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Resilience and Load Balancing in Fog Networks:
A Multi-Criteria Decision Analysis Approach
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Abstract—The advent of Cloud Computing enabled the pro-
liferation of IoT applications for smart environments. However,
the distance of these resources makes them unsuitable for delay-
sensitive applications. Hence, Fog Computing has emerged to
provide such capabilities in proximity to end devices through
distributed resources. These limited resources can collaborate to
serve distributed IoT application workflows using the concept
of stateless micro Fog service replicas, which provides resiliency
and maintains service availability in the face of failures. Load
balancing supports this collaboration by optimally assigning
workloads to appropriate services, i.e., distributing the load
among Fog nodes to fairly utilize compute and network re-
sources and minimize execution delays. In this paper, we propose
using ELECTRE, a Multi-Criteria Decision Analysis (MCDA)
approach, to efficiently balance the load in Fog environments.
We considered multiple objectives to make service selection
decisions, including compute and network load information.
We evaluate our approach in a realistic unbalanced topological
setup with heterogeneous workload requirements. To the best of
our knowledge, this is the first time ELECTRE-based methods
are used to balance the load in Fog environments. Through
simulations, we compared the performance of our proposed
approach with traditional baseline methods that are commonly
used in practice, namely random, Round-Robin, nearest node,
and fastest service selection algorithms. In terms of the overall
system performance, our approach outperforms these methods
with up to 67% improvement.

Index Terms—Internet of Things, Cloud Computing, Fog Com-
puting, Edge Computing, Task Assignment, Service Selection,
Load Balancing, Optimization, MCDA, MCDM, ELECTRE.

I. INTRODUCTION

Fog Computing complements Cloud Computing to support
delay-sensitive IoT applications and to support mobility, geo-
distribution, and location awareness for these applications [1].
It saves the network bandwidth by reducing the traffic between
end devices and the Cloud. In addition, it increases the
security and privacy of IoT applications by pre-processing and
encrypting data closer to its source [2]. Fog resources extend
from the edge of the network to the Cloud, i.e., cloud-to-
thing continuum, while Edge Computing limits these resources
within one-hop distance from those things [3] (see Fig. 1).
Hence, the Fog is more complex than the Edge; indeed, the
Edge can be viewed as a subcategory of the Fog as shown in
Fig. 1. Only modular applications, like workflow and bag-of-
tasks [4], allow for distributed Fog deployments as pipelined
workflows [5]. In contrast, monolithic applications cannot be
divided into multiple logical modules, and hence each shall
run as a single module in a single computing entity.
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Fig. 1. Cloud, Fog, and Edge Computing for IoT networks.

Many applications benefit from Fog and Edge Computing to
support different types of IoT and mobile applications (see Fig.
2(a)). In Fig. 2(b), we present a Fog-based video surveillance
system, where the overall system performance is increased us-
ing pipelined application workflows. The first module, i.e., on
the camera, performs simple subtractions between subsequent
frames to prevent sending identical frames of stationary views.
Edge and Fog modules perform object recognition and face
detection, respectively; this allows to only send and process
frames with humans and faces, respectively. Face recognition
will run on the Cloud, where faces are matched against
a privately-owned, or government-owned, database to track
people in restricted areas, suspects, or criminals. Immediate
feedback can be sent from each module in the application
workflow to change frame resolution and video Bitrate in the
sensing device when needed. For example, if a face is detected,
the camera is notified to send higher resolution frames to
increase the face recognition accuracy. However, the camera is
notified to decrease its resolution and Bitrate to save resources
when no objects are detected.

Estimating the volume of IoT workloads in advanced can
help building Fog environments, from scratch or by extending
existing infrastructures, to support IoT frameworks and their
applications [6]. However, it is almost impossible to accurately
estimate the expected volume of IoT workloads, a problem
that is imposed by the ever-growing number of IoT devices
and their applications. Therefore, optimal resource manage-
ment becomes critical to cope with these increasing demands,
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Fig. 2. The benefits of distributed computing for IoT and mobile applications. (a) Edge and Fog-based IoT applications. (b) Fog-based video surveillance.

which is done through optimal resource provisioning and
resource allocation schemes. In addition, optimally balancing
IoT workload among Fog resources helps achieving optimal
utilization of existing resources without requiring additional
hardware resources. Although, optimal load balancing is not
sufficient when the total available hardware resources can not
provide enough computational power to serve all generated
IoT workloads at a given point in time.

Time-dependent data rate fluctuations, uneven sensor dis-
tribution, and sensor mobility are usually the main reasons
for dynamic workloads in realistic IoT networks. Hence,
efficient management of the network’s scarce resources is
essential to improve the performance of these systems. In
mobile networks, for example, this requires understanding the
behavior of network traffic [7]. These dynamic environment
changes increase the complexity of efficient workload distribu-
tion across Fog nodes [1]. This led researchers to oversimplify
their experiments using many pre-assumptions, which makes
their proposed solutions far from being applicable to realistic
environments [8]. For example, Kashani et al. [9] proposed
to use a three-layer hierarchical architecture, where the Cloud
resides at the top, Fog nodes in the middle, and IoT devices
at the bottom of the hierarchy. However, flat mesh-like archi-
tectures and semi-hierarchical architectures are more realistic,
where Fog nodes can communicate with adjacent Fog nodes
without the concept of layers [8]. This can be achieved by
interconnecting Fog nodes with each other to allow offloading
workloads and traffic among themselves, if needed, without
necessarily going through the Cloud.

Load balancing becomes critical to achieving resource effi-
ciency by avoiding bottlenecks, underload, and overload situa-
tions [9]. For this to work, the total available resources should
be equal or greater than the requirements of all incoming
requests at a given time [10]. Hence, load balancing methods
try to maximize resource utilization while minimizing the
execution delay to satisfy the deadline requirements for delay-
sensitive tasks. In addition, to distribute workloads among

interconnected Fog nodes without migrating data and services,
these nodes must have redundant service replicas of the
requested modules [11].

Using redundant micro services for Fog-based applications
is essential, especially for resource-hungry real-time IoT appli-
cations that are used globally, such as trending online games,
Internet of Vehicles (IoV), and health monitoring systems.
Balancing the load of such heavy applications is critical, and
avoiding migration while serving the global population can be
only achieved through service replication. These Fog-based
micro services can be deployed globally as background ser-
vices, and only loaded when triggered, i.e., when requested by
an IoT application. Hence, the compute resources of those Fog
nodes will only be consumed while serving these workloads. If
workloads of some applications are less frequent in a specific
region, their corresponding micro-services that are deployed
in the Fog nodes in that region will be idle most of the time,
hence saving their compute resources.

Considering redundant micro Fog services with resource-
demanding real-time applications saves compute and network
resources from the overhead of service and data migration. Mi-
gration overhead is a heavy burden in Fog networks, especially
the overhead of transmission, allocation, and security of the
migrated services and their associated data [12]. In addition,
redundancy allows performing load balancing through Fog
service selection decisions, where a Fog service in a given
Fog node is selected to serve a given request. Hence, an up-to-
date directory of available services in every available Fog node
must be presented for the node that performs load balancing.
Such directory represents a virtual sub-network, i.e., local view
of the network, for every workload, where multiple Fog nodes
host the required service. Hence, the goal of the load balancing
algorithm is to select one of these Fog nodes to serve this
workload.

Service selection decisions depend on whether Fog modules
need cached data to process IoT requests, a concept referred to
as the state of the flow of requests [13]. For stateless requests,
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where cached data is not needed, incoming requests can be
offloaded to other service replicas without migration [13].
However, migration is needed for stateful, i.e., not stateless,
requests during the offloading process. Hence, to be able to
use service selection decisions to balance the load between
redundant micro Fog services while avoiding migration, work-
loads/requests must be assumed stateless, i.e., serverless. All
these assumptions are common in Fog environments, in fact,
considering stateless requests with redundant micro services
provides resilience for the system by maintaining service
availability in case of the failure of one or more Fog nodes in
the system [14].

Service selection decisions range from sophisticated load
balancing algorithms to simple random node selection [15].
Round-Robin (RR), nearest node, and fastest service selection
algorithms are other simple service selection methods. Using
the nearest node minimizes communication delay and energy
consumption in the network while using the fastest service
increases resource utilization and minimizes task processing
time. But, smarter algorithms simultaneously include workload
requirements, resource capabilities of computing nodes and
network links, and their current load information. Search-
based optimization algorithms can be used to balance the load
in such fully observable environments, where the network load
information is accessible to the load balancing algorithm.

Even though search-based algorithms may require higher
processing power than simple traditional approaches, they can
provide optimal, or near-optimal, results that can be used as a
baseline for other algorithms. Such algorithms can be deployed
in resource-rich network controllers, like SDN Controllers,
to provide service selection decisions for every generated
workload in the network. Therefore, we propose, in this
paper, a multi-objective search-based optimization approach
using an outranking Multi-Criteria Decision Analysis (MCDA)
algorithm called ELECTRE [16]. Our approach outperformed
traditional service selection algorithms, i.e., random, RR, near-
est node, and fastest service selection algorithms, to improve
the overall system performance. These traditional methods are
widely considered for practical Fog deployments because of
their simplicity while they are wrongly assumed to work well
in arbitrary Fog architectures.

We considered using an MCDA-based approach to balance
the load in Fog networks as it recently showed good perfor-
mances in similar tasks. For instance, these methods achieved
satisfactory performance in Mobile Crowd Computing systems
by making optimal resource selection decisions [17]. They
were also used to solve the service selection problem in Cloud
Computing environments [18]. In addition, these algorithms
were used to solve the service placement problem in Fog
Computing systems [19]. However, this is the first time an
MCDA-based method is used to balance the load in Fog
systems to increase the overall Fog system performance.

We also provide in this work a generic network architecture
(see Fig. 3) with heterogeneous and unbalanced resources,
unbalanced load distribution, heterogeneous workload require-
ments, and a semi-hierarchical topology. It demonstrates the
need for load balancing in unbalanced Fog environments with
bottlenecks in computational and communication resources.

0

31 2

…

The Cloud
Fog Nodes
IoT Devices

Fig. 3. Generic Fog topology that emphasizes the need for load balancing.
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Fig. 4. A simple distributed IoT application workflow for the generic Fog
architecture, with a single application loop.

It is used to evaluate and compare the performance of our
approach with other service selection methods. This archi-
tecture avoids common simplifications in the literature, like
using hierarchical topologies with homogeneous resource and
workload requirements [8].

We then evaluate our approach in a more realistic experi-
mentation setup, which consists of multiple Fog nodes that are
randomly configured to simulate unbalanced resource and load
distribution. This larger setup confirms both the performance
of our proposed approach, as well as the effectiveness of our
generic architecture in evaluating load balancing algorithms
in a simplified setup. In addition, we consider pipelined IoT
application workflows with computational modules that span
from the edge of the network to the Cloud (see Fig. 4).
This consideration avoids simplifying Fog problems into Edge
problems, where atomic IoT workloads are assigned to a single
computing entity that then sends feedback to the source IoT
device in response [20].

Hence, our main contributions can be summarized as the:

1) Design and implementation of a generic Fog architecture
that can be used to evaluate load balancing algorithms
away from the common simplifications in the literature.

2) Design and implementation of ELECTRE MCDA-based
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load balancing algorithm that simultaneously considers
five selection criteria for its decision-making process.

3) Comparison of our proposed approach with traditional
methods that are commonly used in practice, which are
wrongly assumed to behave well in Fog environments.

4) Evaluation of our proposed load balancing solution in a
larger and more realistic setup to confirm our findings.

The rest of the paper is organized as follows. Section II
presents a comparison between this work and existing work
in the literature. We introduce the ELECTRE algorithm in
Section III. Section IV presents the generic architecture used to
evaluate the proposed solution. Section V discusses the results
and the superior performance of our approach. Finally, Section
VI concludes the paper and presents some future directions for
the work.

II. RELATED WORK

Increasing the performance of IoT applications using Fog
resources can be done in two ways: (1) Constructing Fog
infrastructures that match the expected IoT traffic in a system
[21]. (2) Allocating the resource of existing Fog infrastructures
to run IoT applications, and optimally distributing the load of
these applications to those resources in real-time. The first
approach works for geographical regions that do not have
existing Fog infrastructures. The goal here is to find the
optimal geographical locations of Fog nodes and to determine
their optimal resource requirements, i.e., CPU, memory, and
storage. In contrast, the second approach is more realistic as
we simply use the resources of existing hardware in the net-
work using optimal resource allocation and load distribution.

Before balancing the load in Fog environments, we need
to allocate Fog resources to distributed application modules.
This problem is also called the Fog placement problem, i.e.,
where to deploy service instances of IoT application modules.
The allocation of resources can be static or dynamic [22].
With static allocation, services do not migrate after their initial
deployments, while they can migrate during their lifetime
when dynamic allocation is used, which is more realistic in
dynamic mobile environments. In this case, efficient mobility-
aware bandwidth reservation schemes are required to support
real-time IoT applications to preserve the valuable and scarce
bandwidth resources [23]. In addition, the overhead of mi-
grating services and their associated data can be unacceptable
in realistic deployments, which is often underestimated in the
literature [24]. It can be ignored only when migration is done
on micro Fog services that are not associated with user data.

Velasquez et al. [25], for example, reduced network latency
in Fog environments by optimizing service placement using
Integer Linear Programming (ILP). The optimization is based
on the popularity of each application, i.e., the number of
requests for each application. Then, they proposed a faster,
but near-optimal, heuristic solution based on the PageRank
algorithm. Their results showed that the heuristic approach was
better in balancing the load between Fog nodes with latency
values close to those of the ILP optimal solution. They used the
YAFS simulator [26] to test their solution and compared their
results with the First Fit (FF) placement algorithm. However,

they only solved the initial placement problem, i.e., static
resource allocation, in Fog environments, which cannot adapt
to dynamic environments with mobile nodes.

The Fog placement problem was also addressed using other
optimization algorithms, including Genetic algorithms [27],
Particle Swarm Optimization (PSO) [28], Gravitational Search
Algorithm (GSA) [29], Monte Carlo simulations [30], and
linear programming [31]. However, solving the Fog place-
ment problem does not necessarily provide resiliency in the
system and it might require service and data migration to
support mobile networks, which introduces a huge overhead
in dynamic systems. Ni et al. [32] compared static allocation
strategies with dynamic resource allocation in the Fog, where
they filtered, classified, and grouped Fog nodes based on their
computing capabilities and their credibility. They considered
the price and time costs needed to complete the tasks along
with the credibility of end-users and Fog resources. However,
users or resources can have similar credibility, which can
cause sub-optimal behavior when breaking ties. In addition,
the dynamic nature of users’ and resources’ credibility can
cause deviations when calculating these values.

Téllez et al. [33] balanced the load between Fog nodes and
the Cloud by finding the optimal task allocation using an ILP-
based Tabu search method. They transformed multi-objective
optimization into a single-objective problem using the Pareto
Frontier method. They used a Task Scheduling Coordinator to
receive the tasks, schedule them, and assign them to suitable
computing nodes. Puthal et al. [34] used Breadth-First Search
to choose the best computing node in the network to improve
resource utilization and job response time in the system.

Xu et al. [35] balanced the load between Fog nodes based
on CPU, RAM, and bandwidth resources using static resource
allocation and dynamic service migration. Services were parti-
tioned to Fog nodes based on their type and predefined request
generation rates. They compared their approach with FF, Best-
Fit (BF), FF-Decreasing (FFD), and BF-Decreasing (BFD).
Pereira et al. [36] proposed a priority-based load balancing
algorithm with two predefined priority levels. They used a
centralized controller with a global knowledge of system
resources and workload requirements. The controller uses a
search table to select the best available computing node and
can create more nodes if needed. High priority tasks are sent
to the node with the lowest load and latency and the highest
number of cores and available memory. While low priority
tasks wait for nodes with low load or will be sent to the Cloud.

Pinto Neto et al. [11] compared their multi-tenant load
distribution algorithm with a delay-driven load distribution
strategy. They considered homogeneous Fog environments
with redundant services replicas. In their hierarchical archi-
tecture, a management node in the upper layer manages all
Fog nodes in the lower layer. It keeps a table for the resource
utilization in each Fog node as well as the communication
delay between adjacent nodes. When a Fog node receives a
task, it consults the management node to select the best node
to run this task based on its priority and delay requirements.
If all nodes are fully loaded, tasks are kept in a queue in
the management node. When a node becomes available, the
management node sends to it the task with the highest priority.
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Despite their near-optimality, machine learning based solu-
tions have been also considered for load balancing problems
in Fog systems. Mseddi et al. [37], for example, used Deep
Q-networks (DQN) to maximize user satisfaction with mobile
Fog nodes that are free to join or leave the network. It runs
in multiple controllers, where each controller is responsible
for a group of Fog nodes in its region. To build the state
of the environment, they included the location of Fog nodes
and IoT devices and the requirements of computational tasks.
Each controller selects the best Fog node in its region that can
perform the task within a predefined delay threshold. They
compared their results with ILP, random, and nearest node
selection algorithms. However, they assumed identical inde-
pendent tasks with homogeneous workloads, which violates
the characteristics of distributed IoT applications.

Talaat et al. [38] also used a Master controller for each
isolated Fog region, which continuously monitors traffic,
collects resource and load information, and fairly distribute
requests to Fog nodes in their regions. They used RL and
genetic algorithms to allocate and migrate tasks using Adaptive
Weighted-RR (AWRR), where the decisions are based on
the CPU, RAM, and Cache values of each node and other
predefined conditions. They compared their approach with RR,
Weighted-RR (WRR), and Least-Connection (LC) selection
methods. Baek et al. [39] used SDN controllers to lower
the overloading probability of Fog nodes while reducing job
latency, which was achieved by offloading the optimal number
of tasks to neighboring Fog node. They calculated a load index
value using Q-Learning to represent the computational load
on a given node based on a global system average. They
compared their work with random, nearest, and least-queue
node selection schemes.

Wang and Varghese [4] used Cloud-based DQN agents to
decide on the number of services that should be offloaded
from the Cloud to the Fog layer, and their optimal placement,
considering QoS and running costs. They formulated Fog
nodes as the environment and nodes’ characteristics as the
state of the agent. They compared their approach with a
static predetermined service distribution. However, they did
not consider dynamically changing environments, where the
number of users and workload generation rates can change
over time. In addition, they did not consider multi-tenancy,
where multiple Fog applications are deployed on a single Fog
node simultaneously.

Approximation-based approaches provide semi-optimal re-
sults through function approximation. Conversely, random-
based load balancing approaches provided good performances
with simple implementations and minimum resource require-
ments while avoiding complex coordination between Fog
nodes. For instance, Beraldi and Alnuweiri [40] proposed a
simple load balancing algorithm that leverages the power of
random choice property. In their solution, every time a node
receives a job, it sends a request to a randomly selected node
to take this task. The selected node informs the task initiator in
case it accepts it. Otherwise, it repeats the process sequentially
by sending another request to another randomly selected node.
This sequential solution is equal to their parallel solution,
proposed in [41], with a fan-out value equal to 1, which means

sending the request to a single random node.
In another work, Fog nodes probe random nodes to offload

tasks if their current load exceeds a predefined threshold [42].
This is similar to the work in [43] except for probing a prede-
fined number of random nodes, then selecting the least loaded.
Similarly, Beraldi et al. [44] proposed sequential and adaptive
random forwarding algorithms. Here, if the job is already
offloaded more than a predefined threshold, it is executed
locally or dropped based on the available resources. Otherwise,
the node decides between processing the task locally and
offloading it to a random node based on its current load. The
sequential algorithm uses a predefined load threshold for each
node, while the adaptive algorithm tunes this threshold based
on the number of times the job was already forwarded.

There are many limitations in existing load balancing
approaches in the literature (summarized in Table I). That
motivated us to propose a solution that mitigates these limita-
tions. Our proposed load balancing solution optimizes multiple
objectives simultaneously using an MCDA-based method to
improve the overall system performance. MCDA-based meth-
ods were used to make resource selection decisions in different
domains, including Mobile Crowd Computing systems, where
smart mobile devices are utilized as computing resources
[17]. These methods achieved satisfactory performance and
provided quality of service by selecting the most suitable
resources. Furthermore, MCDA methods were also used to
efficiently solve the service selection problem in Cloud Com-
puting environments [18].

The varying significance of the selection criteria makes
MCDA methods suitable for load balancing problems in
the Fog. ELECTRE, for example, is an effective outranking
MCDA method that was used to solve the Cloud service
selection [18] and the Fog service placement [19] problems.
However, to the best of our knowledge, MCDA-based methods
have never been used to balance the load in Fog environments
using service selection decisions of stateless micro Fog service
replicas. To fill this gap, we propose in this work an MCDA-
based load balancing solution using the ELECTRE algorithm,
where we simultaneously minimize the hop count, propagation
delay, processing delay, execution delay, and waiting delay
to improve the overall system performance. We compare
the performance of our approach against traditional service
selection methods, i.e., random, RR, nearest node, and fastest
service selection. Evaluating load balancing algorithms against
such baselines is a common practice in the literature (see Table
I). To advance the state of the art, the proposed solutions
must mitigate the limitations of existing approaches in the
literature before improving the system performance in terms
of execution delay and resource utilization.

Table I shows that our proposed solution addresses a number
of limitations in existing work in the literature. For example,
our solution provides a near-optimal solution for the load
balancing problem in Fog environments. Unlike randomized
methods (e.g., [40] [41] [42] [43] [44]), which do not guar-
antee optimal load distribution, and can unnecessarily waste
compute and network resources. In addition, our proposed
approach can easily adapt to dynamic changes in the topology
of the system, availability of compute and network resources,
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TABLE I
COMPARISON BETWEEN EXISTING LOAD BALANCING APPROACHES FOR FOG NETWORKS

Approach Optimization Objectives Evaluated against Limitations How we Address these limitations
Random (offloading [40] [41],
probing [42] [43], forwarding [44])

- No load balancing Can unnecessarily waste resources
as it does not guarantee optimality

Provide optimal/near-optimal solu-
tion

Popularity Ranked Placement [25] Minimize network latency ILP and FF Initial/static service placement only Consider dynamic service selection
to adjust to system changes

Credibility-based Grouping [32] Minimize task completion
time and processing price

Predetermined static allo-
cation

Credibility deviation and ties Address ties by selecting the near-
est node to save network resources

ILP-based Tabu search [33] Minimize computational
cost using Fog or Cloud

- Price-based task assignment only Consider improving service utiliza-
tion and execution delay

Breadth-First Search [34] Improve resource utiliza-
tion and job response time

Static, proportional, and
random

Uses a balanced Fog architecture Consider unbalanced Fog topology
with unbalanced load distribution

Static allocation with migration
[35]

Minimize the load-balance
variance

FF, BF, FFD, and BFD Migration cost is not considered Avoid migration, which depends on
network resources and its traffic

Priority-based search [36] Homogeneous tasks distri-
bution

No load balancing Predefined priorities and thresholds
that must be determined by experts

Avoid predefined parameters to dy-
namically adjust to system changes

Multi-tenant load distribution [11] Priority and communica-
tion delay

Delay-driven load distri-
bution

Homogeneous Fog architecture Consider heterogeneous resources
with heterogeneous workloads

DQN allocation and migration [37] QoS satisfaction within
predefined delay threshold

ILP, random, and nearest Considers identical atomic tasks Avoid pre-training/retraining and
consider heterogeneous tasks

RL and genetic algorithms [38] Reduce allocation cost and
response time

LC, RR, WRR Migration cost is not considered Avoid pre-training/retraining and
avoid migration

Q-Learning [39] Lower overloading proba-
bility and job latency

Random, nearest, and
least-queue

Do not consider unbalanced scenar-
ios

Avoid pre-training/retraining and
consider unbalanced scenarios

Dynamic redeployment with DQN
[4]

Optimal placement consid-
ering QoS & running cost

Static service distribution Single Application per Fog node
only

Avoid pre-training/retraining and
consider multiple applications

as well as the changes in load distribution and its generation
rate. In contrast to static allocation solutions (e.g., [25] [35]),
with initial service placement of Fog services, which can
only perform well in unrealistic static environments that never
change overtime. Our proposed solution also avoids predefined
priorities and thresholds that are common in existing solutions
(e.g., [36]), which are hard to be estimated even by experts.
Avoiding such predetermined parameters allows for dynamic
load balancing solutions that can easily adjust to system
changes.

We also carefully address the problem of having ties be-
tween alternatives, which is a problem in credibility-based
grouping approaches (e.g., [32]). Hence, in case of a tie,
i.e., more than one alternative is identified as top-ranked,
the nearest Fog node is selected to save network resources.
Additionally, our approach aims to improve service utilization
in computing nodes while minimizing execution delay; this
is different from price-based task assignment solutions (e.g.,
[33]) that only focus on minimizing the offloading monetary
cost without considering about system performance. Moreover,
we evaluate our approach in unbalanced Fog architectures
with unbalanced load distribution, heterogeneous resources
and workloads, and multiple simultaneous applications. In
the literature, however, the evaluation is often simplified by
considering balanced and homogeneous system architectures
(e.g., [34] [11] [39]), identical or homogeneous workloads
(e.g., [37]), and even considering a single application service
in each Fog node (e.g., [4]).

Considering redundant stateless micro Fog services provide
resiliency in the system by maintaining service availability
in case of possible failures in Fog nodes or network links.
In addition, this also avoids the need for service and data
migration during the load balancing and workload offloading
process. Avoiding migration also means avoiding its induced
cost and overhead on the system, which is often ignored

for simplicity in existing contributions in the literature (e.g.,
[35] [38]). Furthermore, the cost of training for RL-based
algorithms, and retraining in case of dynamic environments,
is also often ignored in the literature (e.g., [37] [38] [39] [4]).
This cost is usually huge since RL agents need to train for
hundreds of thousands of training steps using powerful GPUs
and/or CPUs before reaching an optimal solution. With our
approach, no training or retraining is needed as it simply builds
a number of matrices to make a service selection decision; this
enables our approach to work with a small overhead, especially
in dynamically changing environments.

III. ELECTRE

Balancing the load in Fog networks includes minimize
network congestion, network latency, and application exe-
cution delay while maximizing the resource utilization of
all computing nodes in the system. These objectives can be
optimized simultaneously using a multi-objective optimization
approach, a subcategory of MCDA methods. MCDA methods,
also referred to as Multi-Criteria Decision-Making (MCDM)
methods, aim to explicitly evaluate multiple conflicting cri-
teria in a decision-making process. Having MCDA methods
solve the Cloud service selection problem, the Fog placement
problem, and the resource selection problem in Mobile Crowd
Computing motivated us to use it to efficiently distribute the
load in Fog networks.

ELECTRE, for instance, is a greedy outranking MCDA
method that is based on pairwise comparisons between mul-
tiple criteria [16]. This category of search-based optimization
methods can optimize Fog service selection decisions by
removing outranked alternatives. It is a search-based method
because it works by checking whether one alternative is better
or worse than the other using pairwise comparisons between
all possible alternatives in the solution space. Search-based
methods quickly adapt to dynamically changing environments



7

since they do not require training or predefined parameters.
ELECTRE, which is a French acronym for ELimination and
Choice Expressing the REality, was first proposed in 1965
by Bernard Roy. Since then, different versions of ELECTRE
methods have emerged, including ELECTRE III [45].

ELECTRE III solves some limitations in ELECTRE II, like
dealing with data inaccuracies, imprecision, and uncertainties.
In this method, a binary outranking relationship between two
alternatives a and b is represented as aSb, which means that
a is at least as good as b. This relationship is not symmetric,
and hence four different scenarios exist:

S(a, b) =


aSb & not(bSa) ⇒ a is preferred to b
not(aSb) & bSa ⇒ b is preferred to a
aSb & bSa ⇒ indifference
not(aSb) & not(bSa) ⇒ incomparability

Alternatives are evaluated by K problem-related criteria
that are weighted by importance factors wi > 0, where∑K

i wi = 1. For every criterion gi; gi(a) > gi(b) when
alternative a is preferred to b according to that criterion. The
novelty of ELECTRE III is the introduction of the concept
of pseudo-criteria using discriminating thresholds for every
criterion, i.e., indifference qi(gi(a)) and preference pi(gi(a))
thresholds. These thresholds can be constant or can dynami-
cally vary along the scale of the values of each criterion, such
that pi ≥ qi ≥ 0 for every criterion i.

ELECTRE III defines a credibility matrix σ(aSb) for the
outranking relation aSb using a concordance matrix c(aSb)
and a discordance matrix d(aSb). This credibility matrix is
given as follows: σ(aSb) = c(aSb)

∏K
i=1 Ti(aSb), where:

Ti(aSb) =

{
1−di(aSb)
1−c(aSb) , iff di(aSb) > c(aSb)

1, otherwise.

c(aSb) is defined as
∑K

i wici(aSb), where:

ci(aSb) =


1 if gi(b) ≤ gi(a) + qi(gi(a))

0 if gi(b) < gi(a)− pi(gi(a))
gi(a)−gi(b)+pi(gi(a))
pi(gi(a))−qi(gi(a))

otherwise,

while the discordance matrix is defined as:

di(aSb) =


1 if gi(b) > gi(a) + vi(gi(a))

0 if gi(b) ≤ gi(a) + pi(gi(a))
gi(b)−gi(a)−pi(gi(a))
vi(gi(a))−pi(gi(a))

otherwise.

The concordance represents the majority among all different
criteria that favor an alternative to another one. While the
discordance represents, when the concordance condition holds,
the minority criteria that strongly oppose that assertion.

Also, ELECTRE III uses the concept of veto thresholds for
each criteria, i.e., vi(gi(a)), which is a variable threshold such
that vi > pi for every criterion i. This threshold represents the
power of a given criterion to be against that assertion when the
performance difference between the two alternatives for that
criterion is greater than this threshold. In ELECTRE III, veto
thresholds are used to define the discordance matrix, hence,
they can be set large enough to make the discordance values
equal to zero, and hence, making σ(aSb) = c(aSb).

At least three criteria are needed to build an ELECTRE-
based decision model. However, ELECTRE methods are more
adequate when there are between five and thirteen criteria.
Also, the criteria should be heterogeneous with ordinal, or
weakly interval, scales, where the loss of one criterion does not
benefit another. In addition, small differences are eliminated
with the help of indifference and preference thresholds that
dynamically scale to the data.

IV. SYSTEM DESIGN

To formulate our Fog environment, we use capital letters
to refer to the set of items, i.e., nodes, links, modules, or
messages. To refer to a single item in that set we use the
lower case of that letter with a subscript. Fog environments
are composed of a set of N nodes, i.e., computing nodes
(NC Cloud nodes and NF Fog nodes) and non-computing
nodes (NIoT IoT nodes and NO other nodes), where node
nx is defined by its compute (IPTx) and memory (RAMx)
resources, as shown below:

N = NC ∪NF ∪NIoT ∪NO

= n1, n2, n3, · · · , nz, where nx ..= 〈IPTx, RAMx〉

NIoT represents sensors and actuators with pure source
and sink nodes, respectively. NO represents routers, switches,
proxy servers, and firewalls. For load balancing algorithms,
nodes must be characterized by identifiers (IDs), the number
of instructions performed per unit of time (IPT), and their
memory capacity (RAM). These nodes are connected through
L wired/wireless bidirectional links, where each link lx is char-
acterized by the pair (ni, nj) that it connects, its bandwidth
BWx, and its propagation delay PRx:

L = l1, l2, l3, · · · , lz, where lx ..= 〈ni, nj , BWx, PRx〉

IoT distributed applications are represented using distributed
data flow (DDF) models [46]. There can be several distributed
applications simultaneously running in the system; let A be the
set of these applications. The workflow of each application
ax ∈ A is represented by a set of modules Mx and a set of
dependencies between these modules Dx, as shown here:

A = a1, a2, a3, · · · , az, where ax ..= 〈Mx, Dx〉

Application modules can be categorized into three main
classes, i.e., computing modules (MC), pure source modules
(MSRC), and pure sink modules (MSNK):

M =MC ∪MSRC ∪MSNK

= m1,m2,m3, · · · ,mz, where mx
..= 〈RAMx〉

Pure source/sink modules are implemented in IoT nodes as
they do not perform computations on the generated/consumed
data. Computing modules, in contrast, are deployed in com-
puting nodes, i.e., Cloud, Fog, and Edge nodes. They serve
incoming workloads and often generate a new workload for
each processed request. They can also act as non-pure source
and sink modules by periodically emitting aggregate or sync
information based on the data they receive over a certain
period. In addition, they can collect data without emitting
messages in response, i.e., storing data for future analysis.
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Application workflows are represented as a Directed Acyclic
Graph (DAG), where nodes represent the modules and edges
represent the dependencies between those modules. Message
transfer between module mi and module mj represents the
dependency, denoted by dx, between these modules. Each
message, i.e., IoT workload, is characterized by the number of
instructions (Ix) required by the workload from the compute
entity and the size of the message in bytes (Bx):

D = d1, d2, d3, · · · , dz, where dx ..= 〈mi,mj , Ix, Bx〉

Now that we formally formulated our nodes, links, and
applications, we can define our environment (E) by the set
of nodes N , the set of links L, and the set of applications A,
as follows:

E ..= 〈N,L,A〉

For a realistic evaluation of our proposed approach, we
provide a generic Fog architecture (see Fig. 3) to demonstrate
the need for load balancing through network bottlenecks, un-
balanced Fog resources, and unbalanced workload distribution.
Then, we use a more realistic Fog topology to evaluate our
proposed approach, with more Fog nodes that are randomly
assigned resources under the constrain of creating unbalanced
architectures. In both those evaluation scenarios, we consider
heterogeneous computation and communication resources with
heterogeneous workload requirements to mimic realistic Fog
environments. We also consider non-hierarchical architectures
to mimic flat Fog systems instead of layered ones.

Starting with the simple generic architecture in Fig. 3, Fog2
acts as a computation bottleneck as it has the least amount of
computational resources, represented by the smallest square in
the figure, while being directly connected to the largest number
of IoT devices. In addition, the longest communication link,
i.e., higher propagation delay, is the one that connects the
fastest Fog node (Fog3) with the Cloud. This link has the
lower bandwidth, i.e., represented by a thinner line, compared
to the links that connect the Cloud with the other two Fog
nodes. Hence, this link is a communication bottleneck when
Fog3 is used to process IoT workloads.

Fig. 5 shows a simple implementation of this generic
architecture using YAFS [26], a Discrete-event Simulator
(DES) that mimics realistic deployment of Fog-based IoT
applications. In this implementation, the Cloud is connected to
three interconnected Fog nodes with heterogeneous resources.
We simulate the Cloud with one order of magnitude more
resources than Fog3, which has one order of magnitude more
resources than Fog1, that also has an order of magnitude more
resources than Fog2.

A communication bottleneck exists between the fastest Fog
node, i.e., Fog3, and the Cloud. In addition, the slowest Fog
node, i.e., Fog2, is connected to an order of magnitude more
IoT devices than Fog1. While the fastest Fog node only
accepts offloaded workloads from the other two Fog nodes
since it is not connected to any IoT devices. This unbalanced
resource distribution creates a computation bottleneck, which,
alongside the communication bottleneck, emphasizes the need
for load balancing in this architecture.

In this generic architecture, three applications with hetero-
geneous workload requirements are deployed in the system,
following the distributed application workflow shown in Fig.
4. It has four modules with three dependencies, i.e., messages,
requests, or workloads, between them. Service replicas for
Sensor and Actuator modules are deployed in IoT devices.
A single service replica for the Cloud module is deployed in
the Cloud, and each Fog node has a stateless service replica
of the Fog module. This is a local view of the network, for
the load balancer, with the available Fog nodes that can serve
a given workload.

Each IoT device has instances of the three Sensor and three
Actuator modules, one for each application. Fog nodes and
the Cloud have instances of the three Fog and Cloud modules,
respectively, one for each application. Workload requirements
were chosen relatively to the resources of computing nodes to
simulate resource-demanding, moderate, and light workloads.
This was done by defining the workload requirements of
App3 with one order of magnitude more compute instructions
than App2 to simulate resource-demanding and moderate
workloads, respectively. In addition, App1 was defined with
one order of magnitude less workload requirements than App2
to represent light workloads.

Sensor messages are generated by IoT devices using a
Poisson Point Process. These messages wait for their turn to
access network links since nodes and links are modeled in
YAFS as M/M/1 queuing models. Modeling resources with
infinite queue sizes allows studying network saturation as a
performance measure instead of workload dropping probabil-
ity. The next messages in the workflow, i.e., Fog messages, are
triggered after Fog nodes are done serving Sensor messages.
The same happens when the Cloud finishes processing Fog
messages, when it triggers Cloud messages as a response.
Cloud messages are finally consumed by the Actuator module
in the IoT device that initiated that particular loop.

Load balancing takes place by selecting the proper Fog node
to serve an incoming IoT workload. Selecting the nearest Fog
node to the source IoT device creates a computation bottleneck
on Fog2, which has the least amount of resources while
being connected to around 91% of the system’s IoT devices.
In contrast, selecting the fastest node creates communication
bottlenecks on the links connecting Fog3, because they have
smaller bandwidths and larger propagation delays.

Another simple approach is for each IoT device to select
between the three Fog nodes in a Round-Robin manner, which
we called Distributed Round-Robin (DRR). We also included a
random service selection approach, which leverages the power
of random choice property to randomly select a Fog node for
every newly generated workload. This approach is similar to
the sequential randomization load balancing solution proposed
in [40] with the difference that the selected node must accept
the assigned request. Hence, the process of informing the
task initiator about accepting or rejecting the request, and the
process of repeating the selection process in case of a rejection
are no longer needed. This helps us study workload saturation
rather than studying the dropping probability of workloads.

Our proposed ELECTRE-based method, however, considers
five criteria (see Table II) to select an optimal Fog node, i.e.,
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Fig. 5. A simple generic Fog architecture with three interconnected Fog nodes.

alternative, to process each generated workload based on the
outranking relation aSb. Each criteria i for each two alterna-
tives, i.e., gi(a) & gi(b), is represented by the concordance
and discordance matrices ci(aSb) and di(aSb), respectively.
The objective is to find alternatives that minimize these criteria
to determine their outranking relationships. Alternatives that
are dominated by others are then identified and eliminated
based on these relationships; this results in a smaller set
of alternatives. In an iterative procedure, this results in an
ordering/ranking of alternatives with the possibility of having
ties in the ranks.

The shortest path between the source and destination is used
for calculating the hop count, propagation time, and execution
delay. If there are multiple shortest paths, i.e., same number of
links, the path with the smallest propagation time is selected.
Given a request r to travel L links between its source s and a
destination candidate Fog node x, along with T tasks that are

currently waiting to be processed in this candidate Fog node,
we can formally define these five criteria as follows:

CH
s,x =

L∑
l=0

1

DPR
s,x =

L∑
l=0

DPR
l

DP
x,r =

Ir
IPTx

DE
s,x,r = DP

x,r +DPR
s,x +

L∑
l=0

DT
l,r, where DT

l,r =
Sr

BWl

DW
x =

T∑
r=0

DP
x,r
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TABLE II
THE CRITERIA USED IN OUR ELECTRE-BASED LOAD BALANCING ALGORITHM FOR EACH CANDIDATE FOG NODE

Criteria Definition
Hop Count CH The number of links on the path between the node that generates the load and the candidate Fog node.

Propagation Delay DPR The accumulative propagation time of all the links that connect the workload source and the candidate Fog node.
Processing Delay DP The time a candidate Fog node takes to process a single computational instruction.
Execution Delay DE The total execution delay to process the given workload on the the candidate Fog node.
Waiting Delay DW The current load on the candidate Fog node.

The link propagation delay is a constant value for each link
representing the time required to transmit a single bit from
one end of the link to the other. It represents the physical
link proprieties and the distance between the pair of nodes
it connects, i.e., material and length, respectively. The link
communication delay is determined by the transmission delay
(DT

l,r) of the request r, which is given by dividing the message
size in bytes (Sr) by the link bandwidth in Bps (BWl). This
represents the time required to push the whole message into
the communication link. Both propagation and transmission
delays represent the time required for the whole message to
reach the other side of the link.

The execution delay is calculated based on the network com-
munication delay and the processing time (DP

x,r) of request r
on the candidate Fog node x. The network communication
delay is given by adding propagation and transmission delays
for every link between the source and the destination. The ser-
vice time, i.e., processing delay (DP ), is calculated by dividing
the workload’s required instructions (Ir) by the computational
capabilities of the candidate Fog node, i.e., IPTx. Finally,
the expected waiting delay (DW

x ) in a computing node (x)
represents the load information for that node. It is calculated
by adding the processing delay (DP

x ) of every task that is
currently waiting to be served by node (x).

Except for the expected waiting delay, all other criteria
need information about the resource capabilities of candidate
Fog nodes, which can be collected using triggered updates
only, i.e., during upgrades or downgrades of these resources.
However, the current load in Fog nodes, i.e., their resource
availability, requires an active monitoring system that collects
this information from candidate Fog nodes. This real-time
information allows adapting to recurring topological changes
and fluctuations in workload generation rates.

The criteria, in our simulations, have identical weights
wi = 1/K = 1/5 = 0.2 for every criterion i, where K
is the number of criteria used in the algorithm. This gives
equal importance for every criterion since, in ELECTRE, the
weights are a measure of relative importance of the criteria
[47], [48]. These weights do not depend neither on the ranges
nor the scales of the values in each criteria [49]. In this case,
weights can be viewed as the number of votes given to a
criterion in a voting procedure, which indicates the relative
importance of each criterion [50], [51]. The algorithm avoids
alternatives, i.e., Fog nodes, that maximize these criteria,
which means that; indeed, it chooses alternatives that minimize
all criteria for every incoming workload. Therefore, ELECTRE
can simultaneously optimize these criteria, given their equal
importance, to optimize the overall system performance.

The algorithm dynamically calculates the preference and
indifference thresholds, in every decision epoch, using per-
centile ranking. The veto threshold, for example, was set to
the 100th percentile rank of every criterion to avoid discarding
alternatives that surpass that threshold. On the other hand, we
use an indifference threshold of one-third of the 10th percentile
rank while having the preference threshold equal to the 20th

percentile rank. This was done to avoid considering small
differences of preferences as significant.

To rank Fog nodes from best to worst, ELECTRE outranks
the worst alternatives until the best alternative is identified,
according to the thresholds discussed above. However, because
of indifference thresholds, the possibility of having ties among
alternatives exists, and hence a set of alternatives can be
identified as top-ranked instead of a single one. In case of a tie,
we choose the nearest Fog node to the source device to avoid
unnecessary utilization of network links. In 30 experiment
runs, the average number of ties in the generic architecture
was 15.35± 0.1%, and the nearest Fog node to the workload
source was selected instead.

To validate our findings from the simple generic Fog archi-
tecture, a larger and more complex Fog architecture is used.
Fig. 6 shows a YAFS implementation of such architecture,
which is produced from a randomized graph generator that
simulates the Internet Autonomous System (AS) network [52].
To create a Fog system out of this graph, we compute the
shortest-path betweenness centrality for each node; it is a
measure of centrality in the graph based on shortest paths.
In other words, for each node, the betweenness centrality is
the number of the shortest paths that pass through this node
[53].

To add a Cloud in the center of the architecture, we create a
Cloud node and connect it to the two nodes that have the high-
est betweenness centrality in this randomized graph. Nodes
with zero centrality, i.e., edge nodes in the graph, are identified
as IoT devices, while the rest of the nodes are identified as Fog
nodes. Fog nodes are then assigned their compute resources
based on their betweenness centrality to resemble unbalanced
resources with unbalanced load distribution. To do this, Fog
nodes with high centrality get smaller IPT values compared to
Fog nodes with smaller centrality.

In addition to the use of a more complex Fog architecture to
validate the performance of our approach, we also use a more
complex application workflow to execute in these complex
Fog environments. Instead of using a single application loop
for each application workflow, we now consider two loops
for each application workflow (see Fig. 7). Loop 1 represents
the immediate feedback, through what we called Fog Down
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Fig. 7. A complex distributed application workflow for the AS-inspired Fog
architecture, with two application loops.

messages. These messages travel from Fog nodes to IoT
devices after processing Sensor workloads, where 100% of
Sensor workloads trigger this feedback.

On the other hand, Loop 2 represents data aggregation
and Cloud feedback through Cloud messages, where only
10% of Sensor workloads will trigger messages to the Cloud
(Fog Up messages) and only 50% of those Fog Up messages
will trigger Cloud feedback to the initiating IoT device. This
way we mimic the workflow of many realistic applications,
where immediate feedback is needed from Fog nodes for every
processed Sensor workload. While the Cloud is only involved
on a portion of those processed messages to perform data
aggregation and/or providing feedback based on the aggre-
gated data. This distributed application workflow reasonably
represents existing IoT applications, such as online games, IoV
applications, and health monitoring systems.

The AS-inspired architecture with this distributed applica-
tion workflow mimics realistic online Virtual-Reality (VR)
games, for example, Electroencephalogram (EEG) online

Fig. 8. EEG Tractor Beam game session with four people playing over the
Internet [55].
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Fig. 9. Distributed application workflow for the EEG VR game.

game [54]. In this game, groups of players play collaboratively
over the Internet using their brain signals (see Fig. 8). This
game is composed of five distributed application modules
with seven dependencies (see Fig. 9). players have EEG
sensors that send brain signals to their devices, which are pre-
processed in their local client modules before being sent to the
concentration-calculator module in the Fog node. Fog modules
in Fog nodes, i.e. resource-rich gateways, send concentration
levels back to the clients to display the status of the player
using their display modules. In addition, Fog modules period-
ically send the state of each player to the coordinator module
in the Cloud, which periodically broadcasts the global game
state to all client modules.

V. EVALUATION OF ELECTRE METHOD

In Table III, we show the system’s parameters used to
perform our experiments on the generic Fog architecture. In
these experiments, IoT workloads, i.e., Sensor messages, are
generated as a Poisson Point Process using an exponential
distribution with a scale parameter β of 100, which is common
for IoT workload generation rates [19]. The scale parameter
is the inverse of the rate parameter λ, which is another widely
used parameter for the exponential distribution that represents
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TABLE III
SIMULATION SYSTEM PARAMETERS FOR THE GENERIC ARCHITECTURE.

Parameters Details
Algorithms Service Selection Random, DRR, nearest, fastest, & ELECTRE

Simulation Number of Iterations 10 experiment runs each with a different random seed
Simulation Duration 10000, 100000, & 1000000 Time-steps

Applications
Number of Apps 3 Heterogeneous Apps with three modules in each App, i.e., Source, Fog, & Cloud modules
Workload Instructions 100, 1000, & 10000 IPT for each App
Workload Sizes 10, 100, & 1000 Bytes for each App

Nodes
IoT 22 devices with CPU power of 10 IPT each
Fog 3 nodes with CPU power of 1000, 10000, & 100000 IPT for Fog2, Fog1, & Fog3, respectively
Cloud 1 Cloud with CPU power of 1000000 IPT

Links
IoT-Fog BW=1000 & PR=1
Fog1-Fog3 & Fog2-Fog3 BW=1000 & PR=2
Fog-Cloud Fog1-Cloud & Fog2-Cloud (BW=100000 & PR=10), & Fog3-Cloud (BW=1000 & PR=20)
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Fig. 10. Poisson vs. Exponential Distributions to represent a Poisson-point-
process over 104 time-steps.

the rate of occurrences in a Poisson process. The exponential
distribution is the probability distribution of the time between
events in a Poisson Point Process (see Fig. 10), i.e., a process
in which events occur continuously and independently at a
constant average rate [56].

With exponential distribution, the average time between
events, i.e., average inter-arrival time, is constant and known
through its scale parameter (100 time-steps in our simulations).
This distribution is supported on the interval [0,∞), but 0 is
replaced by 1 in our simulations to avoid generating simultane-
ous tasks in the DES environment, i.e., to create gap intervals
between events. Exponential distribution is selected because it
easily simulates, using a DES environment, the expected time
interval between generated workloads in a Poisson process.
Unlike Poisson distribution, which simulates the expected
number of workloads that are generated between two time-
steps in that process (see Fig. 10). Figure 10 shows that smaller
intervals are generated with a higher probability; this means
that most workloads are generated with small inter-arrival
intervals. This is why exponential distribution realistically
mimics real-time IoT applications with heterogeneous, but
frequent, generation rates.

In our experiments, simulation time-steps refer to seconds

for easier analogy and they will be used interchangeably
throughout the rest of the text. For instance, the processing
power in Table III is measured in Instructions Per Time-
step (IPT) or Instructions per Second (IPS). Similarly, the
bandwidth (BW ) and the propagation delay (PR) are defined
in our simulations in Bytes per second (Bps) and seconds,
respectively. The values for the bandwidth and the propagation
delay in our simulations were chosen to simulate available
link resources in shared, i.e., public, network environments,
especially at peak hours.

In the AS-inspired evaluation environment, workloads are
generated using the same exponential distribution. However,
a different network topology is generated, in each of the 10
experiment runs, using a random AS graph generator. PR and
BW resources, for every link in the network, are uniformly
chosen from the range of values listed in Table IV. These
network parameters are inspired from [19], and they were cho-
sen relatively to workload requirements to simulate resource-
demanding workloads in networks with scarce resources. Con-
sidering scarce resources helps demonstrate the effectiveness
of load balancing algorithms in extreme conditions. Likewise,
the resource capabilities of computing nodes and the resource
requirements of application workloads were chosen relatively
to each other to simulate high-demand workloads that require
large computing power from limited computing resources.

The implementations of the random offloading and the DRR
selection algorithms are straightforward, where in the former,
IoT devices randomly select one of the three Fog nodes to
serve Sensor workloads. For DRR, the three Fog nodes are
alternatively selected by each IoT device in a Round-Robin
manner. With the nearest node selection algorithm, IoT devices
select directly connected Fog nodes to serve Sensor workloads,
which means that Fog3 is never selected using this method.
Fog2 receives around 91% of load as it is directly connected
to around 91% of IoT devices, while Fog1 receives workloads
from only two IoT devices. This approach, which is common
in practice in Edge Computing environments, wastes compute
and communication resources that shall be utilized to increase
the overall system performance.

Using the fastest service selection algorithm, the Fog node
with the smallest total execution delay is always selected,
which is calculated by adding the service time to the network



13

98 12 224 20 255 14 15 211910 16136 2318 24117 17

2

3

1

Applications
App_1
App_2
App_3

Source Nodes

Fo
g 

N
od

es

(a) Fastest service

984 5 2212 20 2514 15 2119161310 236 11 187 2417

2

3

1

Applications
App_1
App_2
App_3

Source Nodes

Fo
g 

N
od

es

(b) ELECTRE
Fig. 11. The distribution of workloads between Fog nodes in the generic architecture.

TABLE IV
NETWORK PARAMETERS FOR THE RANDOMLY GENERATED AS-INSPIRED

ARCHITECTURES

Parameter Values
IoT devices Nodes with 0 betweenness centrality, each with CPU

power of 10 IPT
Fog nodes IPT values are evenly spaced integers over the inter-

val [103, 105], values are then assigned to Fog nodes
inversely proportional to their betweenness centrality

The Cloud Connected to the two Fog nodes with the highest
betweenness centrality, and assigned CPU power of
106 IPT

IoT-Fog links BW and PR values are drawn from a uniform
distribution over the intervals [102, 103) and [1, 2),
respectively

Fog-Fog links BW and PR values are drawn from a uniform
distribution over the intervals [103, 104) and [2, 4),
respectively

Fog-Cloud links BW and PR values are drawn from a uniform dis-
tribution over the intervals [103, 104) and [10, 20),
respectively

latency as we have discussed in the previous section. In the
simple generic architecture, the fastest service for IoT devices
4 & 5 is always their directly connected Fog node (Fog1) (see
Fig. 11(a)). However, for the rest of IoT devices, only less
demanding workloads are sent to the directly connected Fog
node, i.e., Fog2, because of its scarce resources. While high-
demanding workloads, i.e., from App3, are sent to Fog3 as
it has the fastest service for such workload requirements. Our
proposed approach, however, has a different behavior for IoT
devices that are directly connected to Fog2 (see Fig. 11(b)).

ELECTRE distributes high-demand workloads, i.e., App3
requests, between Fog1 and Fog2 to avoid the communication
bottleneck between Fog3 and the Cloud. This is because of
the transmission of large workload data over limited network
resources, which significantly affects the performance of the
application loop as a whole. However, ELECTRE chooses to
send smaller workloads to the fastest Fog node as they have
less impact on network transmission between Fog3 and the
Cloud. Fig. 12 confirms these findings, where Fog1 is always
selected for IoT devices 4 & 5 using the nearest node, the
fastest service, and the ELECTRE algorithms. While for the
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Fig. 12. Number of received messages from each Sensor (over 104 time-
steps).

rest of IoT devices, Fog2, Fog2 & Fog3, and the three Fog
nodes are chosen by these three algorithms, respectively.

Since the network is modeled as an M/M/1 queue model,
we can calculate the number of messages that are, by the
end of the simulation, still waiting to access a network link.
Typically, these messages will have to stay in a network
buffer during the simulation until they get their turn to access
the network link, which is done in a First-Come-First-Served
(FCFS) manner. Fig. 13 shows that the nearest node selection
algorithm produces the fewest number of waiting messages as
it pumps the least number of messages into the network. The
reason for this is choosing the slowest Fog node (Fog2) 91%
of the time, because it is directly connected to the majority
of IoT devices in our unbalanced generic architecture. Hence,
Fog2 will act as a computation bottleneck, emitting a smaller
number of messages through the application workflow.

Fig. 14 supports this analogy by showing the number of
transmitted messages, i.e., messages that traveled a com-
munication link. It confirms that the nearest node selection
algorithm sends the least number of messages to the system
for the reason discussed above. Fig. 15 shows the number
of messages that were served by each service, which also
supports the same fact regarding Fog2 acting as the bottleneck
of the system due to its poor computation resources. The
number of workloads served by the Cloud module using
the nearest service selection algorithm is less than all other
algorithms, which is due to the number of workloads served
by the system computation bottleneck (Fog2).
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Our proposed ELECTRE algorithm smartly distribute work-
loads based on the workload’s resource requirements and the
current load of Fog nodes. This allows more workloads to
be served at the Cloud, especially high-demanding workloads,
i.e., from App3. The reason for this is the intelligent workload
assignment to the resource-rich Fog node, i.e., Fog3 (see Fig.
11(b) & Fig. 15). ELECTRE selects Fog3 for workloads from
App1 & App2, and distributes resource-demanding workloads
(from App3) between Fog1 & Fog2.

In terms of network latency, Fig. 16 shows how the nearest
node selection algorithm produces the minimum mean latency
values compared to the rest of the algorithms. However, this
is a bit optimistic since it is calculated for all transmitted mes-
sages in the network. Hence, latency values for this algorithm
must be smaller as it sends the smallest number of messages
over the network compared to all other algorithms (see Fig.
13). Moreover, spending more time processing workloads in
the system’s bottleneck (Fog2) causes a small number of Fog
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Fig. 16. Network latency of transmitted messages (resampled every 104 time-
steps over the simulation duration of 106 time-steps).

messages to be sent over network links, and hence a small
number of Cloud messages will be sent accordingly. Because
a small number of messages compete for links’ resources using
this algorithm, the waiting time for these messages to access
network links will be smaller.

In addition, Sensor messages only travel a single link
from source to destination using the nearest node selection
algorithm. Unlike the rest of the algorithms, where they might
travel multiple links to reach their destination. This adds to
why latency values are smaller than other algorithms using
the nearest node selection algorithm. ELECTRE achieved the
second-best performance in terms of latency even with Sensor
messages traveling multiple links to reach their destination
Fog node. However, latency here is more realistic as more
messages are generated using ELECTRE, compared to the
nearest node selection algorithm (see Fig. 13).

After evaluating the performance of these algorithms in
terms of individual messages, we now evaluate their perfor-
mance in terms of the whole application loop by accumulating
the execution delay of each message in that loop (see Fig.
17). The nearest node selection algorithm achieved the min-
imum mean loop execution delay. This is too optimistic, as
stated earlier, because this method sends the least number of
messages along each application loop. In contrast, ELECTRE
achieved the second-best mean loop execution delay while
sending more messages along that loop. To provide a fair
comparison between the performance of each algorithm in our
generic architecture, we evaluate the loop execution delay in
terms of the number of messages, or bytes, transmitted along
that loop.

This is done using what we call the mean loop transfer
rate (see Fig. 18), which is calculated by dividing the number
of transmitted bytes along an application loop by the mean
execution delay of that loop. The mean loop transfer rate,
measured in Bytes per Second (BPS), can be viewed as the
overall performance of that loop. This performance measure
provides fairness by considering a good algorithm to be the
one that transmits as many messages as possible while main-
taining a small loop execution delay. Using this metric, in Fig.
18, DRR and nearest node selection algorithms achieve the
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Fig. 18. Mean Loop Transfer Rate (overall system performance).

worst performance compared to the rest of the algorithms. The
random-based approach achieves a slightly better performance
by increasing the system’s resource utilization using random
load distribution between Fog nodes.

Our proposed ELECTRE-based method achieved the best
overall system performance, i.e., highest loop transfer rate,
compared to other methods in this study. Over 104 simulation
time-steps, our approach achieves a 1% improvement over the
second best approach in our study, i.e., fastest service selec-
tion. However, the performance of our approach significantly
increases when running the simulation over longer time-steps,
i.e., 105 and 106, where it achieves 20% and 23% improvement
over the second best approach, respectively. Thus, over 106

time-steps, our approach achieved an improvement between
23% and 67% over the other approaches used in this study.

Fig. 19 shows the module utilization that was achieved by
each one of these algorithms. The fastest Fog node (Fog3)
is never utilized using the nearest node selection algorithm,
while it is used the most using the fastest service selection
algorithm. In contrast, the slowest Fog node (Fog2) was used
the most using the nearest node selection algorithm, while it
was used the least using the fastest service selection algorithm.
A better utilization for both Fog1 and Fog2 is very important
since they are directly connected to IoT devices. Unlike Fog3,
which must be carefully used since it requires traveling more
network links to be reached from IoT devices.

In our generic architecture, we see this behavior using
ELECTRE, where it utilizes Fog3 for lighter workloads as
discussed earlier (see Fig. 11(b)). On the other hand, it
distributes resource-demanding workloads that are initiated
from the majority of IoT devices, i.e., those connected to
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Fig. 20. The growth of the Mean Loop Execution delay and the number of
served requests in the AS-inspired topology over three simulation durations.

the slowest Fog node, between Fog1 & Fog2. This is why
Fog1 is utilized the most using ELECTRE, while it uses Fog2
more than all other algorithms except the nearest node method.
Considering workload requirements, resource capabilities of
Fog nodes, and their resource availability allows our proposed
method to outperform other traditional methods with better
load balancing in this generic unbalanced Fog architecture.

To confirm our findings in the generic architecture, we
evaluate these algorithms in the Fog environment shown in
Fig. 6 using the distributed application workflow shown in
Fig. 7. Figure 20 shows the performance of the five service
selection algorithms in the AS-inspired topology averaged over
the two application loops of each application. It shows how
the mean loop execution delay and the number of served
requests increase by increasing the simulation duration in our
experiments. Figure 20 shows how the nearest node selection
algorithm performs the worst in this environment, i.e., with the
largest mean loop execution delay and the smallest number of
requests served along the application loops.

The fastest service selection algorithm has the second worst
performance in terms of the mean loop execution delay. How-
ever, the largest number of served requests was achieved using
this method. Although, the number of served requests along
application loops using our proposed method is very closed
to that achieved by the fastest service selection algorithm.
Nevertheless, our proposed method achieved the best mean
loop execution delay in this complex environment. To check
why the nearest node and the fastest service selection algo-
rithms performed the worst in the AS-inspired architecture,
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Fig. 21. The distribution of workloads in the AS-inspired complex Fog topology.

we examine the distribution of workloads in this environment
(see Fig. 21).

In Figs. 21(a) & 21(b), we see the distribution of workloads
from IoT devices to Fog nodes in the AS-inspired architecture
using the fastest service and the nearest node selection al-
gorithms, respectively. Fog nodes 2 & 3 were never selected
by any IoT device using the nearest node selection algorithm
since they were not directly connected to any IoT device.
Using the fastest service selection algorithm, Fog node 3
was never used while Fog node 2 is used for most resource-
demanding workloads. The reason for choosing Fog node 2 for
these type of workloads is having more resources compared
to the resources of directly connected Fog nodes of most IoT
devices (see Fig. 6). Interestingly, our proposed ELECTRE-
based method smartly distributes the load between all Fog
nodes in the system (see Fig. 21(c)).

ELECTRE distributes the load of every application module
between a number of Fog nodes, which increases their resource
utilization while minimizing the number of waiting requests in
each node. This allows the ELECTRE algorithm to achieve the
smallest average waiting delay in the AS-inspired environment
(see Fig. 22(b)). Although, the nearest node and fastest service
selection algorithms achieved the smallest average latency and
service time (Figs. 22(a) and 22(c)), respectively. However,
the effect of reducing the waiting delay is significant, which
is why ELECTRE has achieved the best response time (see
Fig. 22(d)), and the best execution delay accordingly (total

response time in Fig. 22(e)).
The results on the randomized AS-inspired Fog architec-

tures confirm our findings on the generic Fog architecture.
These results help understand the reasons for outperforming
traditional baseline approaches using our proposed method.
However, this performance gain does not come without a
cost, which is in our case the computational complexity of
the ELECTRE algorithm compared to these simple traditional
methods. Still, this complexity can be acceptable when the per-
formance gain is significant for the whole system. Moreover,
the algorithm can run in resource-rich controllers that act as
load balancers for the system to mitigate its complexity. This
can be done through SDN-based Fog systems, where SDN
controllers make offloading decisions to distribute the load in
the system. In addition, ELECTRE can be used as a baseline
to evaluate new load balancing algorithms, besides traditional
baseline approaches.

VI. CONCLUSION

Fog Computing is one of the main building blocks that
enable the development of distributed, real-time, and delay-
sensitive IoT applications. IoT devices are often resource-
limited and battery-powered, which calls for the exploitation
of Internet-based computing and storage resources. The Cloud
was the first source of such resources, but Fog Computing
quickly emerged to provide these resources in proximity to
IoT devices. However, the vast number of IoT devices requires
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Fig. 22. Average delays in the AS-inspired complex Fog topology.

efficient utilization of such distributed resources, which can
be only done through efficient load distribution. But load
balancing in the Fog is very complex due to various factors,
including but not limited to:

• Heterogeneity of Fog, IoT, and network resources as well
as IoT application modules.

• Using undedicated, public, and slow network links.
• Fluctuations in workload generation rates.
• Physical distribution of IoT devices and Fog nodes, i.e.,

IoT and Fog communities.
• Proximity of Fog resources to IoT devices, i.e., number

of network links and communication latency.
• Fog/IoT mobility and their re-association process, i.e.,

dynamically changing environments.

In this work, we provide an efficient load balancing algo-
rithm for Fog environments through efficient task assignment
decisions, i.e., by selecting optimal Fog service replicas to
serve IoT workloads. Considering stateless micro Fog service
replicas provides network resilience in such environments by
maintaining service availability in the face of faults and chal-

lenges to normal operation. To demonstrate the effectiveness
of our approach in a realistic setup, we evaluated our approach
in two Fog architectures with unbalanced resource and load
distribution, heterogeneous resources, heterogeneous workload
requirements, and a semi-hierarchical topology.

We start evaluating our approach on a simple and generic
Fog architecture, which can be used to evaluate, evolve, and
advance load balancing algorithms. Then, we evaluate our
proposed solution in a randomized, complex, and realistic
Fog setup that is inspired from the architecture of Inter-
net Autonomous System (AS) networks. We compared our
ELECTRE-based MCDA method with four traditional service
selection algorithms that are commonly used in practice.
The first one is a random-based algorithm inspired from a
sequential randomization load balancing solution from the
literature. This simple randomized approach exploits the power
of random choice property to achieve good results with mini-
mal overhead. In addition, we also implemented DRR, nearest
node, and fastest service selection algorithms to be compared
against our proposed approach.
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The results of this study helps understanding the importance
of efficient load distribution in unbalanced Fog networks,
especially with resource-demanding heterogeneous workload
requirements. Efficient load distribution is achieved by increas-
ing Fog resource utilization while minimizing the average loop
execution delay of distributed IoT applications. Our proposed
ELECTRE-based method outperformed the other traditional
baseline methods used in this study with improvements of
up to 67% in the generic architecture. Our proposed method
has also outperformed the other methods in the AS-inspired
randomized architecture over 10 randomized experiment trials.

Using our proposed approach, more messages were sent
over the network while achieving a better loop transfer rate,
mean execution delay, mean network latency, and utilization
of computing resources in Fog nodes. However, this perfor-
mance gain comes with the cost of requiring more storage
and processing power when compared to simple traditional
methods. However, this overhead can be acceptable when there
is a significant gain for the overall system performance. In
addition, the overhead of running these algorithms can be
minimized when load balancing is done through resource-rich
network controllers, like SDN Controllers.

As a future work, we want to evaluate approximation-based
RL algorithms in large-scale Fog environments. The use of
Deep Neural Networks (DNN) in approximation-based solu-
tions makes them suitable to run in resource-limited devices,
like IoT, Edge, and Fog devices. In addition, RL agents can
learn in partially observable environments, which will allow
them to perform without the need for collecting real-time
load information from every computing node in the system.
Instead, approximating load information can be enough to
provide efficient load distribution between Fog nodes while
minimizing the overhead of transmitting real-time load in-
formation over the network. Hence, using such lightweight
solutions will allow implementing efficient distributed load
balancing algorithms that minimize compute, storage, and
network overhead.
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