc-arch-1.0-rev0.pdf
http://opencores.org/websvn,filedetails?repname=openrisc&path=%2Fopenrisc%2Ftrunk%2Fdocs%2Fopenrisc-arch-1.0-rev0.pdf
http://opencores.org/websvn,filedetails?repname=openrisc&path=%2Fopenrisc%2Ftrunk%2Fdocs%2Fopenrisc-arch-1.0-rev0.pdf
https://github.com/openrisc/mor1kx/blob/master/doc/mor1kx.asciidoc
https://github.com/openrisc/mor1kx/blob/master/doc/mor1kx.asciidoc
https://github.com/openrisc/mor1kx/blob/master/doc/mor1kx.asciidoc
https://github.com/openrisc/linux/tree/for-next/kernel
https://github.com/openrisc/linux/tree/for-next/kernel
https://github.com/openrisc/linux/tree/for-next/kernel
https://github.com/openrisc/musl-cross
https://store.digilentinc.com/nexys-a7-fpga-trainer-board-recommended-for-ece-curriculum/
https://store.digilentinc.com/nexys-a7-fpga-trainer-board-recommended-for-ece-curriculum/
https://store.digilentinc.com/nexys-a7-fpga-trainer-board-recommended-for-ece-curriculum/
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html
https://gitlab.com/davidguerrero/mor1kx-synthesized-for-the-digilent-nexys-4-ddr
https://gitlab.com/davidguerrero/mor1kx-synthesized-for-the-digilent-nexys-4-ddr
https://gitlab.com/davidguerrero/mor1kx-synthesized-for-the-digilent-nexys-4-ddr
https://gitlab.com/davidguerrero/mor1kx-multiendian
https://gitlab.com/davidguerrero/mor1kx-multiendian
https://gitlab.com/davidguerrero/mor1kx-multiendian
https://gitlab.com/davidguerrero/openrisc-1000-multiendian-test-bench
https://gitlab.com/davidguerrero/openrisc-1000-multiendian-test-bench
https://gitlab.com/davidguerrero/openrisc-1000-multiendian-test-bench

Microprocessors and Microsystems 78 (2020) 103268D. Guerrero et al.
David Guerrero Martos received his Bsc degree and the
Ph.D. degree in Computer Engineering from the University
of Seville, Spain, in 2000 and 2012, respectively. Since
2002, he has been working as a lecturer in the Department
of Electronics Technology of said university. His research
interests include digital circuit synchronization, hardware
implementation of numerical methods, and computer archi-
tecture. He has published several papers in journals and
conferences.

German Cano received his Bsc degree in computing en-
gineering from the University of Seville, Spain, in 2015.
He has been a Ph.D. student in the Electronics Technology
Department at this university since 2017. His research
interests include Bootloaders, IoT, and SoC.

Dr. Jorge Juan received his Bsc degree (1994) and Ph.D.
degree in Physics (2000) from the University of Seville,
Spain. He is currently a lecturer in the Electronics Tech-
nology Department at this university where he is leading
the Digital Research and Development Group. Dr. Juan
has carried out research in the areas of metastability,
delay modelling, timing and power simulation, and digital
embedded systems.

Alejandro Millan was born in Seville in 1975. He received
his M.Sc. in Computer Engineering in 1999 and his Ph.D. in
2008, from the University of Seville. He works as a Professor
at its Department of Electronics Technology. Since 1999, he
has taught at the School of Computer Engineering and the
Polytechnic School of Engineering. He is a member of its ID2
Research Group where he has participated in 20 research
projects, and he has published in excess of 50 conference
papers and a total of 17 journal papers.
9

Dr. Manuel J. Bellido received his B.Sc. degree (1987)
and Ph.D. degree (1994) in Physics from the University of
Seville, Spain. He has been with the Electronics Technology
Department at this university since 1990 where he holds a
post as a Professor.

Julian Viejo received his M.Sc. and Ph.D. degrees in Com-
puting Engineering from the University of Seville (Spain)
in 2004, and 2011, respectively. He works as an assistant
professor in the Department of Electronics Technology of
that University and has contributed several research papers
to international journals and conferences in the area of
Digital Signal Processing and System-on-Chip design.

Paulino Ruiz-de-Clavijo received his Bsc degree (1999) and
Ph.D. degree (2007) in computer science from the University
of Seville (Spain). He has been with the Electronics Technol-
ogy Department at this university since 1999 where he has
held a post as an assistant professor since 1999. He was
also with the Institute of Microelectronics of Seville, part
of the National Centre of Microelectronics in Spain, from
1998 to 2004. His research work includes system-on-chip
designs, Digital Signal Processing, and embedded micropro-
cessors architecture: areas to which he has contributed in
international conferences and workshops.

Enrique Ostua received his B.Sc. degree in computing
engineering (2003) and his M.Sc. in computing & net-
working engineering (2015) from the University of Seville.
He has been an associate professor in the Department of
Electronics Technology, University of Seville, since 2003.
His research interests include system-on-chip designs and
embedded microprocessor architecture areas, to which he
has contributed in international journals, conferences, and
workshops.

	Address-encoded byte order
	Introduction
	Background
	Byte order
	Data alignment

	Semantics for the LSA bits
	Implementation
	Software
	Results
	Synthesis
	Software test bench

	Discussion
	Conclusions
	Declaration of competing interest
	Acknowledgements
	References

