2104.10044v1 [cs.NE] 28 Mar 2021

arxXiv

BCNN: Binary Complex Neural Network

Yanfei Lif, Tong Geng®, Ang Lif, and Huimin Yu®
Zhejiang University, Hangzhou, Zhejiang, China
1 Pacific Northwest National Laboratory, Richland, WA, USA
aoxuel8@zju.edu.cn, tong.geng @pnnl.gov, ang.li@pnnl.gov, yhm2005 @zju.edu.cn

Abstract—Binarized neural networks, or BNNs, show great
promise in edge-side applications with resource limited hardware,
but raise the concerns of reduced accuracy. Motivated by the
complex neural networks, in this paper we introduce complex
representation into the BNNs and propose Binary complex neural
network — a novel network design that processes binary complex
inputs and weights through complex convolution, but still can
harvest the extraordinary computation efficiency of BNNs. To
ensure fast convergence rate, we propose novel BCNN based
batch normalization function and weight initialization function.
Experimental results on Cifarl0 and ImageNet using state-of-
the-art network models (e.g., ResNet, ResNetE and NIN) show
that BCNN can achieve better accuracy compared to the original
BNN models. BCNN improves BNN by strengthening its learning
capability through complex representation and extending its
applicability to complex-valued input data. The source code of
BCNN will be released on GitHub.

Index Terms—Binarized network networks, complex neural
networks, smart edges, complex number

I. INTRODUCTION

Deep neural networks (DNNs) recently achieved tremendous
success in many computer vision applications. Aiming at
replicating similar success for practical edge-side utilization,
researchers are tweaking the DNN models for resources limited
hardware. Binary neural networks (BNNs) [1], [2]], which adopt
only a bit for a neuron, stand out as one of the most promising
approaches. To accommodate constrained hardware budget,
rather than deducting the number of neurons in a model, BNN
reduces the number of bits per neuron to the extreme — each
element of the input, weight and activation of a BNN layer is
merely a single binary value, implying +1 or -1.

BNNs have demonstrated several appealing features for
embedded utilization: (i) Execution efficiency: the natural
mapping from a BNN neuron to a digital bit makes BNN
extremely hardware-friendly. From the computation perspective,
each 32 or 64 full-precision dot-product calculations can be
aggregated into a Boolean exclusive-or plus a population-
count operation [1]], improving the execution efficiency by
more than 10x [3]]. From the memory perspective, rather than
using a 32-bit single-precision floating-point, or a 16-bit half-
precision floating-point, in BNNs each neuron uses one bit,
substantially improving the utilization of the memory storage
and bandwidth [4]. The combination of the two effects can
bring over three orders of latency reduction for single image
inference compared to full-precision DNNs on GPUs [J3]. (ii)
Low-cost: Due to simpler hardware logic (e.g., avoiding using
floating-point multiplier) and diminished memory demand,
the hardware cost for implementing BNNs is much lower

than DNNs [5]], [6]]. (iii)) Energy-efficiency: Due to low-cost
hardware operations and smaller chip-area [7|], BNN-based
designs are very friendly to portable devices with limited cycle
life of batteries. (iv) Robustness: Due to the discrete parameter
space through the binarization of weight, BNN shows better
robustness than normal DNNs [8]], while certain properties can
be formally verified [9], [[10]. Because of these advantages,
BNNSs have been utilized for a variety of practical applications,
such as auto-driving [[11]], COVID face-cover detection [|12],
smart agriculture [[13]], image enhancement [14], 3D objection
detection [15], etc.

Although BNNs exhibit these attractive features, concerns
have been raised over the reduced accuracy compared to
DNNs, which is largely due to the loss of information in
the binarization process, and the reduced model capacity. Ever
since the proposal of BNNs, continuous efforts have been
invested from the machine learning community on improving
BNN accuracy [16]]—-[25], as briefly summarized in the next
section.

In the meanwhile, complex-valued neural networks [26] have
been proposed as an amendment to the normal DNNs. Most
existing DNNs adopt real-valued representation for the inputs
and weights. However, considering the richer representational
capacity [27]], the better generalization capability [28]], and the
potential to facilitate noise-robust memory retrieval [29]], deep
complex networks have been formulated [26]], in which the
inputs, the weights and the outputs are all complex values.
Correspondingly, the convolution, the batch normalization, the
activation, etc. are reformed in complex operations. It has been
shown that complex networks can deliver comparable or even
better accuracy than DNNs under the same model capacity. A
particularly attractive feature of the complex network is the
ability to embed phase information of the input data naturally
into the network representation. The phase information is
critical for deterministic signals, such as neuronal rhythms in
the brain [30]], Polarimetric synthetic aperture radar (PolSAR)
images [31]], Fourier representation of wave, speech data [32],
multi-channel images like MRI [33]], etc.

Considering the adoption of complex networks for terminal
scenarios, in this work, we propose a novel network called
Binary Complex Neural Network (BCNN) that integrates BNNs
and complex neural networks. BCNN extends BNN with
its richer representation capacity of complex numbers, but
still conserving the high computation efficiency of BNNs for
resource limited hardware. In BCNN, the input, weight and
output of a layer are all binary complex values, i.e., one of
{144, 1—i, —1+44, —1—1}, using dual-bits per neuron — one



for the real part and one for the imaginary part. We propose
binary complex convolution, which follows the complex number
computation rules, but can still be calculated through the
assembly-level xnor-popcnt machine instructions available in
most hardware. Tackling the expensive computation cost of
the original complex network in batch normalization [26],
which involves matrix inversion and square-rooting, in this
work we propose a new batch normalization approach that can
significantly simplify the computation logic while facilitate the
convergence of the training. Furthermore, we propose a BCNN
weight initialization strategy to accelerate the convergence
speed and mitigate the chances of gradient explosion/vanishing.
Evaluation results on the Cifar10 and ImageNet datasets show
that BCNN can achieve better accuracy than BNNs using state-
of-the-art models like ResNet [34], ResNetE [35], [36]], and
NIN [37]. Our contribution in this paper are:

1) We propose the concept of binary complex number,
including its dual-bit storage format and the binary
complex computation mechanism.

2) We propose the binary complex neural network (BCNN),
including quadrant binarization and its gradient.

3) We propose a BCNN-oriented batch normalization func-
tion, significantly lowering the computation cost.

4) We propose a BCNN-oriented weight initialization func-
tion, facilitating better convergence for the training.

5) Evaluations on Cifarl0 and ImageNet datasets show that
BCNN can achieve better accuracy than original BNNs.

This paper is organized as follows. We summarize existing

literature in Section-II, covering theoretical research about
BNNs, the major approaches to enhance BNN accuracy, and
the complex neural networks. We present the design details
of BCNN in Section-III, covering the definition of binary
complex numbers (Section-1II-A), the quadrant binarization
function (Section-III-B), the batch-normalization (Section-III-
C), and the weight initialization (Section-III-D). We evaluate
BCNN in Section-IV and conclude in Section-V.

II. RELATED WORK

We briefly discuss existing literature about BNNs and
complex neural networks.

A. Binarized Neural Networks

Binarized Neural Network (BNN) was originally evolved
from Binarized Weights Network (BWN) [38]] in which only
weights are binarized. The foundation of modern BNNs were
laid by the two cornerstone works [1]], [2] in which the
fundamental components of BNNs were proposed, including
(1) the binarization function and its approximated gradient
through straight-through estimator (STE) on latent variables;
(2) batch-normalization, which is crucial for BNNs to be able
to converge; (3) the necessity to keep full-precision for the first
and last layers. It was later explained by Anderson and Berg
[39] on why BNNs could effectively approximate DNNs: (i)
the binary vector through binarization preserves the direction
of DNN real-valued vectors in the high-dimensional geometry
space; (ii) the bit dot-product (popc (xnor () )), through
batch-normalization, preserves the property of original DNN

dot-product; (iii) the real-value convolution for the first layer
can embed input images into high-dimensional binary space,
which can then be effectively handled by binary operations.
BNNSs are generally criticized for reduced accuracy compared
to their DNN counterparts because of (1) Information loss due
to input binarization and binary activation; (2) Reduced model
capacity due to weight binarization (1 bit per neuron); and
(3) Unsatisfied network structure or training methodologies as
existing popular models and training strategies were mainly
designed for real-value DNNs. Correspondingly, existing works
propose to enhance BNN training accuracy via: (1) Reducing
information loss. This can be achieved by adding gain terms
(i.e., scaling factors) to better approximate DNN activation [16].
Gain terms are extracted based on the statistics of the inputs
[17], [18]], or gradually learned with the training [19]], [20];
(2) Enhancing BNN model capacity. This is done by using
multiple BNN components in the network (e.g., BENN [23] and
Group-Net [22])), or using more bits for a neuron where each
bit represents a basis. The basis can be fixed to powers-of-two
(e.g.,1,2,4,8,...) [17]], or adjustable as residual basis [|18]], [21], or
even learned during training [[19]]; (3) Designing BNN-specific
network structure and training methods. As most existing
network models were designed for DNNs, researchers started to
design BNN-oriented network structures, these include ResnetE
and BinaryDenseNet [24] which adopted more shortcuts for
reusing information to maintain rich information flow in the
network, and MeliusNet [25]], which conserved the mainstream
information flow as full-precision in the first 256 channels, but
using the two-block BNN structure (i.e., a dense block with an
improvement block) for learning and attaching learned results
in separated 64 channels. In this way, most information loss
due to binarization could be avoided. Additionally, Bi-Real
Net redirects the information-rich real-valued activation before
binarization to the next block through a shortcut [35]].
Alternative works concentrated on improving BNN training
methodology. For example, focusing on the sign activation
function and the STE gradient estimator, Alizadeh et al. showed
that adapting the learning rate using second-moment methods
was crucial for the successful adoption of STE in BNN training,
compared with other optimizers [40]. Darabi et al. proposed
a variation of the derivative of the Swish-like activation in
place of the STE mechanism for obtaining more effective
back-propagation functions [20]. Lahoud et al. presented to
use a smooth activation function at the beginning, and then
gradually sharpened it to a binary representation equivalent to
sign during the training [41]. Hou et al. discussed loss-aware
binarization, showcasing a proximal Newton algorithm with
diagonal Hessian approximation that could directly minimize
the loss with respect to the binary weights [42]. Observing that
existing BNNs using real-valued latent weights to accumulate
small update steps, Helwegen et al. viewed the latent weights
as inertia, and introduced a BNN-specific optimizer called
Binary Optimizer (Bop) [43]] for the training. Focusing on other
training aspects, Tang et al. used special regularization items
to encourage the latent floating-point variables approaching
+1 and -1 during the training [18]], Umuroglu et al. placed
pooling before batch normalization and activation [44]. Mishra
et al. guided the training of BNNs through a well-trained,



full-precision teacher network by adjusting the loss function.
Additional BNN works could be found in the two surveys [45],
[46].

This work falls into the second category, aiming at enhancing
BNN model capacity by enhancing the neuron’s expressibility.
BCNN uses dual bits for each complex binary neuron. Neverthe-
less, it is fundamentally different from 2-bit quantization; each
2 bits here embed a binary complex calculation logic, which, as
shown later, is capable of extracting more expressive features.
To ensure fairness, in BCNN, without changing the model
structure, we proportionally reduce the number of channels to
ensure consistent model size.

B. Complex Neural Network

Complex numbers extend one dimensional real number line
(i.e., -00 to o0) to two dimensional complex plane by using the
real axis and the imaginary axis. Although complex numbers do
not exist in the real world, its unique properties and computing
rules provide useful amendments to the representativeness of
real numbers, especially when phase information is presented.
For example, in physics, complex numbers are more suitable
for representing waves, as the coefficients are complex after the
Fourier transform; in neuroscience, neuronal rhythms, which
are crucial for neuronal communication, are characterized by
the firing rate and the phase, thus can be naturally expressed
as complex numbers [30]; in geoscience, PolSAR images
[31]], [47] can offer much more comprehensive and robust
information compared with pure SAR images. The scattering
properties of PoOISAR images can be naturally described by
the complex-valued polarization scattering matrix, where the
amplitude of each element corresponds to the back-scattering
intensity of the electromagnetic wave from the target to the
radar, and the phase corresponds to the distance between the
sensor platform and the target. In biomedical science, being
able to effectively handle phase information greatly facilitates
MRI image reconstruction [33], [48].

Due to the richer representation and the need to process
complex input signals with phases, there have long been
efforts in constructing complex neural networks dating back
to the 1990’s [49]-[52]. The most recent one — Deep
Complex Networks (DCN) was proposed by Trabelsi et al.
[26], which formulated the building blocks of complex-valued
deep neural networks include complex convolution, complex
batch normalization, complex weight initialization strategy, etc.
DCN takes into consideration the correlation between the real
part and imaginary part of the complex inputs and weights,
demonstrating its effectiveness on classification tasks, showing
comparable or even superior performance than real-valued
DNNs with only half of the real-valued network size.

This work is motivated by both DCN and BNN. We try
to systematically integrate the two planes so that: (i) BCNN
can show advanced accuracy compared to BNNs, with its
richer representation through binary complex numbers; (ii)
BCNN can drastically reduce the execution cost compared
with DCNs, which is particularly attractive for embedded and
edge utilization, where low cost, small size, low energy, and
real-time response are usually demanding; (iii) Compared to

BNNs, BCNN can naturally handle complex input signals, such
as wave information directly from the sensors.

III. BINARY COMPLEX NEURAL NETWORK

We present our binary complex neural network (BCNN)
in this section. We first define a binary complex number and
discuss its convolution process. We then present how to perform
complex binarization and binary complex batch normalization.
Finally, we propose a weight initialization strategy for BCNN.

A. Binary Complex Number

Similar to a complex number z = = + 4y that comprises a
real part ”x” and an imaginary part iy, a binary complex
number is defined as 2* = 2b 4 iy® where 2°, y® € {+1, -1}.
Therefore, 2z has four potential values: {—1—1, =144, 1 —1,
1+ 4}, which can be encoded by two digital bits: the first one
implies whether the real part is —1 or +1, while the second
implies whether the imaginary part is — or 1.

For dot-product, if z* = 2 + iy’ is the binary complex
input, Wb = A’ 4+ iBY is the binary complex weight, then
h = ¢+ 1d is the full-precision complex output. The bias is
also a full-precision complex number, which is omitted in the
following discussion for simplicity. Therefore, its dot product
follows the complex calculation rules:

h=c+id= (Ab*l"b_Bb*yb)+i(Bb*xb+Ab*yb) @))

where 2°, 3% A B® € {41, —1}. Compared to BNN binary
dot-product, a BCNN dot-product incorporates 4 binary dot-
products and two extra real-valued additions. In the matrix
notation, it is expressed as:
zb
|17 ]

cl [ A°
i) =[5
B. Quadrant Binarization

Binarization in BNN is the process of converting a full-
precision real number into a binary number: +1 or —1, which
is generally viewed as the non-linear activation function for
BNNE.

Binarization can be performed in two approaches, known as
deterministic and stochastic 1], [2]]. The stochastic one can
potentially offer a better accuracy, but at the expense of high
implementation cost, whereas the deterministic one is merely
a sign function, as shown below:

_RB®
Ab

+1 r>0

Forward: 1% = sign(r) = )
—1 otherwise

Most BNN works adopt the low-cost deterministic binarization
function. Since sign is non-differentiable at 0, and its gradient
is always O otherwise, direct back-propagation is infeasible.
Prior works proposed the Straight-Through-Estimator (STE)
to do the back-propagation:

OLoss  OLoss
Backward: o = oyt Lri<tai
where 7 is the full-precision real input. r® € {41, —1} is the

binary output. Loss is the value of the cost function. £, is




YA
-1+i 1+i
(x<0, y=20) | (x=0, y=0)
»X
(x<0, y<0) | (x=0, y<0)
-1-i 1-i

Fig. 1: Quadrant binarization into a binary complex number.

a clipping threshold, which typically sets to 1. The gradient
of sign function is simply set as an idientity function. The
threshold is used to cancel the gradient, when the inputs are
geting too large, which can assist in the optimization process.

The binarization to a binary complex number is to convert
a complex number into a binary complex number (i.e., one of
{1414, 1—4, —144, —1—1}). We propose quadrant binarization
where the output is determined based on which quadrant the
input complex number belongs to in the two-dimensional Carte-
sian system, as shown in Figure |I} Mathematically, a complex
plane is a geometric representation of the complex numbers
settled by the real axis = and the orthogonal imaginary axis
y, where the two axes partition the plane into four quadrants,
each bounded by two half-axes. Given four quadrants and four
complex binary values, it is natural to link each quadrant with a
complex binary value. The quadrant binarization is determined
by the phase of a complex number, which is critical information
in the complex signals.

This quadrant binarization essentially decouples the real
part and the imaginary part so that both parts could be
processed separately as an ordinary binarization. For the
forward propagation, the binarization is as:

b

2b = sign(x + iy) = sign(z) + dsign(y) = 2 +iy® ()

For the backward propagation, the gradient of the binarization
is through two STEs, and applied over two independent full-
precision latent variables = and y:

OLoss  OLoss .OLoss

92~ agb Mel<tan T i<ty )

This keeps the simplicity of the binarization process for efficient
hardware implementation and memory storage. Note that to
improve accuracy, existing works propose various variants of
the binarization function, such as scaling factor [16]-[20],
approximated sign () function [20], [41], etc. However,
according to [24], no obvious accuracy improvement had
been observed by adopting these strategies. Therefore, in this
work, we use the original BNN binarization function as the
baseline [[1]], [2], which can achieve the best theoretic execution
performance and model compression rate.

In BNNs, in addition to the 32x memory storage and
bandwidth savings by adopting 1-bit of a neuron (compared to
32-bits per floating-point neuron), the computation efficiency
gains from the approach on how bit dot-product is performed:
each 32 or 64 bit dot-product in DNN can be accomplished by a

single exclusive-nor (xnor) operation followed by a population
count (popc) operation, leading to 10-16x speedups [3]]:

z % w ~ ¥+ w® = pope(xnor(z’, w?))

A key requirement here is to conserve this property of being
hardware friendly. Essentially in BCN,
2z« W = (z+1iy) = (A+iB)
~ sign(x + iy) x sign(A + iB)
= (2 +iy®) * (A® +iBY)
= (A" s 2’ — B xy®) +i(BP x 2® + A" % ¢)

4)

which implies that a BCNN dot-product can be computed by 4
BNN dot-products (i.e., popc—-xnor) plus two full-precision
additions. The 4 BNN dot-product can be operated in parallel
at the same time, so the latency theoretically is close to one
BNN dot-product.

In a BCNN convolution layer, within the input, weight and
output tensors, we use the first half for the real part and
the second half for the imaginary part. Specifically, if the
input tensor has M complex feature maps, it is equivalent to
the input has 2M real-valued feature maps, where the first
M represent the real components = and the remaining M
represent the imaginary components y. The same case applies
to the output tensor. Consequently, the weight tensor is in size
(N x M x k x k) x 2 where the former half refers to the real
part of the complex weight (i.e., A in Eq. ), and the latter
half refers to the imaginary part (i.e., B in Eq. f).

C. Complex Gaussian Batch Normalization

Batch normalization (BN) [53]] has been proposed to ac-
celerate convergence speed and contribute to better training
accuracy. In real-value DNN, BN first normalizes the input so
that the mean becomes zero and the variance becomes one. It
then adjusts the normalized input by scaling through a learnable
gain factor, and shifting through a learnable bias, as shown
below:

T K
Vot
where 7 is the input, p is the mean of the batch, o is the
variance of the batch, v is the learned scale, /3 is the learned
shift, € is a tiny number for numerical stability.

BN is important for DNNS, but is vital for BNNs. In addition
to the normalization of the input, the learned gain and bias
essentially increase the model capacity, or learning capability
of a BNN layer. Without BN, the training of BNNs is even
unlikely to converge.

Different from Eq[3] standardizing complex input to normal
complex distribution is much more complicated, because
in addition to normalizing the mean and variance, Batch
normalization in complex neural networks needs to ensure
equal variance of the real and imaginary components. In deep
complex Network [26]], the complex batch normalization is
treated as a 2D whitening transformation — scaling the complex
input by the square root of their variance along the real and
imaginary components. This is achieved by multiplying the

BN(r) = #y+ 8 5)



O-centered data by the inverse square root of the covariance
matrix:

= (V)2 (2 - E[2)) BN(2) =72+ 8  (6)

where z is the complex input, F[z] is the mean of z, V is the
2 x 2 covariance matrix. The scaling parameter vy is a 2 x 2
positive semi-definite matrix with three degrees of freedom (
~ri and ;. is the same). The shifting parameter (3 is also a
complex parameter. 7,.;, Y-, 0 are initialized with 0; ~,.,. and
7;i are initialized with 1/+/2.

As shown in Eq [6] complex batch normalization involves
the computation of matrix inversion and matrix square-root,
which is too costly for the hardware. Besides, directly adopting
this complex batch normalization approach in BCNN leads
to poor training accuracy, or even non-convergence, which
is shown in Section IV. Consequently, we propose a novel
batch normalization method called complex Gaussian batch
normalization (CGBN), which is more efficient and light-
weight.

Our objective is to normalize the input complex signal to
a standard complex normal distribution (C'N) [54], [55]]. The
standard complex normal random variable, also known as
standard complex Gaussian random variable, is a complex
random variable z whose real and imaginary parts are indepen-
dent normally distributed random variables with mean equals
to zero and variance equals to 1/2. In mathematical form,
z ~ CN(0,1) implies:

R(z) L I(z) and R(z) ~ N(0,1/2) and I(z) ~ N(0,1/2)

Consequently, we can separately normalize the real part and
imaginary part of the input complex signal to a normal
distribution with zero mean and 1/2 variance:

(3
V202 +e€ V207 + €
The scaling parameter and shifting parameter are learnable

complex values, the complex Gaussian batch-normalization is
as shown below:

=

)

CGBN(2)=yx 2+ 0
= Yo Zr — ViZi + Br + (Ve Z +viZr + Bi)
where both the scaling parameter v and shifting parameter
8 are lfzafrn'ed during thf: training. -y is initialized as 5T
[ is initialized as 0 + 0.

This complex Gaussian batch normalization significantly
reduces the computation complexity compared to Eq [6] by
avoiding the calculation of the inverse square-root of the
covariance matrix. The complex Gaussian batch normalization
leads to faster convergence speed and can converge in all of
the models and datasets we have evaluated.

®)

D. Binary Complex Weight Initialization

A proper weight initialization strategy can largely avoid ex-
ploding or vanishing gradient problem during backpropagation
and accelerate the convergence speed during network training.
Usually, the weight initialization follows two rules: (i) the input

and output have the same variance in the forward propagation;
(ii) the gradient of input and output have the same variance in
the backward propagation.

Two weight initialization strategies are broadly used for deep
neural networks: Xavier 56| and He [57]]. Xavier is suitable for
symmetric activation functions such as tahn, softsign, etc.
The initial weight parameters follow a uniform distribution with
zero mean and variance equals to 2/(fan_in + fan_out). He
is specially designed for ReLU like activation functions. The
variance of the initialization distribution is 2/ fan_in instead.

Following the Xavier [56] and He approach [57], the complex
neural network [26] derives the variance of the complex weight
parameters. In the complex weight Initialization, a complex
weight has a polar form:

(€))

The variance of W is related to its amplitude not its phase, So
the amplitude |WW] is set to follow the Rayleigh distribution,
with the probability density function being:

W = |W|e" = R{W} +il{W}

T

f(xva)zﬁ

For Xavior [56], to ensure Var(W) = 2/(fan_in+ fan_out),
then the parameter o = 1/+/fan_in + fan_out. For He [57],
to meet Var(W) = 2/fan_in, set ¢ = 1/y/fan_in. The
phase 6 is unrelated to the variance, so it is initialized to
follows the uniform distribution between —7 and 7.

For BCNN, however, the complex weight initialization
strategy does not work. After the quadrant binarization, the
amplitude of binary complex weight is always sqrt(2), which
diminishes the efficiency of the original initialization strategy,
which will be presented in our evaluation (Section IV). Here,
following the Xavier approach [56], we derive our BCNN’s
weight initialization. As discussed in Section III-A, in a BCNN
layer [, the complex output h; = c¢; + id; is obtained by
the convolution of the complex input z; = x; + iy; and the
complex weight W; = A; + iB;, the complex bias is ignored
for simplification. The f is the activation function, we have:

eme/(Zcrz)’Jj >0

r41 = f(a)
Y11 = f(di)

The variance of real part and imaginary part can be written
as:

c=xxA —y * By
dlzl'l*Bl—i—yl*Al

Varle] = fan_in* (Var[z|Var[A)] + Var|y|Var|B])
Var(d)) = fan_in x (Var[z)|Var[B] + Var{y|Var[Al])

If C;, and C,,; are the channel size of the complex input and
output, then fan_in = k? x Cip, fan_out = k? x Cyyy. For
the Forward propagation, we ensure the real/imaginary part of
input and output have the same variance: Var|c;] = Var[z],
Var|d;] = Var[y)]. At the same time, we assume the real part
and the imaginary part of complex feature maps have the same
variance: Var[c] = Var[d)], Var[z;] = Var[y], and for the
complex weight as well: Viar[A;] = Var[B], so we have:

2 x fan_in x Var[4;] =1



2 x fan_in x Var[By] =1

1

VGT[Al] = VGT[BI] = m

(10)

for the backward propagation, the gradient of is computed

as:

OLoss ~0Loss ~0Loss , ~0Loss , - 0Loss
830; 801 + 8dl f (CL) 8.Z‘l+1 +f (dl) ayl“
0Loss ~0Loss ~0Loss , ~0Loss , - 0Loss
=A - B = f(d)A — B

ayz 6dl acl f ( l) 8yl+1 f (Cl) a$l+1

The weight A and B here is a Q‘in-by-kQC’out matrix while

the gradient of the weight A and Bis a Coui-by-k2Cj,, matrix.

For input and output, the gradient of the real/imaginary part
should have the same variance. With the assumption that for
complex feature maps, the variance of the gradient for real
part and imaginary part are the same, we have:

oL oL
Var| OSS] =2 x fan_out X Var[A] x Var| 058]
0wy 0T 41
oL oL
Var| OSS} =2 X fan_out x Var[B] x Var| OSS]
oyl OYi+1
Therefore, for the backward pass, we have:

1
2 X fan_out
With a compromise of Eq [IT] and Eq [IT] we have:

1
fan_in + fan_out

Var[A)| = Var|B)] = (11)

Var[A)]| = Var[B)] = (12)
Therefore, in BCNN, we initialize the weight matrix by
following the normal distribution with mean p¢ = 0.0 and
variance o = \/1/(fan_in + fan_out).

IV. EVALUATIONS

In this section, we evaluate the performance of BCNN for
image classification using three deep neural network models:
NIN-Net, ResNetl8, and ResNetEI8 on two popular image
classification datasets, CIFARI0 and ImageNet.

A. Experimental Setup

We use PyTorch to train all models. First we compare
the BCNN and BNN with similar architecture and the same
parameter size. Then, we evaluate and compare three different
batch normalization and three weight initialization strategies
for BCNN.

Complex-valued Input Data Generation: As the raw data
in Cifar10 and ImageNet datasets are real-valued, it is necessary
to extend them to complex domain first. Our BCNN adopts
a prior-art learning-based methodology proposed in [26] to
generate imaginary parts. As shown in Figure [2] the imaginary
parts are learned by a real-valued residual blocks, then the
concatenation of raw real-valued data and the learned imaginary
parts can serve as the complex-valued inputs. The two conv
layers are both 1x1 conv kernel, the channel of input and
output are 3, so the real-valued residual block is lightweight
in terms of both computation and storage.

1x1Conv 1x1Conv

HAHE
F V2 Lk))

real-valued Input

\real part
g \\imaginarypart

concatenation

complex-valued Input

Fig. 2: Structure to generate complex input from real-valued input.

BCNN Model Configuration: Usually in BNNSs, the first
and the last layer are full-precision. Using full-precision for
the first layer is to conserve the maximum information flow
from the input images. Using the full-precision for the last
layer is to conserve the maximum state-space before the final
output, which is in particular meaningful for large dataset like
ImageNet. For BCNN, we adopt the same strategy. Using full-
precision complex convolution for the first layer. For the last
layer, we use a full-precision real-valued layer by treating M
complex input as 2M real-valued input.

For fair comparison, all networks used in our evaluation of
BCNN and BNN are with very similar architecture and the
same model size. As BCNN uses complex-valued parameters,
the model size of BCNN is about twice the size of BNNs
with the same network configurations. Therefore, we tune the
numbers of channels at each layer of BCNNSs to approximately
1/4/2 of the ones in BNNs.

Network: Three networks are used for evaluation: NIN-Net,
ResNet18 and ResNetE1S.

(a) NIN-Net consists of three stacked mlpconv layers
followed by a spatial 2 x 2 MAX-Pooling and a global Average-
Pooling layer. For Cifarl0 dataset, we use the original NIN-Net
proposed in [37]; for ImageNet dataset, we use the enhanced
version of NIN-Net proposed in [[18]], which enlarges kernel
sizes of the first four mlpconv layers from 1 x 1 to 3 x 3, and
increase the output channels at the first two mlpconv layers
from 96 to 128.

(b) ResNetl8 and ResNetE1S8: The block of ResNetl8 and
ResNetE18 are as shown in Figure[3|and Figure 4] (the stride of
first convolution is 2, when the stride is 1, the bypass will be
identical). ResNetE is a modified version of ResNet, which is
equipped with extra shortcuts and adopts full-precision down-
sampling conv layer. With these modifications, ResNetE can
preserve the information flow of the network better and process
low-precision data, especially binary data, more efficiently.

B. Result on CIFAR-10

We first evaluate BCNN with NIN-net [37] and ResNet18
[34] on CIFAR-10 dataset. In training, Adam optimizer is
adopted with the initial learning rate set as 5e-3. All models
are trained for up to 300 epochs. We adjust the learning rates
during training by multiplying them by 0.2 at the 80th, 150th,
200th, 240th, and 270th epochs respectively.

Table [l compares the accuracy of BCNNs, DNNs and BNNs.
For NIN-Net and ResNet18, BCNN achieves 1.85% and 0.52%
improvement on accuracy respectively over BNNs with the
same model sizes. Figure[5| and Figure[6| show the variation of
training loss and testing loss from epoch 0 to epoch 300.



I

I Hardtanh | l 2x2 pool I
Hardtanh ¢ l
|3x3 Bcony, /2| |1x1 convy, /1 I
3x3 Bconvy, /2

Hardtanh

1x1 Bconv 2
B BN

’_\_‘

Hardtanh

3x3 Beony, /1

Fig. 3: ResNetl8

Fig. 4: ResNetE18

TABLE I: Test accuracy on Cifarl0.

Network Type Params  Top-1(%)
NIN-Net DNN 3.60M 89.64
BNN 0.191M 85.77
BCNN  0.187M 87.62
ResNet18 DNN 42.63M 93.02
BNN 1.39M 90.67
BCNN 1.39M 91.19

In Table , we show the impact of different batch
normalization methodologies and weight initialization strategy
on BCNN. We evaluate three different batch normalization. BN
(batch normalization) is the most popular batch normalization
that being used in real-valued neural networks. CBN (complex
batch normalization) was proposed in deep complex network.
CGBN (complex gaussian batch normalization) is proposed in
this work for our BCNN. Compared with the BN, the proposed
CGBN improves the accuracy on both NIN-Net and ResNetl18.
For Cifar-10 dataset, our experimental results show that the
CBN Batch Normalization can get higher accuracy compared to
our CGBN. However, CBN is more computationally intensive
and leads to non-convergence with large dataset, e.g. ImageNet.
The detailed results on ImageNet will be given in the next
section (NA in the table means non-convergence).

Different parameter initialization schemes also affect perfor-
mance of BCNNs. As shown in Table[[]. BCW (binary complex
weight initialization) is proposed for BCNN in this paper.
Xavier is used for real-valued network, Ray was proposed for
deep complex network. Results show the proposed initialization
technique results in 1.55% and 1.27% accuracy improvement
for NIN-Net and ResNet18 respectively.

C. BCNNs on ImageNet

In this section, we show the performance of BCNNs on
ImageNet dataset. We use the standard pre-processing: all
images are resized to 256 x 256 and randomly cropped to
224 x 224 for training. The validation dataset is with a single
center crop. We use ADAM optimizer in training and set the

TABLE II: Test accuracy with respect to batch normalization and weight ini-
tialization strategies on Cifarl0. CGBN refers to Gaussian batch normalization
proposed in this work. BN refers to normal batch normalization method [53]].
CBN refers to the baseline batch normalization approach proposed in deep
complex network [26]]. BCW refers to the binary complex weight initialization
proposed in this work. Xavier refers to the Xavier weight initialization strategy
[56]. Ray refers to the complex weight initialization approach proposed in
deep complex network [26]]. NA means non-convergence.

Network ~ BatchNorm  Weight_init  Top-1(%)
NIN-Net CGBN BCW 87.62
CGBN Xavier 86.76
CGBN Ray 86.07
CBN BCW 87.86
BN BCW 87.38
CBN Ray NA
ResNet18 CGBN BCW 91.19
CGBN Xavier 90.56
CGBN Ray 89.92
CBN BCW 91.31
BN BCW 90.25
CBN Ray NA

175 valid Loss on Cifar10
— 175

—— ResNet18-BCNN

—— ResNet18-BNN
—— ResNet18-BCNN
150 — NIN-BNN
— NIN-BCNN

0 25 50 75 100 125 150 175 200 225 250 275 300 0 25 50 75 100 125 150 175 200 225 250 275 300
epoch epoch

Fig. 5: Training loss on Cifarl0. Fig. 6: Testing loss on Cifarl0.

initial learning rate as 5e-3. This learning rate is gradually
adjusted during training by being divided by 5 at epochs of 25,
35, 40 and 45. Each model is trained for 50 epochs. We use 3
models in our evaluation: NIN-E (expanded version of NIN-net
as introduced in Section. IV(A)), ResNet18, and ResnetE18.

Table [[TI] compares the top-1 and top-5 accuracy of BCNNs,
DNNs and BNNs. BCNN always has higher accuracy than
BNN. For NIN-E, ResNet18 and ResNetE18, BCNN provides
0.8%, 1.32% and 0.17% higher accuracy of top-1 than the ones
of BNNs respectively. Figure[7] and Figure[8] show the changes
of training and validation loss from epoch 0 to epoch 50.

TABLE III: Test accuracy on ImageNet.

Network Type Params  Top-1(%)  Top-5(%)
NIN-E DNN  28.96M 57.09 79.34
BNN 5.01M 50.018 73.936
BCNN 5.0M 51.08 74.738
ResNet18 DNN  44.59M 70.142 89.274
BNN 3.36M 54.308 77.388
BCNN  3.36M 55.598 78.708
ResNetE18 ~ BNN 4.0M 57.332 79.85
BCNN 4.0M 57.652 80.016

The accuracy comparison of BCNNs with different Batch
Norm techniques and weight initialization strategies are shown
in Table [V

BCNN with the proposed CGBN always provides higher
accuracy than BN for all models. For NIN-E which is a
relatively shallow network structure, CBN plus BCW have the
highest accuracy. However, for the relativity deeper structures,
e.g, ResNetl8 and ResNetE18, CBN lead to non-converage



Accuracy on Imagenet 5.0

5.0 ResNet18-BNN
ResNet18-BNN —— ResNet18-BCNN
—— ResNet18-BCNN as ResNetE18-BNN
a5 ResNetE18-BNN

—— ResNetE18-BCNN
— NIN-BNN
40 — NIN-BCNN

0 s 10 15 20 25 30 35 40 45 50 0 s 10 15 20 25 30 35 40 45 50
epoch epoch

Fig. 7: Training loss on ImageNet.  Fig. 8: Testing loss on ImageNet.

TABLE IV: Test accuracy with respect to batch normalization and weight
initialization strategies on ImageNet.

Network BatchNorm  Weight_init ~ Top-1(%)  Top-5(%)
NIN-E CGBN BCW 51.08 74.738
CGBN Xavier 50.992 74.554
CGBN Ray 50.55 74.26
CBN BCW 51.79 75.162
BN BCW 50.622 74.276
CBN Ray NA
ResNet18 CGBN BCW 55.598 78.708
CGBN Xavier 54.98 78.238
CGBN Ray NA
CBN BCW NA
BN BCW 54.91 78.148
CBN Ray NA
ResNetE18 CGBN BCW 57.652 80.016
CGBN Xavier 57.250 79.976
CGBN Ray NA
CBN BCW NA
BN BCW 57.642 80.188
CBN Ray NA

during training. In contract, our proposed CGBN can still work
efficiently.

We further evaluate the effects of different weight initializa-
tion strategies on ImageNet dataset. As listed in Table [[V] the
proposed weight initialization BCW shows increased accuracy
over Ray for NIN-Net. For ResNet18 and ResNetE1S, the
proposed BCW leads to faster convergence with higher accuracy
than BNNs. As a comparison, BCNN with Ray cannot converge
in our testing.

Overall, we show that BCNN, together with the proposed
batch normalization and weight initialization strategies, can
achieve better training accuracy on some large datasets such
as ImageNet. As the next step, we will seek efficient imple-
mentation of BCNN on various hardware platforms, including
GPUs [3]], GPU Tensorcores [4], FPGAs [7], [58] and ASICs
[5], [6], for practical utilization in embedded systems and edge
domains.

V. CONCLUSION

In this work we propose the binary complex neural network,
which combines the advantages of both BNNs and complex
neural networks. Compared to BNNs, it achieves enhanced
training accuracy and is able to learn from complex data;
compared to complex neural networks, it is much more
computation efficient, which is in particular beneficial to
terminal scenarios such as smart edges and smart sensors.
Future work includes the demonstration of BCNN on complex
datasets, the implementation of BCNN on embedded hardware
devices, and its practical applications.

REFERENCES

[1] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to+ 1 or-1,” arXiv preprint arXiv:1602.02830,
2016.

[2] 1. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in Proceedings of the 30th international
conference on neural information processing systems. Citeseer, 2016,
pp. 4114-4122.

[3] A. Li, T. Geng, T. Wang, M. Herbordt, S. L. Song, and K. Barker,

“Bstc: A novel binarized-soft-tensor-core design for accelerating bit-

based approximated neural nets,” in Proceedings of the International

Conference for High Performance Computing, Networking, Storage and

Analysis, 2019, pp. 1-30.

A.LiandS. M. Su, “Accelerating binarized neural networks via bit-tensor-

cores in turing gpus,” IEEE Transactions on Parallel and Distributed

Systems, 2020.

[5] T. Geng, T. Wang, C. Wu, C. Yang, W. Wu, A. Li, and M. C. Herbordt,

“O3bnn: An out-of-order architecture for high-performance binarized

neural network inference with fine-grained pruning,” in Proceedings

of the ACM International Conference on Supercomputing, 2019, pp.

461-472.

T. Geng, A. Li, T. Wang, C. Wu, Y. Li, R. Shi, W. Wu, and M. Herbordt,

“O3bnn-r: An out-of-order architecture for high-performance and regu-

larized bnn inference,” IEEE Transactions on Parallel and Distributed

Systems, vol. 32, no. 1, pp. 199-213, 2020.

T. Geng, T. Wang, C. Wu, C. Yang, S. L. Song, A. Li, and M. Herbordt,

“Lp-bnn: Ultra-low-latency bnn inference with layer parallelism,” in 2019

IEEE 30th International Conference on Application-specific Systems,

Architectures and Processors (ASAP), vol. 2160. 1EEE, 2019, pp. 9-16.

A. Galloway, G. W. Taylor, and M. Moussa, “Attacking binarized neural

networks,” arXiv preprint arXiv:1711.00449, 2017.

N. Narodytska, “Formal analysis of deep binarized neural networks.” in

IJCAL 2018, pp. 5692-5696.

N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and T. Walsh,

“Verifying properties of binarized deep neural networks,” in Proceedings

of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

G. Chen, H. Meng, Y. Liang, and K. Huang, “Gpu-accelerated real-time

stereo estimation with binary neural network,” IEEE Transactions on

Parallel and Distributed Systems, vol. 31, no. 12, pp. 2896-2907, 2020.

N. Fasfous, M.-R. Vemparala, A. Frickenstein, L. Frickenstein, and

W. Stechele, “Binarycop: Binary neural network-based covid-19 face-

mask wear and positioning predictor on edge devices,” arXiv preprint

arXiv:2102.03456, 2021.

C.-H. Huang, “An fpga-based hardware/software design using binarized

neural networks for agricultural applications: A case study,” IEEE Access,

vol. 9, pp. 26523-26 531, 2021.

Y. Ma, H. Xiong, Z. Hu, and L. Ma, “Efficient super resolution using

binarized neural network,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition Workshops, 2019, pp. 0-0.

C. Ma, Y. Guo, Y. Lei, and W. An, “Binary volumetric convolutional

neural networks for 3-d object recognition,” IEEE Transactions on

Instrumentation and Measurement, vol. 68, no. 1, pp. 38-48, 2018.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:

Imagenet classification using binary convolutional neural networks,” in

European conference on computer vision. Springer, 2016, pp. 525-542.

S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net:

Training low bitwidth convolutional neural networks with low bitwidth

gradients,” arXiv preprint arXiv:1606.06160, 2016.

W. Tang, G. Hua, and L. Wang, “How to train a compact binary neural

network with high accuracy?” in Thirty-First AAAI conference on artificial

intelligence, 2017.

X. Lin, C. Zhao, and W. Pan, “Towards accurate binary convolutional

neural network,” in Advances in Neural Information Processing Systems,

2017, pp. 345-353.

S. Darabi, M. Belbahri, M. Courbariaux, and V. P. Nia, “Bnn+: Improved

binary network training,” arXiv preprint arXiv:1812.11800, 2018.

M. Ghasemzadeh, M. Samragh, and F. Koushanfar, “Rebnet: Residual

binarized neural network,” in 2018 IEEE 26th Annual International Sym-

posium on Field-Programmable Custom Computing Machines (FCCM).

IEEE, 2018, pp. 57-64.

B. Zhuang, C. Shen, M. Tan, L. Liu, and I. Reid, “Structured binary

neural networks for image recognition,” arXiv preprint arXiv:1909.09934,

2019.

[4

=

[6

—

[7

—

[8

—

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]



(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]
[40]
[41]
[42]

[43]

[44]

[45]
[46]

[47]

[48]

S. Zhu, X. Dong, and H. Su, “Binary ensemble neural network: More
bits per network or more networks per bit?” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 4923-4932.

J. Bethge, H. Yang, M. Bornstein, and C. Meinel, “Binarydensenet:
developing an architecture for binary neural networks,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision Workshops,
2019, pp. 0-0.

J. Bethge, C. Bartz, H. Yang, Y. Chen, and C. Meinel, “Meliusnet:
An improved network architecture for binary neural networks,” in
Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2021, pp. 1439-1448.

C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk, S. Subramanian, J. F.
Santos, S. Mehri, N. Rostamzadeh, Y. Bengio, and C. J. Pal, “Deep
complex networks,” arXiv preprint arXiv:1705.09792, 2017.

S. Wisdom, T. Powers, J. R. Hershey, J. L. Roux, and L. At-
las, “Full-capacity unitary recurrent neural networks,” arXiv preprint
arXiv:1611.00035, 2016.

A. Hirose and S. Yoshida, “Generalization characteristics of complex-
valued feedforward neural networks in relation to signal coherence,”
IEEE Transactions on Neural Networks and learning systems, vol. 23,
no. 4, pp. 541-551, 2012.

I. Danihelka, G. Wayne, B. Uria, N. Kalchbrenner, and A. Graves,
“Associative long short-term memory,” in International Conference on
Machine Learning. PMLR, 2016, pp. 1986-1994.

D. P. Reichert and T. Serre, “Neuronal synchrony in complex-valued
deep networks,” arXiv preprint arXiv:1312.6115, 2013.

Y. Cao, Y. Wu, P. Zhang, W. Liang, and M. Li, “Pixel-wise polsar
image classification via a novel complex-valued deep fully convolutional
network,” Remote Sensing, vol. 11, no. 22, p. 2653, 2019.

H.-S. Choi, J.-H. Kim, J. Huh, A. Kim, J.-W. Ha, and K. Lee, “Phase-
aware speech enhancement with deep complex u-net,” in International
Conference on Learning Representations, 2018.

E. K. Cole, J. Y. Cheng, J. M. Pauly, and S. S. Vasanawala, “Analysis
of deep complex-valued convolutional neural networks for mri recon-
struction,” arXiv preprint arXiv:2004.01738, 2020.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu, and K.-T. Cheng, “Bi-real net:
Enhancing the performance of 1-bit cnns with improved representational
capability and advanced training algorithm,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 722-737.
J. Bethge, M. Bornstein, A. Loy, H. Yang, and C. Meinel, “Training
competitive binary neural networks from scratch,” arXiv preprint
arXiv:1812.01965, 2018.

M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” arXiv
preprint arXiv:1511.00363, 2015.

A. G. Anderson and C. P. Berg, “The high-dimensional geometry of
binary neural networks,” arXiv preprint arXiv:1705.07199, 2017.

M. Alizadeh, J. Ferndndez-Marqués, N. D. Lane, and Y. Gal, “An
empirical study of binary neural networks’ optimisation,” 2018.

F. Lahoud, R. Achanta, P. Marquez-Neila, and S. Siisstrunk, “Self-
binarizing networks,” arXiv preprint arXiv:1902.00730, 2019.

L. Hou, Q. Yao, and J. T. Kwok, “Loss-aware binarization of deep
networks,” arXiv preprint arXiv:1611.01600, 2016.

K. Helwegen, J. Widdicombe, L. Geiger, Z. Liu, K.-T. Cheng, and
R. Nusselder, “Latent weights do not exist: Rethinking binarized neural
network optimization,” in Advances in neural information processing
systems, 2019, pp. 7531-7542.

Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “Finn: A framework for fast, scalable binarized neural
network inference,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2017, pp. 65-74.

T. Simons and D.-J. Lee, “A review of binarized neural networks,
Electronics, vol. 8, no. 6, p. 661, 2019.

H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe, “Binary neural
networks: A survey,” Pattern Recognition, vol. 105, p. 107281, 2020.
J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, “Enhanced radar imaging
using a complex-valued convolutional neural network,” IEEE Geoscience
and Remote Sensing Letters, vol. 16, no. 1, pp. 35-39, 2018.

S. Wang, H. Cheng, L. Ying, T. Xiao, Z. Ke, H. Zheng, and D. Liang,
“Deepcomplexmri: Exploiting deep residual network for fast parallel

”

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

mr imaging with complex convolution,” Magnetic Resonance Imaging,
vol. 68, pp. 136-147, 2020.

G. M. Georgiou and C. Koutsougeras, “Complex domain backpropaga-
tion,” IEEE transactions on Circuits and systems II: analog and digital
signal processing, vol. 39, no. 5, pp. 330-334, 1992.

T. Kim and T. Adali, “Approximation by fully complex multilayer
perceptrons,” Neural computation, vol. 15, no. 7, pp. 1641-1666, 2003.
H. Leung and S. Haykin, “The complex backpropagation algorithm,”
IEEE Transactions on signal processing, vol. 39, no. 9, pp. 2101-2104,
1991.

T. Kim and T. Adali, “Fully complex multi-layer perceptron network for
nonlinear signal processing,” Journal of VLSI signal processing systems
for signal, image and video technology, vol. 32, no. 1-2, pp. 29-43,
2002.

S. Toffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

N. R. Goodman, “Statistical analysis based on a certain multivariate com-
plex gaussian distribution (an introduction),” The Annals of mathematical
statistics, vol. 34, no. 1, pp. 152-177, 1963.

B. Picinbono, “Second-order complex random vectors and normal
distributions,” IEEE Transactions on Signal Processing, vol. 44, no. 10,
pp- 2637-2640, 1996.

X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics, 2010,
pp. 249-256.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026-1034.

T. Geng, C. Wu, C. Tan, B. Fang, A. Li, and M. Herbordt, “Cqnn: a
cgra-based qnn framework,” in 2020 IEEE High Performance Extreme
Computing Conference (HPEC). 1EEE, 2020, pp. 1-7.



	I Introduction
	II Related Work
	II-A Binarized Neural Networks
	II-B Complex Neural Network

	III Binary Complex Neural Network
	III-A Binary Complex Number
	III-B Quadrant Binarization
	III-C Complex Gaussian Batch Normalization
	III-D Binary Complex Weight Initialization

	IV Evaluations
	IV-A Experimental Setup
	IV-B Result on CIFAR-10
	IV-C BCNNs on ImageNet

	V Conclusion
	References

