
On Extending Amdahl’s law to Learn Computer

Performance

Chaitanya Poollaa, Rahul Saxenaa

aIntel Corporation, 3600 Juliette Ln, Santa Clara, CA 95054, USA

Abstract

The problem of learning parallel computer performance is investigated in the
context of multicore processors. Given a fixed workload, the effect of varying
system configuration on performance is sought. Conventionally, the perfor-
mance speedup due to a single resource enhancement is formulated using
Amdahl’s law. However, in case of multiple configurable resources the con-
ventional formulation results in several disconnected speedup equations that
cannot be combined together to determine the overall speedup. To solve this
problem, we propose to (1) extend Amdahl’s law to accommodate multiple
configurable resources into the overall speedup equation, and (2) transform
the speedup equation into a multivariable regression problem suitable for
machine learning. Using experimental data from fifty-eight tests spanning
two benchmarks (SPECCPU 2017 and PCMark 10 ) and four hardware plat-
forms (Intel Xeon 8180M, AMD EPYC 7702P, Intel CoffeeLake 8700K, and
AMD Ryzen 3900X ), analytical models are developed and cross-validated.
Findings indicate that in most cases, the models result in an average cross-
validated accuracy higher than 95%, thereby validating the proposed exten-
sion of Amdahl’s law. The proposed methodology enables rapid generation
of multivariable analytical models to support future industrial development,
optimization, and simulation needs.

Keywords: Computer performance, analytical modeling, Amdahl’s law,
machine learning, regression

1. Introduction

Modern computers consist of complex interdependent subsystems working
in tandem to provide a seamless user experience. These subsystems realize

ar
X

iv
:2

11
0.

07
82

2v
2 

 [
cs

.L
G

] 
 2

6 
Se

p 
20

22



a variety of underlying implementations and architectures in hardware [1].
Computer performance is evaluated by benchmarking, a process that subjects
computer systems to standard load conditions and monitors performance
metrics of interest [2]. Depending on the end goal, performance metrics could
represent aspects such as response time, throughput, or power consumption.

The system performance can be obtained by different methods such as
collecting measurements, running simulations, or predicting from analytical
models [3]. In case of measurements, the workload is configured to run on
the test system under standard conditions and the performance is reported.
While the accuracy could be relatively high, the experimenter has limited
feasible configurations of the system to choose from. In case of simulations,
the subsystems and their interactions can be modeled extensively. Depend-
ing on the complexity of the simulator, there is a trade off between accuracy,
coverage, development time, and evaluation time. For example, complex
simulators often require more time to achieve a higher accuracy, and simpler
simulators require less time at the expense of lower accuracy. Further, sim-
ulators require extensive validation for reliable use which is time-consuming
[4] [5]. However, simulators allow for investigating performance of next gen-
eration systems with hypothetical system configurations.

Given the limited scope of measurement configurations and the complex
nature of simulations, it is of interest to explore simpler analytical models
partly based on benchmark measurements. Such models allow one to in-
vestigate a larger scope of system configurations in a short time and hence
blend the advantages of both measurement and simulation-based methods.
Previous research suggests that easy to use and understandable analytical
models that can explore large design spaces are imperative for architectural
analysis [6] [7]. In this study, we focus on the problem of developing ana-
lytical models for parallel computing in the context of multi-core processors
based on limited benchmark measurements.

For a given benchmark, the performance of a multi-core processor depends
on several factors related to the system configuration, hardware architecture,
and the software stack used [8]. After fixing the hardware and software stack,
measurements are obtained by running the benchmark at a specified system
configuration. The system configuration is varied by variables such as the
number of cores, threads per core, core frequency, memory frequency, and
cache sizes [9]. Each of these variables is set to a feasible value prior to
the execution of the benchmark. Thus, each system configuration can be
viewed as an instance of the corresponding machine. Accordingly, the same

2



computer hardware can be used to build several system configurations each
of which provides a corresponding set of system resources for executing the
benchmark.

The execution of a benchmark on a given system configuration gener-
ates performance values, commonly known as scores. These scores allow for
comparison of performance across different configurations, architectures, and
software stacks for a common benchmark. Typically, a baseline and a test
system are chosen for executing the benchmark to obtain the baseline and
test score respectively. When the benchmark performance metric measures
the execution time or latency, the ratio of the baseline to test scores provides
the performance speedup on the test system in comparison to the baseline
system.

The theoretical speedup expected from a test system with improved re-
sources is provided by Amdahl’s law [10] [11]. In case of multi-core processors,
the speedup could result from scaling up a system resource such as the num-
ber of cores. In the conventional formulation of the Amdahl’s law, a program
is comprised of two parts: A parallelizable part whose performance is affected
by scaling up system resources and a sequential part whose performance re-
mains unaffected by scale. It is important to note that the problem size or
workload remains fixed in the formulation of Amdahl’s law. If the problem
size increases parallely with the resource, Gustafon’s model is to used to com-
pute speedup [12]. In this work, we assume a fixed problem size within the
scope of Amdah’s law.. Over the recent years, variants of the Amdahl’s law
have been proposed to consider other aspects of system such as the memory
wall problem [13] or the synchronization problem [4]. More recently, a survey
of methods to improve the semantic power of the p-fraction and computation
capability improvement index can be found in [14]. It is important to note
that while these variants are based on sound theoretical considerations they
lack corroboration to empirical data from silicon measurements. Further, in
these cases Amdahl’s law is primarily employed to predict the theoretical
speedup by changing one system resource at a time. This results in several
equations, each corresponding to scaling an isolated system resource given
fixed values of other system resources. Since each equation stems from dif-
ferent assumptions regarding the values of the other system resources, it is
not feasible to combine these equations to account for the effect of multiple
system variables simultaneously [15]. Thus, there is a need for a framework
that can account for the effects of multiple variables simultaneously.

To this end, we propose an extension to Amdahl’s law by adopting a

3



multi-variable data-driven approach. From the viewpoint of program execu-
tion, the need for this extension arises because real-world applications view
the system not as comprised of isolated resources but as multiple resources
interacting together to support the application. Therefore, the modeling
procedure requires integrating these interaction effects. Further, such an
extension allows data from real-world experiments to determine the model
coefficients and hence offer insights on both the parallelizable fractions and
expected scores for new configurations. In this manner, the extension ac-
commodates multiple system resources simultaneously and offer a medium
for experimental data to predict system performance on new system config-
urations. Related works on regression-based analytical modeling are found
in [16] and [17]. In [16], a regression-based predictive modeling approach
is proposed consisting of less than 30 predictors, human-specified interac-
tions, and 2000-4000 simulated observations. Each predictor was chosen
based on the strength of its marginal correlations without accounting for
the variation in other predictors. In the case of Stargazer [17], a forward
selection-based stepwise regression was employed to study the GPU design
space tradeoffs. The study used 10 architectural parameters and 30-300 data
points to achieve 85-99% accuracy based on sample-train-test method. The
use of stepwise regression is susceptible to model bias due to incorrect speci-
fication in the best subset selection problem. Further, both regression-based
studies do not employ cross-validation, resulting in lack of unbiased general-
ization error. By contrast, we employ Amdahl’s law-based models to achieve
an average of ≈ 95% cross-validation accuracy with relatively fewer data
points (20-200) given seven independent resources variables. To the best of
the authors knowledge, this is the first work to reveal a direct connection
between multivariable Amdahl’s law and machine learning-based modeling.
The contributions of this work are as follows:

1. An extension of Amdahl’s law to accommodate simultaneous scalings
across multiple system resources and their interactions.

2. Statistical regression techniques to generate multi-variable analytical
models based on measurements data.

3. A demonstration of cross-validation and prediction efficacy of the pro-
posed analytical models based on data from experiments with industry
standard benchmarks and hardware.

The remainder of the paper is structured as follows: Section 2 proposes the
methodology based on Amdahl’s law and its reformulation into a multiple

4



regression framework. Section 3 describes the experiment setup including
the Systems Under Test (SUTs) and the benchmarks considered. Section
4 discusses the model design, training, and validation. Section 5 presents
the results along with the scope and modeling assumptions followed by the
conclusion in Section 6.

2. Methodology

Consider a system with configuration denoted by C. Let this configuration

be specified by k resource variables represented by the sequence
{
rCi
}k
i=1
⊂

R+k. Within a multi-core processor environment, these resource variables
may represent core count, multi-threading state, core frequency, cache size,
memory frequency, and other configurable variables. For a given hardware
architecture, benchmark and software stack, let the baseline and the test
system configurations be represented by Cb and Ct, respectively. Accordingly,

the baseline and test system resources are specified by
{
rCbi

}k
i=1

and
{
rCti
}k
i=1

,

respectively. Further, let the baseline and test performance be specified by
P Cb ∈ R+ and P Ct ∈ R+, respectively.

2.1. Amdahl’s Law: Enhancement due to a single resource

Given the above notation, let fi denote the fraction of the program en-
hanced exclusively by the ith system resource. Assuming the performance
metric is the inverse of the execution time, we can employ Amdahl’s law [11]
the derive the theoretical performance speedup as:

S(i, fi, Cb, Ct) =
P Ct

P Cb

∣∣∣∣∣
ic

=
1

(1− fi) + fi

(
r
Cb
i

r
Ct
i

) (1)

where, S denotes the performance speedup, i denotes the index of the ith

resource, and rCbi , rCti denote the ith resource of the baseline and test sys-
tems, respectively. The symbol

∣∣
ic

refers to the operating condition that all

resources other than the ith are equal across the baseline and test systems.
The ratio rCti /rCbi denotes the resource enhancement. We note that in most
cases even the parallel fraction fi is not infinitely parallelizable [18]. In other
words, improving the ith resource by a factor of x does not necessarily result

5



in an equivalent speedup even within the parallelizable fraction fi of the pro-
gram. Nevertheless, the speedup equation offered by Amdahl’s law is useful
to formulate the effect of parallelism stemming from resource enhancements.
Further, we note that the above equation only considers the speedup result-
ing from an enhancement exclusively due to the ith resource - at fixed values
of the other resources. Similarly, the speedup resulting from enhancing only
the jth resource may be given by:

S(j, fj, Cb, Ct) =
P Ct

P Cb

∣∣∣∣∣
jc

=
1

(1− fj) + fj

(
r
Cb
j

r
Ct
j

) (2)

2.2. Amdahl’s law: Need for reformulation
Given the performance speedups exclusively due to ith and jth resources

in equations 1 and 2 respectively, it is of interest to determine the overall
speedup due to enhancing both ith and jth resources simultaneously. The
overall speedup is particularly significant as it allows one to examine the ef-
fect of varying both resources simultaneously, unlike equations 1 or 2 which
hold resources j or i at fixed values, respectively. From a statistical view-
point, equations 1 and 2 can be viewed as simple linear regression models
of the inverse of the performance speedup as a function of the ith and jth

resource enhancements, respectively. The overall speedup equation due to
varying resources i and j would need to combine the performance speedups
due to the individual resource enhancements and the interactions between
them. Unfortunately, there is no well-defined mechanism to combine the in-
dividual performance speedups in equations 1 and 2 directly to obtain the
overall performance speedup [15]. Hence, we reconsider the Amdahl’s law
formulation to be able to incorporate multiple resource variables.

2.3. Amdahl’s Law: Enhancement due to mutually exclusive resources
Consider a scenario where mutually exclusive fractions of the program are

enhanced by the speedups from the individual resources. In this case, the
resources corresponding to the indices 1, 2, · · · , k enhance the respective frac-
tions f1, f2, · · · , fk of the program. Accordingly, the performance speedup
may be expressed as:

P Ct

P Cb
= S(·) =

1

(1− f1 − f2 − · · · − fk) +
k∑

m=1

fm

(
r
Cb
m

r
Ct
m

) (3)

6



where S(·) denotes the shorthand notation of the multi-resource speedup

function S
(
{i}ki=1 , {fi}

k
i=1 , Cb, Ct

)
.

2.3.1. Enhancements due to resource interactions

The above formulation combines the individual effects of several resources
into the overall performance speedup. However, during the program execu-
tion, interaction between multiple resources occur. Thus, the performance
speedup formulation must include the effects of these resource interactions1.
Theoretically, interactions can occur between a minimum of two factors and
a maximum of k-factors, thereby resulting in possibly kC2 +kC3 +· · ·+kCk =
2k − k − 1 unique combinations, which is exponential in the number of in-
dividual resources k. In order to deal with this exponential complexity, we
resort to the hierarchical ordering principle whereby higher order interactions
involving three or more factors are deemed very rarely significant and hence
ignored [19]. Accordingly, the speedup equation based on Amdahl’s law with
single and two-factor resource interactions can be expressed as:

P Ct

P Cb
= S(·) =

1(
1−

k∑
m=1

fm −
k∑

m=2

m−1∑
n=1

fmn

)
+

k∑
m=1

fm

(
r
Cb
m

r
Ct
m

)
+

k∑
m=2

m−1∑
n=1

fmn

(
r
Cb
m

r
Ct
m

r
Cb
n

r
Ct
n

)
(4)

In equation 4, the denominator of the right hand side represents the serial
and parallel fractions contributing to the overall speedup. Specifically, fm
represents the program fraction enhanced exclusively by the resource en-
hancement r

Cb
m/rCtm and fmn represents the program fraction enhanced by com-

bined resource enhancement r
Cb
m r
Cb
n /rCtm rCtn . In this manner, up to two-factor

interactions are captured in the speedup formulation.

2.3.2. Enhancements due to higher order effects

In some cases, it is desirable to include higher order interactions into the
speedup equation. Consider the three term interaction Imnp = (rCbm r

Cb
n r
Cb
p /rCtm rCtn rCtp )

along with the corresponding parallelizable program fraction fmnp. This ef-
fect can be incorporated by adding fmnp(Imnp−1) to the denominator. Simi-
larly, one may also incorporate other nonlinearities into the speedup equation.

1In the context of experimental design, resource variables are known as factors. Thus,
an interaction between p (≤ k) resources is referred to as a p-factor interaction

7



For example, consider the resource term representing the maximum memory
bandwidth available per core. This term represents a nonlinear higher order
interaction effect consisting of several factors such as channel width, channel
count, memory frequency, number of cores, and core frequency. In this man-
ner, the overall speedup equation can accommodate scaling across multiple
resources and relevant nonlinear interactions.

2.4. Amdahl’s Law for data-driven modeling

The postulated speedup equations in Section 2.3.1 result in analytical
models, which, while theoretically reasonable, require data for validation.
The data offers insights into the contributions of the various resources and
interactions for purposes of prediction. Therefore, Amdahl’s law helps in
hypothesizing a predictive model which is validated based on experimen-
tal data. Depending the predictive power of a given model, its complexity
may be increased or reduced via the resource terms to avoid underfitting or
overfitting [15]. This methodology results in a hybrid approach where both
architectural knowledge and statistical techniques codetermine a multivari-
able analytical model. Further discussion on analytical modeling is provided
in sections 3.3 and 4.

3. Experiment Setup

The efficacy of the analytical models in Section 2 is determined by us-
ing data from designed experiments. For this work, we conducted four ex-
periments involving the SPECCPU 2017 and PCMark 10 benchmarks ex-
ecuted on Intel and AMD platforms. Let these experiments be represented
by Eq∀ q ∈ {1, 2, 3, 4}. For each experiment, the benchmark and hardware
platform combinations are shown in Table 1.

Experiment ID Benchmark Hardware Operating System Compiler

E1 SPECCPU 2017 Intel Xeon 8180M RHEL 7.3 ICC 19u4

E2 SPECCPU 2017 AMD EPYC 7702P Ubuntu 19.04 GCC 8.2

E3 PCMark 10 Intel CoffeeLake 8700K Win 10 Enterprise 1252 N/A (Pre-compiled)

E4 PCMark 10 AMD Ryzen 3900X Win 10 Pro 1903 N/A (Pre-compiled)

Table 1: Overview of Experiments

3.1. Workload settings

For each benchmark, the settings employed during experimentation are
described below:

8



3.1.1. SPECCPU 2017

The SPECCPU 2017 benchmark consists of industry-standardized, CPU
intensive suites for determining compute performance by stressing a system’s
processor, memory subsystem, and compiler [20]. Among these suites, the
SPECrate 2017 Integer and SPECrate 2017 Floating Point suites were both
used to evaluate the performance of the Intel Xeon 8180M and AMD EPYC
7702P systems. The operational settings for both systems are depicted in
the Operating System and Compiler columns of Table 1.

3.1.2. PCMark 10

The PCMark 10 benchmark represents a wide range of office activities
from everyday productivity tasks to taxing work with digital media content
[21]. This benchmark is divided into groups each of which consists of several
tests. In this work, the Essentials, Productivity, and Digital Content Creation
groups were all used to evaluate the perform of Intel CoffeeLake 8700K and
AMD Ryzen 3900X systems. The operational settings for both systems are
depicted in the Operating System and Compiler columns of Table 1.

For each experiment Eq, let the number of runs of the benchmark be
denoted by mq. Each run results in a score corresponding to a system with
a specific configuration. Throughout each experiment, the benchmark and
operational settings were fixed while the system configurations were varied.

3.2. System configuration

The resources provided by the system enable the execution of the bench-
mark. However, not all resources are varied in the course of the experiment.
In this work, we employ the term resource variables to refer only to the
resources varied during the experiment. These variables are used to model
the relationship between the system configuration and the benchmark per-
formance. In general, any resource may be varied during the experiment to
determine benchmark sensitivity. In the conventional sense of the Amdahl’s
law, the benchmark sensitivity is quantified by the speedup due to the single
resource enhancement. Based on sections 2.2 and 2.3, we attempt to quantify
benchmark sensitivity as the speedup due to enhancement of mutually exclu-
sive resources. Here, we focus on exploring the speedup due to enhancing the
CPU and memory subsystems and accordingly the resource variables include
one or more aspects of the CPU such as the number of cores, the number
of threads, core frequency, uncore frequency, and last level cache size; and

9



one or more aspects of the memory subsystem such as the memory frequency
and number of memory channels. Since the same resource variables support
the execution of different workloads across various systems, the chosen vari-
ables generalize across systems and workloads. For each of the experiments
undertaken, Table 2 depicts the range of configurations2 utilized.

Resource attribute E1 E2 E3 E4

#DataPoints (mq) 58 20 177 38

#Cores (Min) 1 64 1 1

#Cores (Max) 28 64 6 12

Core Freq. in MHz (Min) 1800 1500 1200 2200

Core Freq. in MHz (Max) 2500 2000 3200 3800

Uncore Freq. in MHz (Min) 2200 1500 1200 2200

Uncore Freq. in MHz (Max) 2200 2000 32 00 3800

LLC MB (Min) 7 128 3 64

LLC MB (Max) 38 256 12 64

Mem Freq. in MHz (Min) 2133 2666 1300 1333

Mem Freq. in MHz (Max) 2667 3200 2667 1600

#MemCH (Min) 6 8 1 4

#MemCH (Max) 6 8 2 4

Table 2: Range of the Experimental Design Spaces

In addition to the above resource variables, the simultaneous multithread-
ing state (ON or OFF) was varied during the experiment.

3.3. Relation between experimental design and modeling

The relation between experiment design and modeling is crucial in de-
veloping analytical models with appropriate modeling assumptions. The
number or set of points required to be collected is driven by the underlying
purpose of the experiment. In most cases, the purpose is to accurately model
the predictive relationship between the system resources and the benchmark
output (score).

2In order to test the adaptability of the model across diverse design spaces, each ex-
periment involved a subset of the possible variables.

10



Explanatory and predictive modeling: It is important to note that predic-
tive models do not necessarily reflect the true underlying relationship. For
example, the relation between system resources and benchmark scores is dy-
namic in nature and hence simulated in time whereas most analytical models
are static. Therefore, analytical modeling is not meant to provide explana-
tory or ”true” models of the underlying relationship but only to generate
predictions based on simplified models. However, this does not necessarily
imply analytical or predictive models are less accurate as they have shown
to even outperform explanatory models in some cases [22]. This counter-
intuitive behavior is possible due to reasons such as small magnitude of model
parameters, noisy data, regressor correlations, or small sample sizes [22].

Experiment design for analytical modeling: The experiment design in-
volves selecting the design space used for analytical modeling. The functional
form of the analytical model is selected to represent the underlying data-
generating process. Upon specifying the analytical model, the design space
spanned by the resource variables, along with the corresponding benchmark
scores, are used for the estimation procedure. The estimation procedure has
a bearing on the set of points required [23]. In this work, we employ least
squares estimation. In general, the set of points required to obtain acceptable
accuracy varies based on the efficiency of the estimator. While the investiga-
tion of the optimal design space [24] is beyond the scope of the present work,
we nevertheless examine diverse design spaces to assess the efficacy of the
extended Amdahl’s law (Equation 4) per the design scope shown in Table
2. While any random sampling or systematic design of experiments-based
approaches could be employed within the feasible set of configurations, we
used random sampling based on a One-Factor-At-a-Time (OFAT) approach
to generate diverse design spaces. The idea behind employing diverse de-
sign spaces is to demonstrate the generalizability of the proposed extension.
In what follows, we describe the procedure for model design, training, and
validation.

4. Model design, training, and validation

The data obtained from an experiment Eq consists of mq configurations
and scores for fixed values of the benchmark and operational settings. From
Section 2, it may be noted that each configuration C is made up of one or more
resource variables rCi which are varied across runs to obtain the corresponding
scores.

11



4.1. Analytical modeling

Analytical models represent a predictive relationship between the inde-
pendent system resources and the dependent target variable. Accordingly,
the target and resource variables need to be specified and an underlying pre-
dictive relationship needs to be determined and validated using experimental
data.

4.1.1. Target variable

The target variable is the response such as the benchmark score associated
with the model. If higher scores are considered better they are equivalent
to the speedup. Similarly, if lower scores are considered better, they are
equivalent to the inverse speedup. Here, the target variable is equivalent to
the inverse speedup as detailed in Section 4.1.3. This is because SPECCPU
2017 SpecRate and PCMark 10 output scores proportional to the speedup
[20] and hence their inverse scoreis the target variable.

4.1.2. Resource variables

The value of the target variable is dependent on the resource variables.
This dependency is specified by the model. The set of resource variables
identified in Section 3.2 are incorporated into the model as model features3.
We note that each feature may either be generic as depicted in equations 3,
4 or engineered using knowledge of the architecture and/or the benchmark
execution. In this work, we use both types of features in the model. The
generic features represent the independent variables such as frequencies and
core counts. The engineered features used represent meaningful resources
such as cache size available per core or the maximum bandwidth per core
noted in Section 2.3.2.

4.1.3. Designing Amdahl’s law-based regression models

Given the target and resource variable specifications, the explanatory
relationship between these variables is provided for by the extended Amdahl’s
law-based speedup equations similar to the forms shown in equations 3 or 4.
Each of these equations offer varying degrees of predictive ability quantifiable
by experimental data. As noted in Section 2.4, the explanatory relationship
offered by equations such as 3, 4 is leveraged to build analytical models.

3Xk,i represents the features of the model described in Equation 6.

12



Consider equation 4, wherein we rewrite the denominator after making the

following substitutions. Let α0 := (1−
k∑

m=1
fm−

k∑
m=2

m−1∑
n=1

fmn), αp := fp ∀ p ∈{1,··· ,k},

and αq := fmn ∀ m ∈ {1,··· ,k}, n ∈ {1,··· ,m−1}, q ∈ {k+1,··· ,K}, where K = kC1 + kC2

denotes the total number of single factors and two-factor interactions in the
model. Further, let X̃0 := 1, X̃p := (rCt

p /r
Cb
p ) ∀ p ∈{1,··· ,k} and X̃q := (rCt

m r
Ct
n /r

Cb
m r

Cb
n ) ∀ m ∈

{1,··· ,k}, n ∈ {1,··· ,m−1}, q ∈ {k+1,··· ,K}. Accordingly, the denominator can be

rewritten as
K∑
k=0

αk/X̃k, encapsulating the resource variables, interactions, and

parallel fraction-based coefficients. The left side represents the performance
speedup PCt/PCb . We note that the speedup equation applies to all runs of an
experiment. Extending the above convention for each run i, let the speedup
equivalent be denoted by Ỹi, the kth resource variable/interaction term by
X̃k,i, and X̃0 by X̃0,i. For convenience, we will refer to all the terms X̃k,i

including X̃0,i as resource terms. Thus, the speedup equations in Section
2.3.1 corresponding to the ith run can be represented as:

Ỹi =
1

K∑
k=0

αk
1

X̃k,i

(5)

where, αk is the refactored coefficient of the kth resource term and K denotes
the number of resource terms considered for modeling. It is easy to see
that the above equation may be readily recast into a linear regression model
suitable for learning:

Yi =
K∑
k=0

αkXk,i (6)

where, Yi = 1
Ỹi

and Xi = 1
X̃i

are the reciprocal transformations used to recast

equation 5. In this manner, analytical models may be designed based on
Amdahl’s law and regression techniques.

4.1.4. Model training and cross-validation

Given a model design, its feature weights (coefficients) are determined by
training the model. These coefficients specify a trained model, also known as
a model instance. In this work, the models are trained using ordinary least
squares implemented by the python library scikit-learn. The features of the
model were scaled via normalization during preprocessing to improve model
training.

13



The performance of a model needs to be evaluated to determine its valid-
ity for prediction purposes. We use Mean Absolute Percentage Error (MAPE)
as the model evaluation metric. The validation procedure consists of evaluat-
ing the model on data not used for training. In this work, we perform model
validation by five-fold cross-validation as it provides an accurate estimate of
the expected generalization error and uses the data efficiently for validation
[15]. The measurements dataset consisting of mq observations is split into
five parts called folds. Each split uses four parts for training and one part for
validation as shown in Figure 1. Thus, each split reserves 80% of the data for
training and 20% for validation testing. The validation errors across all folds
are averaged to determine the expected generalization error of the model.

Figure 1: Five-fold cross-validation depicting training and validation folds

Once the model is cross-validated and the expected generalization errors
are deemed satisfactory, it is used for prediction. The end-to-end analytical
modeling flow consisting of the training, validation, and prediction phases
are depicted in Figure 2.

5. Results and discussion

For each of the four experiments E1,E2,E3, and E4, multi-variable re-
gression models based on extended Amdahl’s law were developed and cross-
validated as described in Section 4. The cross-validation results evaluate the
effectiveness of the model for purposes of prediction. As stated in Section
4.1.4 we use the Mean Absolute Percentage Error (MAPE) as the evaluation

14



Figure 2: Analytical modeling within a Machine Learning (ML) framework

metric. For depicting the results below, we convert MAPE into the the equiv-
alent accuracy by calculating 100-MAPE. The average of the Mean Absolute
Percentage Accuracy for all validation folds is shown in the accuracy results
below for each benchmark and hardware platform.

5.1. Experiments involving SPECCPU 2017

These experiments involved executing the SpecRate Integer and Floating
point suites within the SPECCPU2017 benchmark. The Integer suite consists
of 11 tests and the Floating Point suite consists of 14 tests. Twenty five
models were constructed and cross-validated corresponding to each of the 25
tests spanning both suites.

5.1.1. E1: SPECCPU 2017 on Intel Xeon 8180M

Figures 3a and 3b depict the cross-validation accuracy of the tests in the
Integer and Floating Point suites benchmarked on Intel Xeon 8180M. In case
of the Integer suite, the underlying models result in an accuracy of ≈ 95%
or higher. However, in case of the Floating point tests, the wrf r model
resulted in the minimum accuracy of ≈ 88% and some models for other tests
resulted in the maximum accuracy of > 99%. The overall models for the
Integer and Floating point suites resulted in average accuracies of 98% and
96%, respectively.

15



(a) SpecRate Integer (b) SpecRate Floating Point

Figure 3: SPEC CPU 2017 cross-validation results on Intel Xeon 8180M

(a) SpecRate Integer (b) SpecRate Floating Point

Figure 4: SPEC CPU 2017 cross-validation results on AMD EPYC 7702P

5.1.2. E2: SPECCPU 2017 on AMD EYPC 7702P

Figures 4a and 4b depict the cross-validation accuracy of the tests in the
Integer and Floating Point suites benchmarked on AMD EYPC 7702P. In
case of the Integer tests, model accuracies are greater than 95% with the
exception of mcf r whose model accuracy was ≈ 89%. In the Floating point
tests, most tests resulted in ≈ 95% accuracy or greater. The overall models
for Integer and Floating point suites resulted in 98% and 93%, respectively.

5.2. Experiments involving PCMark 10

The experiments involved executing the PCMark 10 benchmark on each
of the platforms below. The benchmark consists of three test groups namely,
Essentials, Productivity, and Digital Content Creation. Each of test groups
have several tests. For demonstrating model efficacy, we examine the cross-
validated accuracies of four models each corresponding to either one of the

16



(a) PCMark10 on Intel CoffeeLake 8700K (b) PCMark10 on AMD Ryzen 3900X

Figure 5: PCMark10 on Intel CFL 8700K & AMD Ryzen 3900X: Cross-validation results

three test groups or to the aggregate output of the PCMark 10 benchmark.

5.3. E3: PCMark 10 on Intel CoffeeLake 8700K

Figure 5a depicts the cross-validation accuracy of the models correspond-
ing to each of the three test groups in PCMark 10. The accuracies of the
Essentials, Productivity, and Digital Content Creation models are found to
be 92%, 88%, and 92%, respectively. The overall PCMark 10 model results
in an average accuracy of 92%.

5.4. E4: PCMark 10 on AMD Ryzen 3900X

Figure 5b depicts the cross-validation accuracy of the models correspond-
ing to each of the three test groups in PCMark 10. The accuracies of the
Essentials, Productivity, and Digital Content Creation models are found to
be 96%, 98%, and 96%, respectively. The overall PCMark 10 model results in
an accuracy of 98%. We note that the model accuracies on the Ryzen 3900X
are found to be higher than the respective model accuracies on the Coffee-
Lake 8700K. This indicates model learning varies according to the platform
architecture for a given benchmark.

5.5. Results of cross-validation

The models corresponding to the fifty-eight (58) tests were cross-validated
per the five-fold procedure outlined in Section 4.1.4. The cross-validation
accuracies for a few tests are provided in Table 3 below.

17



Experiment Test Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

E1 SpecInt Rate 96.68% 98.85% 99.01% 98.40% 98.61%

E2 SpecFP Rate 79.74% 94.63% 97.60% 98.40% 95.61%

E3 Productivity 92.78% 83.94% 82.36% 91.09% 87.83%

E4 PCMark10 (Overall) 97.83% 99.22% 99.59% 91.44% 99.33%

Table 3: Mean Absolute Percentage Accuracy across the cross-validation folds

The configurations used in the cross-validation procedure (Figure 1) cor-
responding to experiment E1 are listed in Table 4.

While most of the above fifty eight (58) have an average cross-validated
accuracy ≥ 95%, we find that the accuracies approximately range between
80% and 99%, thereby indicating the scope of the model performance. The
prediction accuracy is influenced by the accuracy of the estimates of the
model parameters, which are estimated in this work by the least squares
technique. The precision of the estimator is the highest when the conditions
of the Gauss-Markov theorem are satisfied, thereby the estimator becomes
the Best Linear Unbiased Estimator (BLUE) [25]. In a linear framework, the
conditions require non-correlation and homoscedasticity of the error terms.
For example, consider the least and most accurate predictions from the float-
ing point suite of experiment E1. From Figure 3b, they belong to the wrf r
and povray r tests, respectively. The residual plots of these tests are provided
in Figure 6. The increasing variance of residuals with increasing values of
predictions for the case of wrf r (Figure 6a) is suggestive of heteroscedasticity,
thereby justifying a lower prediction accuracy (≈ 88%). On the other hand,
the residual behavior in the case of povray r (Figure 6b) does not exhibit any
tangible change in variance across the axis of predictions and is suggestive of
homoscedasticity, thereby justifying a higher prediction accuracy (> 99%).
In this manner, residual analysis is recommended to validate the assumptions
pertaining to the modeling and estimation (training) procedure. It is possi-
ble to address issues related to correlation and heteroscedasticity of errors by
including nonlinear features within the Amdahl’s law formulation (similar to
the mention in 2.3.2) and regularized estimation procedures. The reader is
referred to Section 3.3.3 of [15] for details.

In general, the model performance is not only influenced by modeling as-
pects such as their assumptions, structure, and training methods but also by
the data variation offered by the experiment sample. For example, consider
the memory frequency resource variable. If all the data points in the sam-

18



(a) Residual plot: wrf r from E1, acc. ≈ 88% (b) Residual plot: povray r from E1, acc. > 99%

Figure 6: Residual plots for wrf r and povray r to demonstrate impact on model accuracy

ple have the same memory frequency, there is no variation in this resource
variable to be able to relate it to the system performance. It follows that
the model would be unable to learn the effect of the memory frequency on
the system performance. In this manner, it is necessary to ensure variation
in the resource variables to model their impact on the system performance.
Further, the statistical assumptions involved in least squares training need to
be validated in order to build generalizable models [26]. It is also important
to note that the actual execution is dynamic in nature whereas these models
offer static approximations of the dynamic process to statistically relate the
resource variables to the performance metric. Despite the shortcomings of
analytical modeling, it results in functionally simpler models to predict sys-
tem performance with reasonable accuracy as suggested by the findings of
our study.

5.6. Use cases for new designs

Once the models are deemed satisfactory, it is not only possible to predict
performance of the benchmarks within the range of the system configura-
tions (Table 2) but pose the inverse problem of finding the range of resource
variables for which a performance target is feasible along with cost consid-
erations. This analysis can help in the design of new systems with desirable
performance and cost characteristics.

19



6. Conclusion

In this work, the problem of predicting multicore system performance
based on benchmark measurements is studied. The conventional Amdahl’s
law formulation is examined in the context of multicore systems. Resulting
speedup equations were found to be limited to single resource enhancements
with respective assumptions and do not allow for studying the simultane-
ous effect of multiple resource enhancements. To migitate these limitations,
an extension of the Amdahl’s law is proposed to incorporate the effect of
multiple system resources simultaneously. A regression framework suitable
for learning is derived from the extended Amdahl’s law. Regression models
are trained on data from experiments across multiple benchmarks and archi-
tectures. The expected prediction accuracy of these models was determined
by cross-validation. Results indicate an average cross-validation accuracy of
≈ 80% − 99% depending on the benchmark and hardware platform consid-
ered. The predictive ability of the regression models across different bench-
marks and architectures demonstrates the generalizability of the proposed
Amdahl’s law extension in effectively learning computer performance due to
the simultaneous enhancement of multiple resources. The proposed method
generalizes across various benchmarks and compute architectures. Future
work should investigate the role of optimizing experiment design in relation
to estimator accuracy and efficiency, performance reachability analysis, fea-
ture learning for rapid generation of analytical models of various product
architectures and benchmarks.

Acknowledgement

The authors thank Intel Corporation for supporting this work.

References

[1] A. Gonzalez, F. Latorre, G. Magklis, Processor microarchitecture: An imple-
mentation perspective, Synthesis Lectures on Computer Architecture 5 (1)
(2010) 1–116.

[2] J.-Y. Le Boudec, Performance Evaluation of Computer and Communication
Systems, EPFL Press, Lausanne, Switzerland, 2010.

20



[3] R. Jain, The Art Of Computer Systems Performance Analysis: Techniques
For Experimental Measurement, Simulation, And Modeling, john wiley &
sons, 2008.

[4] L. Eeckhout, Computer architecture performance evaluation methods, Syn-
thesis Lectures on Computer Architecture 5 (1) (2010) 1–145.

[5] A. Akram, L. Sawalha, A survey of computer architecture simulation tech-
niques and tools, Ieee Access 7 (2019) 78120–78145.

[6] K. Skadron, M. Martonosi, D. I. August, M. D. Hill, D. J. Lilja, V. S. Pai,
Challenges in computer architecture evaluation, Computer 36 (8) (2003) 30–
36.

[7] S. Van den Steen, S. De Pestel, M. Mechri, S. Eyerman, T. Carlson, D. Black-
Schaffer, E. Hagersten, L. Eeckhout, Micro-architecture independent analyt-
ical processor performance and power modeling, in: 2015 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
IEEE, 2015, pp. 32–41.

[8] T. Hoefler, R. Belli, Scientific benchmarking of parallel computing systems:
twelve ways to tell the masses when reporting performance results, in: Pro-
ceedings of the international conference for high performance computing, net-
working, storage and analysis, 2015, pp. 1–12.

[9] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, M. Schulz, Efficiently
exploring architectural design spaces via predictive modeling, ACM SIGOPS
Operating Systems Review 40 (5) (2006) 195–206.

[10] G. M. Amdahl, Validity of the single processor approach to achieving large
scale computing capabilities, in: Proceedings of the April 18-20, 1967, spring
joint computer conference, 1967, pp. 483–485.

[11] M. D. Hill, M. R. Marty, Amdahl’s law in the multicore era, Computer 41 (7)
(2008) 33–38.

[12] J. L. Gustafson, Reevaluating amdahl’s law, Communications of the ACM
31 (5) (1988) 532–533.

[13] X.-H. Sun, Y. Chen, Reevaluating amdahl’s law in the multicore era, Journal
of Parallel and distributed Computing 70 (2) (2010) 183–188.

21



[14] M. A. N. Al-hayanni, F. Xia, A. Rafiev, A. Romanovsky, R. Shafik,
A. Yakovlev, Amdahl’s law in the context of heterogeneous many-core
systems–a survey, IET Computers & Digital Techniques 14 (4) (2020) 133–
148.

[15] G. James, D. Witten, T. Hastie, R. Tibshirani, An introduction to statistical
learning, Vol. 112, Springer, 2013.

[16] B. C. Lee, D. M. Brooks, Accurate and efficient regression modeling for mi-
croarchitectural performance and power prediction, ACM SIGOPS operating
systems review 40 (5) (2006) 185–194.

[17] W. Jia, K. A. Shaw, M. Martonosi, Stargazer: Automated regression-based
gpu design space exploration, in: 2012 IEEE International Symposium on
Performance Analysis of Systems & Software, IEEE, 2012, pp. 2–13.

[18] P. Lotfi-Kamran, H. Sarbazi-Azad, Dark silicon and the history of computing,
in: Advances in Computers, Vol. 110, Elsevier, 2018, pp. 1–33.

[19] M. Hamada, J. Wu, Experiments: planning, analysis, and parameter design
optimization, Wiley New York, 2000.

[20] J. Bucek, K.-D. Lange, J. v. Kistowski, Spec cpu2017: Next-generation com-
pute benchmark, in: Companion of the 2018 ACM/SPEC International Con-
ference on Performance Engineering, 2018, pp. 41–42.

[21] UL, Pcmark 10 - the complete benchmark for the modern office, https:

//benchmarks.ul.com/pcmark10 (2017).

[22] G. Shmueli, et al., To explain or to predict?, Statistical science 25 (3) (2010)
289–310.

[23] W. Krämer, Finite sample efficiency of ordinary least squares in the linear re-
gression model with autocorrelated errors, Journal of the American Statistical
Association 75 (372) (1980) 1005–1009.

[24] P. Goos, B. Jones, Optimal design of experiments: a case study approach,
John Wiley & Sons, 2011.

[25] H. Theil, Principles of econometrics, Wiley, 1971.

[26] R. H. Myers, Classical and modern regression with applications, Vol. 2,
Duxbury press Belmont, CA, 1990.

22

https://benchmarks.ul.com/pcmark10
https://benchmarks.ul.com/pcmark10


Fold sequence LLC (MB) NumCores Mem. Freq. (MHz) NumMemCH Core Freq. (MHz) Uncore Freq. (MHz) NumThreadsPerCore LLC per core (derived) B/W available per Core-Clk (derived)

VTTTT 38 8 2667 6 2500 2200 2 4.75 0.00640080000000000

VTTTT 38 12 2667 6 1800 2200 1 3.17 0.00592666666666667

VTTTT 38 12 2667 6 2200 2200 1 3.17 0.00484909090909091

VTTTT 38 12 2667 6 2500 2200 1 3.17 0.00426720000000000

VTTTT 38 12 2667 6 1800 2200 2 3.17 0.00592666666666667

VTTTT 38 12 2667 6 2200 2200 2 3.17 0.00484909090909091

VTTTT 38 12 2667 6 2500 2200 2 3.17 0.00426720000000000

VTTTT 38 18 2667 6 2500 2200 1 2.11 0.00284480000000000

VTTTT 38 18 2667 6 2500 2200 2 2.11 0.00284480000000000

VTTTT 38 1 2667 6 2500 2200 1 38.00 0.05120640000000000

VTTTT 38 1 2667 6 2500 2200 2 38.00 0.05120640000000000

VTTTT 38 20 2667 6 1800 2200 1 1.90 0.00355600000000000

TVTTT 38 20 2667 6 2200 2200 1 1.90 0.00290945454545454

TVTTT 38 20 2667 6 2500 2200 1 1.90 0.00256032000000000

TVTTT 38 20 2667 6 1800 2200 2 1.90 0.00355600000000000

TVTTT 38 20 2667 6 2200 2200 2 1.90 0.00290945454545454

TVTTT 38 20 2667 6 2500 2200 2 1.90 0.00256032000000000

TVTTT 38 22 2667 6 2500 2200 1 1.73 0.00232756363636364

TVTTT 38 22 2667 6 2500 2200 2 1.73 0.00232756363636364

TVTTT 38 24 2667 6 2500 2200 1 1.58 0.00213360000000000

TVTTT 38 24 2667 6 2500 2200 2 1.58 0.00213360000000000

TVTTT 38 28 2667 6 1800 2200 1 1.36 0.00254000000000000

TVTTT 38 28 2667 6 2000 2200 1 1.36 0.00228600000000000

TVTTT 38 28 2667 6 2200 2200 1 1.36 0.00207818181818182

TTVTT 38 28 2667 6 2500 2200 1 1.36 0.00182880000000000

TTVTT 38 28 2667 6 1800 2200 2 1.36 0.00254000000000000

TTVTT 38 28 2667 6 2000 2200 2 1.36 0.00228600000000000

TTVTT 38 28 2667 6 2200 2200 2 1.36 0.00207818181818182

TTVTT 38 28 2667 6 2500 2200 2 1.36 0.00182880000000000

TTVTT 38 4 2667 6 2500 2200 1 9.50 0.01280160000000000

TTVTT 38 4 2667 6 2500 2200 2 9.50 0.01280160000000000

TTVTT 38 8 2667 6 2500 2200 1 4.75 0.00640080000000000

TTVTT 14 28 2667 6 2500 2200 1 0.50 0.00182880000000000

TTVTT 21 28 2667 6 2500 2200 1 0.75 0.00182880000000000

TTVTT 28 28 2667 6 2500 2200 1 1.00 0.00182880000000000

TTVTT 35 28 2667 6 2500 2200 1 1.25 0.00182880000000000

TTTVT 7 28 2667 6 2500 2200 1 0.25 0.00182880000000000

TTTVT 14 28 2667 6 2500 2200 2 0.50 0.00182880000000000

TTTVT 21 28 2667 6 2500 2200 2 0.75 0.00182880000000000

TTTVT 28 28 2667 6 2500 2200 2 1.00 0.00182880000000000

TTTVT 35 28 2667 6 2500 2200 2 1.25 0.00182880000000000

TTTVT 7 28 2667 6 2500 2200 2 0.25 0.00182880000000000

TTTVT 38 12 2400 6 2500 2200 1 3.17 0.00384000000000000

TTTVT 38 12 2400 6 2500 2200 2 3.17 0.00384000000000000

TTTVT 38 20 2400 6 2500 2200 1 1.90 0.00230400000000000

TTTVT 38 20 2400 6 2500 2200 2 1.90 0.00230400000000000

TTTVT 38 24 2400 6 2500 2200 1 1.58 0.00192000000000000

TTTTV 38 24 2400 6 2500 2200 2 1.58 0.00192000000000000

TTTTV 38 28 2400 6 2500 2200 1 1.36 0.00164571428571429

TTTTV 38 28 2400 6 2500 2200 2 1.36 0.00164571428571429

TTTTV 38 12 2133 6 2500 2200 1 3.17 0.00341280000000000

TTTTV 38 12 2133 6 2500 2200 2 3.17 0.00341280000000000

TTTTV 38 20 2133 6 2500 2200 1 1.90 0.00204768000000000

TTTTV 38 20 2133 6 2500 2200 2 1.90 0.00204768000000000

TTTTV 38 24 2133 6 2500 2200 1 1.58 0.00170640000000000

TTTTV 38 24 2133 6 2500 2200 2 1.58 0.00170640000000000

TTTTV 38 28 2133 6 2500 2200 1 1.36 0.00146262857142857

TTTTV 38 28 2133 6 2500 2200 2 1.36 0.00146262857142857

Table 4: The list of configurations used in E1. The Fold sequence column shows whether the
configuration was a part of the training (T) or validation (V) set during each cross-validation fold stated

in Figure 1. For example, the sequence TTTTV indicates configuration was part of the training set
during the first four folds and a part of the validation set in the fifth fold.

23


	1 Introduction
	2 Methodology
	2.1 Amdahl's Law: Single resource enhancementEnhancement due to a single resource
	2.2 Amdahl's law: Need for reformulation
	2.3 Amdahl's Law: Multiple resources enhancementsEnhancement due to mutually exclusive resources
	2.3.1 Enhancements due to resource interactions
	2.3.2 Enhancements due to higher order effects

	2.4 Amdahl's Law for data-driven modeling

	3 Experiment Setup
	3.1 Workload settings
	3.1.1 SPECCPU 2017
	3.1.2 PCMark 10

	3.2 System configuration
	3.3 Relation between experimental design and modeling

	4 Model design, training, and validation
	4.1 Analytical modeling
	4.1.1 Target variable
	4.1.2 Resource variables
	4.1.3 Designing Amdahl's law-based regression models
	4.1.4 Model training and cross-validation


	5 Results and discussion
	5.1 Experiments involving SPECCPU 2017
	5.1.1 E1: SPECCPU 2017 on Intel Xeon 8180M
	5.1.2 E2: SPECCPU 2017 on AMD EYPC 7702P

	5.2 Experiments involving PCMark 10
	5.3 E3: PCMark 10 on Intel CoffeeLake 8700K
	5.4 E4: PCMark 10 on AMD Ryzen 3900X
	5.5 Results of cross-validation
	5.6 Use cases for new designs

	6 Conclusion

