arXiv:2209.08826v1 [cs.0S] 19 Sep 2022

Short Title of the Article

Rapid Recovery of Program Execution Under Power Fail-
ures for Embedded Systems with NVM

Min Jia, East China Normal University School of Computer Science and Technology, China
Edwin Hsing.-M. Sha, East China Normal University School of Computer Science and Technology, China
Qingfeng Zhuge, East China Normal University School of Computer Science and Technology, China
Rui Xu, East China Normal University School of Computer Science and Technology, China
Shouzhen Gu, East China Normal University Software Engineering Institute, China
Abstract - Embedded systems experience execution interruption due to power failures. After power is switched on,
recovering the interrupted program from the initial state can cause negative impact. Some programs are even unrecoverable.
To rapid recovery of program execution under power failures, the execution states of checkpoints are backed up by NVM
under power failures for embedded systems with NVM. However, frequent checkpoints will shorten the lifetime of the NVM
and incur significant write overhead. In this paper, the technique of checkpoint setting triggered by function calls is proposed
to reduce the write on NVM. The evaluation results show an average of 99.8% and 80.5% reduction on NVM backup size
for stack backup, compared to the log-based method and step-based method. In order to better achieve this, we also propose
pseudo-function calls to increase backup points to reduce recovery costs, and exponential incremental call-based backup
methods to reduce backup costs in the loop. To further avoid the content on NVM is cluttered and out of NVM, a method to
clean the contents on the NVM that are useless for restoration is proposed. Based on aforementioned problems and techniques,
the recovery technology is proposed, and the case is used to analyze how to recover rapidly under different power failures.

1. Introduction

From smart homes to smart watches and wearable devices with monitoring have become widespread. However, traditional
batteries are not suitable for these devices due to their size and lifetime. Therefore, how to power the currently rapidly
developing wearable devices has become a challenge. The emergence of the energy harvesting system solves the power
supply problem of wearable devices, but it also brings another challenge. The energy harvest system obtains electric energy
from the surrounding environment by sensor [1]. Electricity sources include kinetic energy, electromagnetic radiation, wind
and solar energy. However, they are all unstable. In energy harvest system, power failure may occur at any time, between
any two lines of code, and within an unpredictable length of time, with almost no warning. The programs may lose data
and cannot to continue. When the power is full, the program can only restart form beginning. Frequent power outages and
charging causes resource waste and power consume. Worse, in some cases, large programs can never be completed because
intermediate results are not saved. Further more, the time and energy cost are horrendous. So, recovery is an issue for these
energy harvest system.

Emerging non-volatile memory (NVM) with the advantages of low access latency, high density, byte-addressable, and
non-volatile, such as phase change memory (PCM) [2], spin-transfer-torque magnetoresistive random access memory (STT-
MRAM) [3] and 3D-XPoint [4], promises to compensate for the volatility and the small capacity of volatile memory. Non-
volatile memory technologies can help by allowing near-instantaneous recovery of in-memory state [5]. If the applications
checkpoint their state of program to nonvolatile memory before a failure, the program can be forward progress [6]. This
technology is called a nonvolatile processor (NVP) [7, 8], which enables the program to continue executing in the case of
such an instant on/off. In the NVP, there is a fast NVM. Before each time power failure, the volatile state is copied to the
NVM. When the power is restored the next time, the state of processor is copied back, and the program execution can be
recovered.

Fig. 1 shows a general system architecture for NVP systems [9]. The energy harvest system obtains electricity from
the surrounding environment. Once the voltage detector detects that the voltage is low, it will back up the volatile state
into non-volatile memories includes registers and volatile memory space. This way of backing up data is called on-demand
backup. Embedded systems usually have a small number of registers, and their values are frequently modified during program
execution [9]. Therefore, the value of the volatile register can be designed to be automatically backed up. Registers are
proposed to back up with non-volatile flop-flops (NVFFs) [7, 10, 11]. On the other hand, the memory space was much larger
than the register size. So, memory space more important to be reduced. However, in most cases, failures occur almost without
little warning. Existing studies based on voltage detector to alert and backup the state of program execution. They are not
suitable for instant power failures.

In another method, the processor periodically checks the processor state to the non-volatile part. Checkpointing, as shown
in the Fig. 2, saves some or all of the state of the program to NVM, without waiting for the power alarm. It allows the program
to correctly continue from the checkpoint position. This provides the possibility to rapid recovery of program execution. The
more frequent the processor checkpoints, the fewer the rollbacks needed after recovery. The extreme scenario is to back up
every instruction, where no rollbacks are ever needed [12]. And then after a failure, the execution of the program can be
restored as quickly as possible. Obviously, the more checkpoints are set, the faster the recovery. Meanwhile, it will causes a

First Author et al.: Preprint submitted to Elsevier Page 1 of 16

Short Title of the Article

Ambient Energy Energy harvest and management
| Solar | |Piezoelectric| ~
Voltage Energy Voltage
| RF || Thermal | Regulator|| Storage || Detector
Peripheral Devices Non-volatile Processor
—>

Figure 1: System architecture with energy harvesting system powered NVPs [9].

lot of writing to NVM. However, the endurance of NVM is limited and the latency and energy cost of write is high [13—15].
A large number of write operations would reduce the lifetime of NVM and incur significant write overhead. Thus, it is not
feasible to set a checkpoint for each instruction that has been executed.

strb r2, [r3]

Definition:: Execution Status
no : failure : failure
1 str fp, [sp, #4]! | failure| no checkpoaint | checkpoint
2 add fp, sp, #0 | :
3 sub sp, sp, #20 | |
4 str 10, [fp, #8] : :
5 str 1, [fp, #12] : :
6 str 12, [fp, #16] | |
7b L11 : :
.L11: | |
1 Idr 13, [fp, #-16] | :
2 sub r2, r3, #1 ' . l
3 str 12, [fp, #-16] : failure :
4 cmp r3#0 : :
5 bne : :
| |
1 Idr 13, [fp, #12] : |
2 ldrb r2, [r3] | |
3 Idr 13, [fp, #-8] : :
4 | |
I I
I |
L |

Figure 2: Execute the program under normal or failure or checkpoint

To achieve the goal that writing NVM as less as possible while recovering quickly without voltage warning, this paper uses
the callq instruction to determine the checkpoints. There are some special cases: 1) If one program without callq instruction,
the pseudo function call will be inserted in the program. 2) If the function call is in loop, backup is only done when the loop
is executed to the power of two. Meanwhile, the content on NVM needs to be cleaned up because there are some useless and
useful information mixed on NVM. And due to the NVM is used as on-chip memory, the size of NVM may be small, and
not cleaning the useless content will cause NVM overflow. If the clean operation is frequent, the required content may have
been removed at the time of recovery. Otherwise, there may be too much content on the NVM to hold subsequent backups.
To address this problem, a NVM clean method is proposed to clean the contents on NVM that are useless for recovery. The
detailed description for the method of clean is introduced in the subsequent paper. In the target system, the backup operation
of the state at each checkpoint is atomic. When power failure is occurred, the backup controller will ensure that the latest state
in NVM is all or nothing. The atomicity can guarantee correct recovery. The target system architecture is shown in Fig. 3.
SRAM and NVM together serve as on-chip memory for embedded devices. Where the NVM is used to store the program

First Author et al.: Preprint submitted to Elsevier Page 2 of 16

Short Title of the Article

execution state of checkpoint. After power failure and restart, the latest state of checkpoint would be load from NVM, and
this program can be executed from this state rather than beginning. Although the target system architecture of this paper is
embedded systems with NVM, the design proposed is applicable to any system with NVM.

s Non-volatile controller
Cleanu NV
SRAM| | NVM P Register
Controller >
files
- Backup/Recovery Controller ALU

Figure 3: Target system architecture

Specifically, this paper makes the following contributions:

e propose an universal backup and recovery system architecture, which is different from the traditional system with a
power predictor and power supply from nature.

e propose a checkpoints setting method triggered by a function call. At runtime, after receiving an counter signal and
callq instruction signal, the program conducts backup.

e propose a method to clean the contents in NVM that are useless for recovery.
e analyze the effectiveness of the proposed scheme under different power failures.

e cvaluate the efficacy of the proposed schemes when compared with existing checkpoint backup; analyze the NVM
write sizes by the proposed strategies.

The remainder of this paper is organized as follows. Section 2 summarizes related work. Section 3 provides a motivational
example to illustrate the main idea of the proposed techniques. Section 4 introduces the proposed scheme in detail. Section
5 analyzes the backup size and the recovery speed for different cases under different power failures. Experimental results are
provided in Section 6. Finally, Section 7 concludes this paper.

2. Background and Related Work

In this section, we first introduction related works on energy harvesting systems. Then, the existing work of the checkpoint
scheme in the energy harvesting systems are presented.

Energy harvesting systems. Energy harvesting systems make the development of battery-free devices possible. Energy
sources derive from solar [16], motion [17], radio frequency (RF), and thermal energy [18, 19] are all potential sources. For
example, Taneja et al. [20] design a micro-solar power sensor networks, Wang et al. [11] propose a nonvolatile microprocessor
powered with solar under storage-less and converter-less, Paradiso and Feldmeier [22] design a compact, wireless and self-
powered pushbutton controller that functions with a piezoelectric conversion mechanism. However, there is an essential
challenge with harvested energy. They are all unstable [23]. Because the energy vary with its surroundings and times [24—
26]. In traditional cMOS-based processors, all the logic will be lost after shutdown and restart, causing the program to
re-execute from the beginning [9]. In order to overcome this issue, many researches have been proposed to deploy NVM in
the energy harvesting system in order to store the execution state of the program [27, 28].

The initial exploration into backup for energy harvesting systems focuses on flash [29, 30]. However, flash writes, beyond
being energy expensive, are slow and complex. So, another popular choice FeRAM is proposed as NVM for backup in energy
harvesting systems [31-34]. In comparison with Flash memory, FRAM boasts extremely low voltage writes, as low as a single
volt [35]. Writting to FeRAM are also nearly as fast as writes to SRAM and are bit-wise programmable [36]. Wang et al.
[11] developed a compare-and-write ferroelectric nonvolatile flip-flop for energy harvesting applications. Since the volatile
logic is copied to the NVM, NVP can record the execution status and resume execution from the interrupted location.

However, due to the high density, high write latency and the limited endurance of NVM, reducing the size of the content
to be backed up can greatly improve system performance. Wang et al. [37] proposed the compression-based strategies to

First Author et al.: Preprint submitted to Elsevier Page 3 of 16

Short Title of the Article

reduce the area of NV registers. Compressing the data before the backup can significantly reduce the sizes of the required
backup, but it also brings the overhead of compression and decompression.

Checkpointing. We use the definition of checkpointing by Brenstein et al. [38], who define it as "an activity that writes
information to stable storage during normal operation in order to reduce the amount of work [the system] has to do after a
failure." In the past few decades, many systems explored the checkpoints of distributed systems [39—41]. In order to enable
the programs to be executed continuously, researchers deployed non-volatile memory in energy harvesting devices to save
volatile working state at the checkpoint [9, 27, 42, 43]. For example, Mementos [27] is a software system for transiently
powered RFID-scale devices. It measures the code written by the user during compilation, the trigger point compares the
power supply voltage with the threshold, and triggers the checkpoint to back up the volatile state to flash when the power
supply voltage is less than the threshold. However, flash memory has a limited write endurance, and access to flash memory
is quite slow. Xie et al. [42] proposed a instruction scheduling to reduce the backup size to NVM. Zhao et al. [9] proposed
to reduce the NVM size of the stack backup by flexibly selecting the backup location. Li et al. [43] proposed a checkpoint-
aware loop tiling technique. There are mainly two categories of checkpointing schemes: dynamic checkpointing [27] and
on-demand checkpointing [9, 42, 43].

But their technologies are all based on the system with battery warning and ignore systems that have no power alerts. This
paper solutes the aforementioned issues from the perspective of software for the system without any warning before power
failure.

3. Motivation

In this section, we employ an example to illustrate the benefit of exploiting function call as checkpoint to reduce NVM
size used for stack backup.

3.1. Motivational Example

Fig. 4(a) presents a sample code in the left, where the main function invokes function multi to get the product of two
numbers. The corresponding pseudo disassembly instructions is shown in the Fig. 4(a). We analyze the stack usage as shown
in Fig. 4(b). At the beginning of program execution, the main function is allocated a frame to store the context information of
this function. For example, local variables and temporary variables. It can also be seen from the disassembly instructions sub
rsp, rsp, 2 that are opened up space for local variables a and b. When the program enters function multi, multi is allocated
with another frame. In the Fig. 4(b), the line in the graph shows the first trend from rising to steady, its indicate that the
program into main function. When the line in the graph shows the second trend from rising to steady, its indicate that the
program into multi function, and it goes inside the callee function multi for execution. Afterwards, the line in the graph
shows a trend from steady to downward, it indicates that the callee function multi exits and returns to the caller function main
to execute.

In the case of no power detector, checkpoint backup procedures should be done in advance to make the program forward
progress. The most naive way is to use each instruction as a checkpoint [12], which we call log-based method. The log-based
backup strategy is common used due to high reliability, because never roll backs. The main idea of the log-based backup
is that each instruction is executed, all the volatile logic (including stack and registers, etc.) are written consistently to the
NVM. Why we back up whole stack space in each time? Because, the stack size or stack content dynamically change with the
execution of instructions. As shown at Fig. 4, some instructions whose execution will affect the stack size or stack contents
such as push, pop, store, call, sub, return, and so on. In this way, it writes NVM frequently. Excessively frequent checkpoints
can have high overhead. This is not acceptable to NVM. It is equivalent to using NVM as the main memory of the system.

Another naive way to set the step size S, every S instructions, as a checkpoint, which we call step-based method. The
main idea of the step-based backup is that every time S instructions are executed, all the volatile logic (including stack and
registers, etc.) are written consistently to the NVM. Why we back up whole stack space in each time of step size? The answer
is the same as mentioned above. Therefore, although this method reduces the number of backups, the sizes of each backup
does not change. The entire stack space needs to be backed up, and there exist a lot of redundancy.

Instead of the log-based backup method and step-based backup method, we propose to backup single stack frame at
function call. The function call is the natural checkpoint, because if the function into callee function would openup itself
stack frame, then the stack frame of caller function was fixed (here, in particular, the content is fixed). So, when the instruction
call Lmulti is executed, we back up the stack frame of main function. Compared with the log-base backup method, it reduces
the number of backups by 46 times and the backup size of 8.2KB. Compared with the backup method of step-base, it reduces
the number of backups by 4 and the backup size of 760B bytes.

We presented the size of the stack space for the first 1000 instructions, as shown in Fig.5. The stack behavior in the
benchmark also confirms that the stack size changes dynamically as the program executes. As above, when the line in the
graph shows a trend from rising to steady, its indicate that the function call is incurred, and it goes inside the callee function
for execution. When the line in the graph shows a trend from steady to downward, it indicates that the callee function exits

First Author et al.: Preprint submitted to Elsevier Page 4 of 16

Short Title of the Article

void main()
{ (acs. Main:
!nt2 - =) 1 mov r15, 10000
nto=o,) 2 mov sp,ri5
|nt. c= muItl(”a ,b); 3 sub sp,sp, #2
printf (“%d” ,c); 4 mov 12, #5
} 5 mov 13, #3
_ o . 6 str 3, [r15, #1]
int multi(intx, inty) 6 str r2, [r15, #-2]
{ L 7 push r3
intz=0; 8 push r2
while(y>0) 9 call Lmulti
if(y&1==0) Lmulti
{ s 1 push r15
y:y<<1f 2 mov r15,sp
X=X Y 3 SUb Sp; Sp; #1
}I 4 push r2
else 5 push r3
{ N 6 push r4
z = z >>X1 . 7 push 15
y = y 1 8 push 16
X=X ; 9 Idr r2, [r15, #2]
; } 10 Idr 3, [r15, #3]
return z ;
}
(a
A
(0]
N
(7]
X
(&)
T
%)

L

(b)

Figure 4: Motivation example. (a)The C program and corresponding pseudo disassembly. (b)The stack size of program execution.

and returns to the caller function to execute. As a result, the system can be designed by attaching a smaller NVM. And the
wear out of NVM will be reduced. The lifetime of NVM will also increase.

4. Design

The traditional checkpoint design of system based on the energy warnings. When the current voltage below the voltage
threshold, the voltage detector sends a warning signal to backup controller to trigger backup. But this design is only suitable
for some systems with the power alerts, such as the systems with power provided by the natural environment (i.e. solar
energy) which can be detected. In this paper, the schematic of non-volatile processor is shown in Fig. 6. Different from
the traditional design, the design proposed is suitable for general systems under power failures without any warning. In this
paper, the target system architecture is focused on embedded systems with NVM. The target system architecture is shown in
Fig. 3. The basic idea of technology proposed is that the backup operations are triggered by counter signals and function call.
And it also cleans up the content in NVM that is useless for recovery by comparing the rbp values in different stack frames.
The detailed process is as follows.

The schematic of non-volatile processor is shown in the Fig. 6. In the proposed scheme, the count controller sends the

First Author et al.: Preprint submitted to Elsevier Page 5 of 16

Short Title of the Article

>

adpcm

stack size

>

crc

stack size

Figure 5: Dynamic stack sizes along program execution. Benchmarks are from powerstone [44].

INST MEM DATA MEM
callq
o 00r 1| Back AD » address R
ount . | Backup | rbp rbp ecovery|
Controller Controller - > <_Contnoll er
W/R
NV
Controller 4
C |
v A
ADR
Cleanup (-
Controller W
Power
NVM

Figure 6: Schematic for non-volatile processor

“0” or “1” signal to the backup controller. Meanwhile, the instruction register sends the instruction to backup controller.
When “1” is issued by count controller and callq instruction is issued by instruction register, the backup procedure will be
triggered. Once the backup controller is triggered, it sends the stack frame address (the address range between rbp to rsp) and
write signal to the NV controller. The NV controller adds the flag for the stack frame. The flag consists of a monotonically-
increasing epoch_id, validity of information, rbp value and the starting and ending address for stack frame. The current stack
frame is tagged valid and then stored to NVM, as well as the tag is stored to NVM with the corresponding stack frame. Make
the checkpoint complete. The flag will be retained in NV controller. Then, compare the rbp value of current stack frame to
the rbp value of past stack frame. If the current rbp is different from all 7bp of past stack frame, maintain current state. If there
are a stack frame s in previous stack frames that is equal to the rbp of the current stack frame sy, mark stack frames which
epoch_id > s'epoch_id and < sgepoch_id as invalid, as well as remove the corresponding tags in NV controller (Previous
Stack frames are marked as invalid if and only if the current checkpoint is complete). NV controller sends a clean signal C to
Cleanup controller. Where the address that need be cleaned is included in C. Once cleanup controller is triggered, it cleans
the invalid information in NVM. Due to the valid information in NVM are useful for recovery, all of the valid information
are loaded from the NVM and sorted by epoch_id by Recovery controller during recovery. Considering that registers, such

First Author et al.: Preprint submitted to Elsevier Page 6 of 16

Short Title of the Article

as special registers and general-purpose registers, are small size and need to be backed up for each checkpoint. The backup
of registers can be implemented according to the nonvolatile flip-flops [13]. Therefore, the register backup unit is not shown
in the schematic of non-volatile processor. System performance is affected by the cost of NVM write and the time of system
recovery. It is vital that to reduce the write cost on NVM, while rapid recovery is satisfied.

4.1. Backup

The location of the checkpoint is very important. The more frequent the checkpoint, the more rapid recovery in program.
But it causes amount of cost on NVM write and reduces the life of NVM. Thus, some methods of checkpoint setting are
proposed. To avoid power loss during a checkpointing operations, we propose a valid tail. The valid tail writes to the end of
checkpoint that includes epoch_id, stack frame address, and valid flag. A checkpoint is complete only if it contains valid tali.

4.1.1. Call- based backup

Use the function call as the checkpoint position. When the program encounters a function call, it will push the address
of sub-function return to the stack, and then enter the sub-function for execution. One program code is shown in the top of
Fig. 8(a), with multiple embedded function calls. When the main function calls g, the backup controller sends the address of
stack frame of main function, the value of rbp of main and write signal to NV controller. Then, the NV controller compare
the received rbp and the rbp in NV controller (here, the value of rbp and address is empty in NV controller). A tag with
epoch_id(1) for main function is built in NV controller. The tag and stack frame are stored to NVM together, as shown in
top left corner of Fig. 7. The green content represents the tag. And when g calls A, the backup controller sends the address
of stack frame of g function, the value of rbp of g and write signal to NV controller. The tag with epoch_id(2) for g is built
in NV controller. The tag and corresponding stack frame are stored to NVM. Then, the NV controller compare the rbp of g
and the rbp in NV controller (here, the value of rbp and address in NV controller belong to the main function, the address
represents the address of stack frame of main in NVM). The rbp of g and the rbp in NV controller is different, so current
state is maintained, the state as shown in top right corner in Fig. 7. The blue content is the newest stack frame.

Another program code is shown in the below of Fig. 8(a). In this program, main calls g, main calls h. When the main
function calls g, the process is same as the main call g in preceding program. The state of this process is shown in below
left corner of Fig. 7. When main calls h, the backup controller sends the address of stack frame of main function, the value
of rbp of main and write signal to NV controller. A tag with epoch_id(2) for main function is built in NV controller. Then,
the NV controller compare the rbp of epoch_id(2) and the rbp in NV controller(here, the value of rbp and address in NV
controller belong to the main function, the address represents the address of stack frame of main in NVM). The the rbp of
epoch_id(2) is same as the rbp of epoch_id(1) in NV controller. The stack frame with epoch_id(1) in NVM is marked as
invalid and removed the tag from NV controller. The current state is shown in below right corner of Fig. 7. The orange
content represents the tag and corresponding stack frame are invalid.

00000000 | deal | 00000000 | | 00000000 00000000 | de80| ffffdeaO || 00000000
: H H 5555515f | de78 | 55555178 :

5555515f | de88 | 5555515f || 555551 5f - 555551 5f

ffffdeal
55555178

00000000 | deal | 00000000 | | 00000000 00000000 | dead | 00000000 | | 00000000

5555515f | de88 | 5555515f | | 555551 5f 55555169 | de88| 55555169 | | 555551 5f
1,dea0, vali
d(a0-88)
00000000

55555169

SRAM NVC NVM SRAM NVC NVM
callg g callgh

Figure 7: Description of backup process

First Author et al.: Preprint submitted to Elsevier Page 7 of 16

Short Title of the Article

In both the cases in above, all the registers stores as well as the stack frame to NVM. In those cases, the output signal
of the counter is always 1. At the same time, the register unit also needs to be backed up. Because in this paper, an X86-64
machine is used, so the registers include sixteen 64bit general-purpose registers, six 16bit segment registers, one 64bit eflag
register and one 64bit instruction pointer register(RIP), totaling 156B. For both of the programs as shown in Fig. 8(a), when
executes the "callg g" instruction, total 188B content are backed up.

void main() {

. o void main() void main()
int sum=1; { {
for(int FO;I<10i+4) |\ 6id main() int a[10]={1}: int a[10]={1};
{ i { int i; int b[5]={5};
AL int sum=0: for(i=0:i<10; i++) a[1]=b[2]+1:
b int i { pseudo_g();
9(); for(i=0:i<3000; i++) int j a[2=b[4]+a[1];
b g { for(j=0:i<10:i++) || a[3]=b[2]+a[2]:
Vor'] 90) { sum=sum-+i { a[4]=a[3]+a[1];
, o); all=afil+alil; || al5l=b[3]+1:
} } a[6]=a[5]+b[4];
} pseudo_g(); pseudo_g();

void main() {) a[7]=b[2}+al[1]
int §um_—1 . } a[8]=b[4]+a[2];
Ior(mt F0;i<10;i++) void g() a[9J=b[4]+1:

{ }

sum+=i: void pseudo_g() void pseudo_g()

(a) (b) (c) (d)

Figure 8: Design Example

4.1.2. Exponential incremental call-based backup

If the function call in a loop, as shown in Fig. 8(b), each function call in the loop triggers a backup mechanism, which will
cause multiple writes to the NVM. Thus, an exponential incremental call-based backup approach is proposed. We assume
the base is 2. That is, the backup controller can be triggered at num =1, 2, 4, 8, 16... and the last loop (the “num” represents
loop time). The counter will output 1 only when the loop is executed to the power of 2, otherwise it will output 0. Therefore,
when it is not a power of 2, even if the callq instruction is issued, the backup controller is disable to triggered. When it is
a power of 2, and the callq instruction is issued, the backup controller is able to triggered based on the call-based backup
method policy. In this way, the program code as shown in Fig. 8(b) backs up a total of 3.25KB. If apply the call-based backup
method in every cycle, will be backed up 750KB. It is obviously that the exponential incremental call-based backup method
can reduce the backup content by nearly 230x. The backup operations and content are same as call-backup method.

4.1.3. Pseudo call-based backup

If the program has not a function call, or a large number of instructions are executed still does not encounter a function call,
the pseudo-function call will be inserted to as the checkpoint position before the program compilation. The basic idea follows
the call-based backup and the exponential incremental call-based backup, the detailed backup mechanisms are described as
the part of call-based backup method. The inserts mechanism based on the follow. If there is only one layer of loop and the
number of loops is relatively small, then the pseudo function is inserted outside the loop. This case is similar to the main
function of the code block shown in Fig. 8(b), and the g function is equivalent to the inserted pseudo function call. If there
is only one layer of loop and the number of loops is relatively large, then the pseudo function is inserted inside the loop.
This case is similar to the main function of the code block shown in Fig. 8(b), and the g function is equivalent to the inserted
pseudo function call. If there are multiple layers of loops, it is added inside the outermost loop. This method is shown in

First Author et al.: Preprint submitted to Elsevier Page 8 of 16

Short Title of the Article

Fig. 8(c). In this case, our method backs up 1.5B. If the program has not a function call, or a large number of continuous
instructions does not exist a function call, we set a threshold (T), and insert a pseudo function call when the threshold is
reached. For the code shown in Fig. 8(d), we assume that T is 20 in this example. In practice, the value of T can be designed
according to actual needs. Therefore, under this setting, our method needs to back up 640B.

The foregoing shows that the proposed approaches to reducing write NVM is effective.

4.2. NVM Cleaning

The NVM cleanup is very important. Because, there are many invalid information in NVM and NVM overflow would
incur if never cleanup based on backup technology proposed. So if there are many data chunk on NVM (some are valid, and
some are invalid), the invalid blocks not only occupy the space of NVM, but also affect the performance of recovery. So, we
should clean the invalid chunk in NVM. We ignore the write operations caused by NVM cleanup.

The schematic of the NVM cleaning process is as shown in Fig. 6. In the proposed scheme, the cleanup procedure is
triggered by the clean signal (C). The clean signal includes invalid address of stack frame and write signal. Upon the clean
signal is issued by NV controller, the cleanup controller was triggered to clean up the invalid stack frame in NVM. We analysis
clean process on the program as shown in Fig. 8(a). When main calls h, the rbp of epoch_id(2) is same as the rbp in NV
controller (because the rbp in NVC belongs to main function). Stack frame of epoch_id(1) is marked as invalid, as well
as remove the corresponding tag in NV controller. NV controller sends a clean signal to Cleanup controller. The cleanup
controller is triggered to clean up the invalid address of main stack frame with epoch_id(1), and then, the address is released.

4.3. Recovery

Depending on the backup policy and NVM cleanup, the content on NVM can ensure the recovery is correctly. The Fig. 6
shows the recovery schematic. When the power is restored, it will send a signal to the recovery controller. The recovery
controller is triggered and sends the read signal to copy the data from the NVM to SRAM. In this procedure, the recovery
controller reads the all stack frame on the NVM. They are valid due to the cleanup mechanism. Then sorting by the marked
epoch_id of each stack frame to get the correct stack space when recovery. If the failure occurs in the cleanup process, the
recovery controller reads the all stack frame on the NVM during recovery, but some are invalid. So, the recovery controller
not only sorts the stack frame by the epoch_id, but also ignores the invalid stack frame. The tag of invalid stack frame will
be send to NV controller by recovery controller to execute cleanup operation. The recovery of the register is implemented by
nonvolatile flip-flops [10].

5. Case Studies

In this section, an example is used to analyze the backup and recovery under different power failures. The failures would
occur in backup process, cleanup process and program execution process, respectively.

We analysis the C program and its corresponding pseudo assembly code are shown in Fig. 9.

It includes all the methods mentioned in the section 4.1 part(we set the T=300, S=10). We analyze the performance of
the call-based backup method and exponential incremental call-backup method.

5.1. Program execution process

By default, the failures occurs in program execution process, the backup process and cleanup process are done normally
and correctly. We assume that in the following analysis, failures of program execution process all occur when a certain
instruction is about to be executed. Because the failure during the execution of the instruction is equivalent to the instruction
not being executed, the failure after the execution of the instruction is equivalent to the failure when the next instruction is
about to be executed. In this process, we also compare with log-backup under different failures cases.

5.1.1. Casel

The failure occurred at the location identified by i, and both the call-based backup method and exponential incremental
call-backup method can recover from the "push %rbp" instruction in the pseudo function. In this case, 4.2KB contents are
backed up and 218 instructions are rolled back. But for the log-based backup method, there are 1231.64KB contents to written
NVM. The step-based backup method, there are 123.6KB contents needed to backup and 10 instructions to roll back.

5.1.2. Case2

The failure occurred at the location identified by b in the 500th loop. For the call-based backup method, the latest
checkpoint is the instruction of "callg pseudo" in 499th loop, and then the program restart from "push %rbp" in 499th call
pseudo. There are only 11 instructions to rollback, but 2MB data to store. For the method of exponential incremental call-
based backup, it needs to be executed from the 256th call to the pseudo function, causing 5114 instruction rollbacks. But
compared to the call-based backup method, the exponential incremental call-based backup method only needs to back up
41.7KB. The log-based backup method needs to backup 40.05MB to ensure no rollback. The step-based backup method,
there are 2253.9KB contents needed to backup and 18 instructions to roll back.

First Author et al.: Preprint submitted to Elsevier Page 9 of 16

Short Title of the Article

int main(') '
main:
int a[1000] = {1} ; push %rbp .
pseudo(); mov %rsp,%rbp sum: .
for(int i=0;i<999;i++)Y |sub $0xfcO,%rsp push Ofarbpo/rb
afil=ali]+a[i+1] ; ==+ 297 instructions -+ m%V $8;?P0; p
pseudo() ; callg pseudo i su 0] tC ,tf)rsp e
«+ 213 instructions -+ m II_r:;S ructions ...
sum(); jmp L1 a Jmp
return O; e
} L2: pseudo: L —— N .
=+ 3 instructions - push %rbp stors "j?)t):fléitl((z/nrsb " _rep;a
int sum() store -Oxfb4(%rbp),%eax b [repeat | mov %rsp,%rbp . 70 P). 70 times
=== 8 instructions -+ =999 | nop ¢ | = 9 instructions - /
int b[10]={1} ; callq pseudo d|[times |pop %rbp 1z t
for(int i=0;i<9;i++] i et : repea
S oMblsetls |y ercors e mpl $0x36,0xb4(%bp) |1
1 . g 9 repeat jle L4 times
cmpl $0x3e6,-0xfb4(%rbp) %1000
rr')estil:r?c())(); Je 12 times mov $0x0,%eax
’ callg pseudo_g k
} ::na(I)I\c; Sﬁ(r):o,%eax j mov $0x0,%eax h
void pseudo() mov $0x0,%eax g ret 4 instructions ...
== 4 instructions --- .
retq
}
Figure 9: The example of case study.
5.1.3. Case3

The failure occurred at the location identified by ¢ in the 128th loop in the main function. Both the call-based backup
method and the exponential incremental call-based backup method can start execution of the "push %rbp" instruction in the
pseudog function and only causes 2 instructions to rollback. But, compared the call-based backup method to exponential
incremental call-based backup method, the exponential incremental call-based backup method is better, because only needs
to store 37.55KB. But, the call-based backup method needs to write 535.17KB. However, the log-based backup method backs
up 11.81MB to ensure no rollback. The step-based backup method, there are 733.48KB contents needed to backup and 12
instructions to roll back.

5.1.4. Case4

The failure occurred at the location identified by d in the 513th loop in the main function. Both the call-based backup
method and exponential incremental call-backup, the program needs to be executed from "push %rbp" instruction in 512th
pseudo called. Because the 512th call to the pseudo function is the checkpoint for these method and only caused the rollback
of 20 instructions. in this case, the call-based backup method needs to back up 2.09MB, while the exponential incremental
call-based backup method only needs to back up 49KB. However, the log-based backup method backs up 41.09MB to ensure
no rollback. The step-based backup method, there are 2311.08KB contents needed to backup and 9 instructions to roll back.

5.1.5. CaseS

The failure occurred at the location identified by e. Both the call-based backup method and the incremental call-based
backup method, it is necessary to start execution from the "push %rbp" instruction of the sum function, which only causes the
rollback of 3 instructions. The incremental call-based backup method only needs to back up 50.06KB, while the call-based
backup method needs to back up 4.07MB. However, the log-based backup method backs up 78.11MB to ensure no rollback.
The step-based backup method, there are 8.2MB contents needed to backup and 7 instructions to roll back.

5.1.6. Case6

The failure occurred at the location identified by f in the 5th loop in the sum function. Both the call-based backup method
and the incremental call-based backup method, it is necessary to start execution from the "push %rbp" instruction of the sum
function. Both methods caused a rollback of 79 instructions, but the exponential incremental call-based backup method only
needs to back up 50.06KB, while the call-based backup method needs to back up 4.07MB bytes of content. However, the log-
based backup method backs up 78.42MB to ensure no rollback. The step-based backup method, there are 8.22MB contents

First Author et al.: Preprint submitted to Elsevier Page 10 of 16

Short Title of the Article
needed to backup and 15 instructions to roll back.

5.1.7. Case7

The failure occurred at the location identified by 4. Both call-based backup method and the exponential incremental call-
based backup method, can start execution the push %rbp" instruction of the pseudo in sum function, causing 5 instructions
to roll back. The call-based backup method needs to back up 4.08MB, while the exponential incremental call-based backup
method only needs to back up 59.29KB. However, the log-based backup method backs up 78.74MB to ensure no rollback.
The step-based backup method, there are 8.25MB contents needed to backup and 8 instructions to roll back.

5.1.8. Case8

The failure occurred at the location identified by g. Both call-based backup method and the exponential incremental call-
based backup method, can start execution the push %rbp" instruction of the pseudo in sum function, causing 11 instructions
to roll back. The call-based backup method needs to back up 4.08MB, while the exponential incremental call-based backup
method only needs to back up 59.29KB. However, the log-based backup method backs up 78.77MB to ensure no rollback.
The step-based backup method, there are 8.25MB contents needed to backup and 6 instructions to roll back.

The Fig 10 illustrates the size of the backups and the number of instruction rollbacks for each method.

100000

£ 80000

n

Q 60000

é 40000

@ 20000
0 e o b M Wi W

N @D QDN DR QR
P R A . M
N Y S O AR
M log-based M step-based
call-based incre-call
(a)

o)

2 6000

£

Z 4000

5

= 2000

2 ;

E oo T T T T T
2 ‘oé)/ & (o& & L L& L

M log-based M step-based

call-based incre-call

(b)

Figure 10: The case studies’ presentation of backup size and number of instruction rollback.

First Author et al.: Preprint submitted to Elsevier Page 11 of 16

Short Title of the Article

5.2. Backup process
If the backup process is complete, the current checkpoint is valid. If the backup process is incomplete, the valid checkpoint
is the lasted checkpoint.

5.2.1. Casel

The failure occurred at the location identified by i. If the backup process is complete, so, upon the power restore, both the
call-based backup and the exponential incremental call-based backup method could start at the instruction of "push %rbp"
in pseudo. If the backup process is incomplete, this backup operation is invalid. In the case, both the call-based backup and
the exponential incremental call-based backup method could be re-executed the main.

5.2.2. Case2

The failure occurred at the location identified by d in the 9th loop. If the backup process is complete, so, upon the power
restore, the call-based backup method could be start at the instruction of "push %rbp" in pseudo of 9th loop. If the backup
process does is incomplete, this backup operation is invalid. So, upon the power restore, the call-based backup method could
start at the instruction of "push %rbp" in pseudo of 8th cycle. And the exponential incremental call-based backup method
could always start at the instruction of "push %rbp" in pseudo of 8 loop. Because the "callq pseudo" of 9th loop is not the
checkpoint for the exponential incremental call-based backup method.

5.2.3. Case3

The failure occurred at the location identified by j in the main function. If the backup process is complete, so, upon the
power restore, both the call-based backup method and the exponential incremental call-backup method could be start at the
instruction of "push %rbp" in sum function. If the backup process is incomplete, this backup operation is not valid. Upon
the power restore, both the call-based backup method and the exponential incremental call-based backup method could start
at the instruction of "push %rbp" in pseudo of 999th loop. Because the "callg pseudo" of 999th loop is the checkpoint for
the two method.

5.2.4. Case4

The failure occurred at the location identified by k in the sum function. if the backup process is complete, so, upon the
power restore, both the call-based backup method and the exponential incremental call-based backup method could be start
at the instruction of "push %rbp" in pseudo function. If the backup process is incomplete, this backup operation is not valid.
Upon the power restore, both the call-based backup method the exponential incremental call-based backup method could
start at the instruction of "push %rbp" in sum function.

In summary, when there is a power failure during the checkpointing, the program can resume working from the last com-
plete checkpoint position stored in NVM. If the current checkpoint has been stored in NVM completely, the last checkpoint
position is the current call function. If it is incomplete, thus the last checkpoint is the latest function call as the checkpoint.

5.3. Cleanup process
By default, the cleanup process are based on the correct backup process.

5.3.1. Casel
The failure occurred at the location identified by i. Because there are no invalid information in NVM, the cleanup process
would not be triggered.

5.3.2. Case2

The failure occurred at the location identified by d in the 9th loop. For the call-based backup method, regardless of
whether the failure occurs before, during, or after cleanup process, when power restore, the call-based backup method could
be start at the instruction of "push %rbp" in pseudo of 9th loop. Because in the 9th backup, the stack frame saved when the
pseudo function is called for the 8th backup has been marked as invalid. Thus, even if it is not cleaned, it will be removed
according to the flag, without affecting the correct recovery of the program. And the exponential incremental call-based
backup method could always start at the instruction of "push %rbp" in pseudo of 8 loop. Because the "callg pseudo" of 9th
cycle is not the checkpoint for the exponential incremental call-based backup method, so the cleanup process would not be
triggered.

5.3.3. Case3
The failure occurred at the location identified by j in the main function. Upon the power restore, both the call-based
backup and the exponential incremental call-based backup could be start at the instruction of "push %rbp" in sum function.

First Author et al.: Preprint submitted to Elsevier Page 12 of 16

Short Title of the Article

Table 1
Parameters value and policies of each backup method
backup method parameters policy
step-based S=20
- T=20 loop times less than or equal to 10, pseudo call is outside loop
pseudo exponential incremental call-based s - -
T=20 loop times more than 10, pseudo call is outside loop

5.3.4. Cased

The failure occurred at the location identified by k in the sum function. Upon the power restore, both the call-based
backup method and the exponential incremental call-based backup method could be start at the instruction of "push %rbp"
in pseudo function.

In summary, when there is a power failure in the cleanup process, the program can resume working from the last checkpoint
position stored in NVM.

Regarding the method of inserting pseudo-functions in multi-layer loops proposed in the section 4.1.3, there is no specific
cases study due to space limited. But it is easy to understand that this method can greatly reduce the write operation to NVM.

6. Experiments

In this section, we present the experimental evaluation to demonstrate the efficiency of the proposed method.

6.1. Experiment Setup

The experiments are conducted with a customized processor simulator.

We conducted the experiments on a set of benchmarks, such as ad pcm, blit, bent, qurt, and crc. These benchmarks are
from the powerstone benchmark suite [44]. The assembly code generated by the GCC compiler for each benchmark is used
as input. As described in section 4, each method is influenced by the setting of various parameters and policies. Table |
summarizes the parameters and policies of each method. In Table 1, S=20 indicates that every 20 instructions are statically
taken as a backup point, T=20 indicates that a pseudo-function call is inserted every 20 instructions when there are no loops
and function calls. When the times of loop is less than or equal to 10, and there are no function calls inside or outside the
loop, we insert a pseudo function call outside the loop as a backup point. When the times of loop is more than 10, and there
are no function calls inside the loop, we insert a pseudo function call outside the loop as a backup point. In the following
experiments, we have added the pseudo function calls to all the pseudo-function call methods with these policies. After the
position of backup points is fixed, 50 failure points are randomly selected in each program to analyze the relationship between
the size of backup and the number of rollback instructions at the time of failure.

6.2. Evaluation Results

Fig. 11 shows the analyzed current stack frame size upon each instruction in representative benchmarks. Here, only 7000
instructions are described, in order to obviously show the fluctuation trajectory. The fluctuation verifies the feasibility of
using function calls as backup locations. The proposed method only needs to back up the stack frame (that is, the stack
frame of the caller function) when the call instruction is encountered. The traditional log-based and step-based method not
only need to back up the stack frame when the checkpoint instruction is encountered, but also the stack frame of other caller
functions until the main function is backed up.

Fig. 12 describes step-based, call-based, exponential incremental call-based backup (called incre-call in figure) and
pseudo exponential incremental call-based backup (called pseuso-incre-call in figure) the backup content size normalized
to the log-based method for tested benchmarks. It shows that the call-based scheme delivers 98.8% backup content size
reduction on average, the exponential incremental call-based scheme delivers 99.6% backup content size reduction on aver-
age, the pseudo exponential incremental call-based scheme delivers 99.6% backup content size reduction on average, when
compared with conventional log-based backup. It also shows that the call-based scheme delivers 80.5% back up content size
reduction on average, the exponential incremental call-based scheme delivers 91.9% backup content size reduction on aver-
age, the pseudo exponential incremental call-based scheme delivers 91.4% backup content size reduction on average, when
compared with conventional step-based backup.

Fig. 13 describes call-based, exponential incremental call-based backup (called incre-call in figure) and pseudo expo-
nential incremental call-based backup (called pseuso-incre-call in figure) the number of rollback instruction compared to the
step-based method for tested benchmarks. It shows that the call-based method delivers 5.36X rollback of instruction on aver-
age, the exponential incremental call-based method delivers 8.7X rollback of instruction on average, the pseudo exponential
incremental call-based method delivers 3.81X rollback of instruction on average. Although, the best approach in terms of
the number of instruction rollbacks is log-based, the backup content is huge, it is easy to corrupt the NVM, and our method
is better tradeoff.

First Author et al.: Preprint submitted to Elsevier Page 13 of 16

Short Title of the Article

adpcm
ﬁZO
100
e
@l 80
i
%60
%40 1
20
0
b unlh i el s . . wl e s sl e e el i sl el el S e e s .
ANTTOOOANTOOONTOOONTWOWOON
N OONOOANLLOANLLODO <O NO N~
T AANNOOOOTTTOLWLWOOO
A cre
140
<I)120
£(100
o
ic| 80
X
S| 60
©
»n| 40
20
0
O ONMNMNTULONONMNTWOULONMNONMNMNTWOULOMMN «—
N OO OMNOMONOSSTNOSSNMNTTS N~ < ©O
N OO MNOWOMNMOWOMNMNWOWOMNMNOWOMmMWOWVWO M WO
T A ANANOOOSSTETTO WL OOoOo
fir
A
60
g50
5|40
T
| 30
8| 20
fo)
)
10
0
T~ OO0 OMNMNOULTONTOODOMNOLULTOMON —O
ANOLOMNMNOIOTTMOUOUONO—-TATOOONT OO
D OOANLLOANLULOTTLUO TN TTITNOMN~
T AN AN ANOOOSSTTITTOWDLWOOO

Figure 11: Stack frame of each instruction for benchmarks adpcm, crc, and fir.

7. Conclusion

This paper aims to reduce write overheads to NVM during backup while recovering rapidly. Different from conventional
log-based and step-based method, we propose to use function calls as checkpoints, and through offline analysis, leading to
a smaller backup size for NVM. The evaluation shows 99.8% and 80.5% NVM backup size reduction on average. In order
to better achieve this, we also proposed inserting pseudo-function calls to increase backup points to reduce recovery costs,
and exponential incremental call-based backup methods to reduce backup costs in the loop. However, in this paper, we are
disable to solution the recursive function. In future work, we will consider the issue.

References

[1] S. Sudevalayam and P. Kulkarni. Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys Tutorials 13 (3) (2011)
443-461.

[2] P.Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and energy effi-cient main memory using phase change memory technology. In Proceedings of
the 36th annual international symposium on Computer architecture (ISCA *09). Association for Computing Machinery, 2009, pp. 14-23.

[3] Y. Chen, W.-F. Wong, H. Li, and C.-K. Koh, “Processor caches built using multi-level spin-transfer torque ram cells,” in Proc. Int. Symp. Low Power
Electron. Design (ISLPED), 2011, pp. 73-78.

First Author et al.: Preprint submitted to Elsevier Page 14 of 16

Short Title of the Article

100%
80%
60
40
20%

0%

X

Backup size
N

c‘(\ ‘00(\\ ‘o\‘\“ G(G ‘\(\e A\ q\)(“

209)
m |og-based m step-based
u call-based incre-call

H pseuso-incre-call

Figure 12: The proposed call-based and optimized call-based backup sizes are normalized to the log-based backup size design of
each benchmark.

20
X
Q
®
2
ol 10 h
©
é‘ Qé(\ \ocf‘& ¢ @ 0‘&&
o ® N
B log-based M step-based
B call-based incre-call

B pseuso-incre-call

Figure 13: The proposed call-based and optimized call-based backup compared to the step-based number of rollback instruction
design of each benchmark.

[4] Intel and Micron. Intel and micron produce breakthrough memory technology, 2015. http: /newsroom:intel:comcommunityintel_newsroomblog20150728
intel-and-micron-produce-breakthrough-memory-technology.
[5] D. Narayanan and O. Hodson, “Whole-system persistence,”Acm Sigplan Notices 47 (4) (2012) 401-410.
[6] J.Scott, L. H. Lee, J. Arends, and B. Moyer, “Designing the low-power M*core architecture,” in Proc. IEEE Power Driven Microarchitect. Workshop,
1998, pp. 145-150.
[7]1 Y. Wang, Y.Liu, S. Li, D. Zhang, B. Zhao, M.-F. Chiang, Y. Yan, B. Sai, and H. Yang, “A 3us wake-up time nonvolatile processor based on ferroelectric
flip-flops,” in Proc. Eur. Solid-State Circuits Conf., 2012, pp. 149-152.
[8] X. Sheng, Y. Wang, Y. Liu, and H. Yang, “SPaC: A segment-based parallel compression for backup acceleration in nonvolatile processors,” in Proc.
Design Autom. Test Europe Conf. Exhibit. (DATE), 2013, pp. 865-868.
[9]1 M. Zhao et al., “Stack-size sensitive on-chip memory backup for selfpowered nonvolatile processors,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst. 36 (11) (2017) 1804-1816.
[10] N. Sakimura, T. Sugibayashi, R.Nebashi, and N.Kasai, “Nonvolatile magnetic flip-flop for standby-power-free SoCs,” in Proc. IEEE CustomIntegr.
Circuits Conf., 2008, pp. 355-358.
[11] J. Wang, Y. Liu, H. Yang, and H. Wang, “A compare-and-write ferroelectric nonvolatile flip-flop for energy-harvesting applications,” in Proc. Int.
Conf. Green Circuits Syst., 2010, pp. 646—650.
[12] K. Ma et al., "Nonvolatile Processor Architecture Exploration for Energy-Harvesting Applications,” in IEEE Micro 35 (5) (2015) 32-40. doi:

First Author et al.: Preprint submitted to Elsevier Page 15 of 16

(13]
(14]
[15]
[16]

(17]
[18]

[19]
(20]

(21]

[22]
(23]
[24]
[25]
[26]
(27]

(28]

[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]

[44]

Short Title of the Article

10.1109/MM.2015.88.

Arulraj J., Pavlo A., Dulloor S. R. Let’s talk about storage & recovery methods for non-volatile memory database systems. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data , 2015, pp. 707-722.

Kannan S., Arpaci-Dusseau A. C., Arpaci-Dusseau R. H., Wang Y., XU J., and Palani G. Designing a true direct-access file system with devfs. In
FAST (2018), 2018, pp. 241.

Zhang, Y., Yang, J., Memaripour, A., and Swanson, S. Mojim: A reliable and highly-available non-volatile memory system. Proceedings of the
Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems, 2015, pp. 3—18.

Jay Taneja, Jaein Jeong, and David Culler. Design, modeling, and capacity planning formicro-solar power sensor networks. In Proceedings of the 7th
International Conference on Information Processing in Sensor Networks. 2018, pp. 407—418.

Nathan S. Shenck and Joseph A. Paradiso. Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 21 (3) (2001) 30-42.

Qadeer A. Khan and Sarvesh J. Bang. Energy Harvesting for Self Powered Wearable Health Monitoring System. Technical Report. Oregon State
University, 2009.

Vladimir Leonov. Thermoelectric energy harvesting of human body heat for wearable sensors. IEEE Sensors Journal 13 (6) (2013) 2284-2291.

Jay Taneja, Jaein Jeong, and David Culler. Design, modeling, and capacity planning formicro-solar power sensor networks. In Proceedings of the 7th
International Conference on Information Processing in Sensor Networks, 2007, pp. 407—418.

Cong Wang, Naehyuck Chang, Younghyun Kim, Sangyoung Park, Yongpan Liu, Hyung Gyu Lee, Rong Luo, and Huazhong Yang. Storage-less and
converter-less maximum power point tracking of photovoltaic cells for a nonvolatile microprocessor. In Proceedings of the 2014 19th Asia and South
Pacific Design Automation Conference (ASP-DAC’14), 2004, pp. 379-384.

J. A. Paradiso and M. Feldmeier. A compact, wireless, self-powered pushbutton controller. In Proceedings of the 3rd International Conference on
Ubiquitous Computing (UbiComp’01), 2001, pp. 299-304.

Aman Kansal, Jason Hsu, Sadaf Zahedi, and Mani B. Srivastava. Power management in energy harvesting sensor networks. ACM Transactions on
Embedded Computing Systems 6 (4) (2007) 32-es.

C. Park and P. H. Chou, “Ambimax: Autonomous energy harvesting platform for multi-supply wireless sensor nodes,” in Proc. IEEE Commun. Soc.
Sensor Ad Hoc Commun. Netw. 1 (2006) 168—177.

J. Taneja, J. Jeong, and D. Culler, “Design, modeling, and capacity planning for micro-solar power sensor networks,” in Proc. Int. Conf. Inf. Process.
Sensor Netw., 2008, pp. 407-418.

V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava, “Design considerations for solar energy harvesting wireless embedded systems,”
in Proc. Int. Symp. Inf. Process. Sensor Netw., 2005, pp. 457—462.

B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for longrunning computation on RFID-scale devices,” in Proc. Int. Conf. Archit.
Support Program. Lang. Oper. Syst. (ASPLOS), 2011, pp. 159-170.

H. Jayakumar, A. Raha and V. Raghunathan, "QUICKRECALL: A Low Overhead HW/SW Approach for Enabling Computations across Power Cycles
in Transiently Powered Computers," 2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded
Systems, Mumbai, 2014, pp. 330-335, doi: 10.1109/VLSID.2014.63.

A. Mirhoseini, E. M. Songhori, and F. Koushanfar, “Idetic: A highlevel synthesis approach for enabling long computations on transientlypowered
ASICs,” in Proc. Pervasive Comput. Commun. Conf. (PerCom), 2013, pp. 216-224.

B. Ransford, S. S. Clark, M. Salajegheh, and K. Fu, “Getting things done on computational RFIDs with energy-aware checkpointing and voltage-aware
scheduling.” in Proc. HotPower, 2008, pp. 5.

S. Ducharme, T. J. Reece, C. M. Othon, and R. K. Rannow, “Ferroelectric polymer langmuir-blodgett films for nonvolatile memory applications,”
IEEE Trans. Device Mater. Rel. 5 (4) (2005) 720-735.

Y. Horii et al., “4 Mbit embedded FRAM for high performance system on chip (SoC) with large switching charge, reliable retention and high imprint
resistance,” in Proc. Int. Electron Devices Meeting, 2002, pp. 539-542.

H. Nakamoto et al., “A passive UHF RF identification CMOS Tag IC using ferroelectric RAM in 0.35-um technology,” IEEE J. Solid-State Circuits
42 (1) (2007) 101-110.

H. Shiga et al., “A 1.6 gb/s DDR2 128 Mb chain FeRAM with scalable octal bitline and sensing schemes,” IEEE J. Solid-State Circuits 45 (1) (2010)
142-152.

M. Qazi, M. Clinton, S. Bartling and A. P. Chandrakasan, "A Low-Voltage 1 Mb FRAM in 0.13 ym CMOS Featuring Time-to-Digital Sensing for
Expanded Operating Margin," in IEEE Journal of Solid-State Circuits 47 (1) (2012) 141-150. 2012, doi: 10.1109/JSSC.2011.2164732.

J. V. D. Woude and M. Hicks, “Intermittent computation without hardwaresupport or programmer intervention,” in12th USENIX Symposium on
Op-erating Systems Design and Implementation (OSDI 16), 2016, pp. 17-32.

Y.Wang et al., “A compression-based area-efficient recovery architecture for nonvolatile processors,” in Proc. Design Autom. Test Europe Conf. Exhibit.
(DATE), 2012, pp. 1519-1524.

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Systems. Addison-Wesley, 1987. ISBN0-201-10715-
5.

R. Koo and S. Toueg. Checkpointing and rollback-recovery for distributed systems. In Proceedings of 1986 ACM Fall Joint Computer Conference
(ACM ’86), 1986, pp. 1150-1158.

M. J. Litzkow, M. Livny, and M. W. Mutka. Condor—a hunter of idle workstations. In Proc. 8th Int’l Conference on Distributed Computing Systems
(ICDCS °88), 1988, pp. 104-111.

J. A. McDermid. Checkpointing and error recovery in distributed systems. In Proc. 2nd Int’l Conference on Distributed Computing Systems (ICDCS
"81), 1981, pp. 271-282.

M. Xie, C. Pan, J.Hu, C. J. Xue, and Q. Zhuge, “Non-volatile registers aware instruction selection for embedded systems,” in Proc. IEEE 20th Int.
Conf. Embedded Real-Time Comput. Syst.Appl., 2014, pp. 1-9.

Li, F, Qiu, K., Zhao, M., Hu, J., Liu, Y., Guan, Y., & Xue, C. J. Checkpointing-aware loop tiling for energy harvesting powered nonvolatile processors.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38 (1) (2018) 15-28.

J. Scott, L. H. Lee, J. Arends, and B. Moyer, “Designing the low-power M*core architecture,” in Proc. IEEE Power Driven Microarchitect. Workshop,
1998, pp. 145-150.

First Author et al.: Preprint submitted to Elsevier Page 16 of 16

