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Abstract

This work describes preliminary steps towards nano-scale reservoir computing using quantum dots. Our
research has focused on the development of an accumulator-based sensing system that reacts to changes in
the environment, as well as the development of a software simulation. The investigated systems generate
nonlinear responses to inputs that make them suitable for a physical implementation of a neural network.
This development will enable miniaturisation of the neurons to the molecular level, leading to a range of
applications including monitoring of changes in materials or structures. The system is based around the
optical properties of quantum dots. The paper will report on experimental work on systems using Cadmium
Selenide (CdSe) quantum dots and on the various methods to render the systems sensitive to pH, redox
potential or specific ion concentration. Once the quantum dot-based systems are rendered sensitive to these
triggers they can provide a distributed array that can monitor and transmit information on changes within

the material.
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1. Introduction

In our work we investigate a combination of re-
cent advances in materials science and information
processing (see [I] for a discussion on the role of
inter-disciplinary research in nanoscale communi-
cation). The goal of this research is to enable
new classes of devices through the development of
smart molecular systems incorporating nanoparti-
cles serving in accumulator-based sensor applica-
tions. The sensing system that is being developed
alms to mimic that of a neural network, in terms of
its sensing and signal propagation. In this system,
active particles with simple capabilities per device
serve a triple function. First, as input units in a
physical realisation of an artificial neural network,
they can collect and transfer information from ex-
ternal stimuli. Second, in internal layers, they ac-
cumulate information from neighbouring regions.
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Third, and perhaps most critically, they are able to
respond when the input exceeds a certain threshold.

From the information processing point of view,
Reservoir Computing (RC) appears to be a suitable
approach to achieve this goal (for a recent overview
of this field, see [2]). RC computing approaches
have been employed as mathematical models for
generic neural microcircuits, as well as to inves-
tigate and to explain computations in neocortical
columns (see, e.g., [3]). A key element of RC ap-
proaches is the randomly constructed, fixed hidden
layer — typically, only connections to output units
are trained.

The vision for the work described in this paper is
to create a network of particle-sized units that col-
lectively process information coming from the sur-
face of a material. Such a technology would have
a variety of applications, from monitoring the con-
ditions of a structure (e.g., corrosion or stress), to
responding to changes in the environment. Poten-
tially, with many simple and low-power units con-
nected to a large network, this technology could
also perform generic computations similar to a pro-
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Figure 1: For a first working prototype, a network of sensors
will be created using QDs as sensors, with help of nano-scale
triodes.

cessor, but instead of single operations executed at
a high frequency make use of massive parallelism at
lower frequencies.

We focus on quantum dots (QDs) as the devices
to be used for sensing changing properties of a ma-
terial. It may also be possible to get QDs to com-
municate signals in order to form a network. We de-
scribe the steps we have taken so far in creating an
information-processing network of QDs in the sub-
sequent sections. These steps include the materials
science aspects of manufacturing the actual QDs,
and also a simulation of processes in a material, as
a testbed for further developments. Using this sim-
ulation, we can evaluate effects of changes in the
material on the QDs attached to it. Using another
software implementation, we simulate a nano-scale
RC network to investigate the potential of recurrent
neural networks with the topological constraints of
an implementation in hardware. The physical im-
plementation of this connectivity in hardware can
be realised in various ways, and is subject of our
ongoing research. A first, pragmatic approach is to
aggregate groups of QDs, to treat these groups as
a single sensors, and to pick their signals up using
nano-scale triodes for further communication (see
the schematic in Fig. [1). We are currently work-
ing on such an approach, but are also planning to
investigate optical or chemical signalling at a later
stage.

Section [2| contains some details of the chemical
processes involved in our quantum dot system. In
essence, the idea is to use quantum dots to sense, to
accumulate and transmit information from the sur-
rounding environment. The sensory stage will be
located physically close to external stimuli which
may be in the solid, liquid or gaseous state. As a
result of this interaction, a signal that may be chem-
ical, electrochemical, thermal or optical in nature
is propagated through the medium until it reaches
the accumulating stage. These accumulating par-
ticles are affected by the signal in a characteristic

way such that the accumulator is influenced by each
signal, but does not undergo a change in the physi-
cal quantity being measured until a critical number
of signals have reached it. Once this critical num-
ber of signals has been reached, the accumulator
changes one of its properties and in doing so sends
an intense signal to the responding particle; the lat-
ter either changes the properties of the structure or
sends an amplified signal from the structure. Ad-
vantages over software based RC implementations
would be speed, parallelism, as well as energy effi-
ciency.

In Sect. [3| we describe some aspects of our soft-
ware simulation and some of the processes involved:
the system that we use to experiment with possi-
ble configurations and network architectures, an ab-
stract simulation of some of the chemical processes
above in software.

Alternative physical implementations of RC have
been proposed before. The work of Vandoorne et
al. [4], for example, proposes the use of coupled
semiconductor optical amplifiers. These devices can
be placed on a small chip and implement a number
of units. A different approach, using electronic cir-
cuits, nano-wires and self-assembly, is presented in
the paper of Stieg et al. [5]. Our approach uses
essentially nanoparticle-sized units, so that it may
allow an embedding of the entire reservoir network
into, for example, the coating of a material.

2. Experimental work using quantum dots

QDs are spherical submicron particles (typically
1-10nm), normally of a semi-conducting material,
and often have a surrounding shell of a second semi-
conducting phase. The optical properties of the
QDs may be tailored by doping them with other
elements or by particle size control. The most no-
table characteristic of QDs is their ability to absorb
energy over a wide range whilst fluorescing with
a relatively narrow bandwidth at a longer wave-
length. One of the most widely investigated QD
systems is Cadmium Selenide (CdSe) with a Zinc
sulphide (ZnS) shell. These QDs absorb strongly
through the mid- and near-UV and into the visible,
yet emit a strong fluorescence signal in a relatively
narrow band in the red region of the visible spec-
trum, with a high quantum efficiency.

The focus of our experimental work thus far has
been on the development of the accumulator-based
sensing system, which utilises CdSe/ZnS QDs cou-
pled with a signal conversion molecule that reacts to



changes in the environment. The signal conversion
molecules selected have been either pH-sensitive
dye materials (Sect. [2.1]) or redox potential-sensitive
dye materials (Sect The accumulator con-
sists of the quantum dots surrounded by a medium
containing either the pH or redox sensitive dye
molecules. These surrounding dyes either block the
incoming light that stimulates the quantum dot flu-
orescence, or serve to absorb and hence shut down
the QDs outgoing fluorescence. The QDs used in
this work has an emission peak centred at 646nm
(FWHM = 25nm).

2.1. pH System

The pH sensitive dye molecule selected for this
demonstration was p-nitrophenol (4-hydroxynitro-
benzene) as it possesses suitable optical properties
for blocking the incoming optical stimulus to the
quantum dots. P-nitrophenol is a weak acid with
a pK, of 7.08. In its neutral form, i.e., when
the dye molecule is not an ion, at pH < 4 the
molecule is colourless, with transitions occurring in
the UV near 300nm. At pH > 4, the molecule pro-
gressively deprotonates at the phenolic group, and
transitions near 400nm emerge, resulting in a yel-
low colour. This anionic form of the molecule has
several resonance-stabilised forms, causing lower-
energy transitions appear, compared to those of the
neutral form. Above pH 7, the process is essentially
complete. Thus progressive accumulation (or loss)
of protons can be used as the mechanism in the
accumulation stage of the system, where 400nm is
used as the excitation wavelength. Figure [2| below
illustrates the change in the absorption spectrum
of p-nitrophenol at different pH values, highlight-
ing the optical transitions around 400nm.

A custom test cell configuration, illustrated by
the schematic in Fig. [3] was utilised to prove the
concept. In the first cell, a solution containing the
pH sensitive dye p-nitrophenol was placed into the
path of the incoming 400nm excitation light. The
other test cell containing the quantum dot solution
was then placed directly behind the first cell. Tests
were carried out in Cary Eclipse fluorescence spec-
trophotometer. The pH of the p-nitrophenol solu-
tion was then systematically adjusted upwards by
the use of buffers, and the fluorescence emission
of the QDs monitored. As can be seen in Fig.
it is quite clear that p-nitrophenol is able to com-
pletely absorb the incoming 400nm radiation at pH
7 or above, preventing the QDs from fluorescing.
At pH < 4, the neutral molecule is transparent at
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Figure 2: Absorption spectra of p-nitrophenol at different
pH levels.
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Figure 3: Fluorescence test cell configuration.
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400nm, allowing this radiation to be absorbed by
the QDs, with subsequent fluorescence.

2.2. Redox system

In a second variation of the accumulator concept,
a redox system was used to block the outgoing flu-
orescence of the QD. In a redox system, electrons
may be gained or lost due to reduction or oxidation,
respectively. The system used was Nal/Nals/Na
starch glycolate. Neutral I has a low solubility
in water, but dissolves in excess iodide (e.g. Nal)
to give triiodide, I3-, a soluble species. Both neu-
tral iodine and the anion give an intense blue colour
with starch and its derivatives due to the formation
of a molecular addition compound. The absorption
has a maximum near 600nm, with strong absorp-
tion at 646nm. On the other hand, no coloured ad-
dition compound is formed with I~ and starch. Io-
dine and iodine are easily interconverted with stan-
dard oxidising or reducing agents, or by application
of a potential. When in the presence of reducing
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Figure 4: QD emission vs. p-nitrophoenol at different pH
concentrations

agent, the solution becomes colourless due to the
I5- ions being reduced to three iodide ions, caus-
ing the disappearance of the deep blue starch-iodine
complex.

Half reactions are:

217 — I + 2e™ (1)
L+1I" —1I3, (2)

yielding:
I; <2 31 (3)

Chemically, reduction was accomplished by addi-
tion of thiosulphate (S203)?~ ions. Experimen-
tally this was achieved by placing one cell con-
taining the Nal/Nals/Na starch glycolate behind
the QD-containing cell, at right angles to the in-
cident beam, i.e., in the direction of fluorescence
(see Fig. @ Subsequently, progressive amounts of
a reducing agent, sodium thiosulphate (NagS20s3),
were added, being a standard reagent for iodine re-
duction. The reduction was carried out according
to:

2(8203)2_ + 1 — (8406)2_ + 217 (4)

During the experiments, an excitation wavelength
of 400nm was again used. It was found that the
QD fluorescence was completely absorbed until vir-
tually all the I3- had been reduced to I~, demon-
strating an accumulator effect in the presence of
electron donation (i.e., reduction, see Fig. . In
a preliminary investigation, we have also demon-
strated electrochemical generation of colour in the
same system.
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Figure 5: QD emission vs. added concentration of sodium
thiosulphate
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Figure 6: Redox test cell configuration.

3. Software-based simulation

To experiment with possible configurations and
network architectures, we implemented an abstract
simulation of some of the processes above in soft-
ware. Our Cellular Automata (CA) based models
consist of coupled 2d layers, each simulating a dif-
ferent aspect of the system.

8.1. The chemical model

The lower layers of our simulation have the goal
to serve as sample input to processes in higher levels
of our model. We use a simple layered 2d cellular
automaton, where each cell in a layer is a 4-tuple
(1,22, %3,24), 2; € [0..1]. Our chemical model is
comprising of two layers. The first one serves is a
chaotic process, currently the coupled logistic map:
(x; = aRx;(1 —x;) + (1 — a)Rzi41(1 — xi41) with
a high R and low a (we used R = 4, and both



a = 0.0 and @ = 0.001). This layer serves as a
source of chaos for the next layer. The second layer
is a simple electrochemical model of 4 parameters:

e I is a feature with a probability of inducing an
anodic potential difference F+ or a cathodic
potential difference F-.

e V is a potential relative to the OCP (open cir-
cuit potential). V+ is anodic to OCP, V- is
cathodic to OCP.

e pH is the pH with pHa as acidic and pHb as
basic.

e Mz+ is the metal ion concentration.

The probabilistic system progression is from
F+ - V4+ - Mz+ — pHa — F+ and from
F——V——pHb— F—.

The state of a point 4 in the 2d space is given by
a vector a', with a! = F, a = V, a} = pH, and
a’ = Mz+, respectively. This layer updates each
cell by summing the concentrations of these values
over its neighbours IV, if values from the chaotic
process in the layer below, interpreted as transition
probabilities p, exceed a given threshold 6.

at = +1‘ il ak}é:N a) (5)
ab = al, if p1 > 6, (6)
ay = ab, if po > 60 (7)
ay = af, if p3 > 03 (8)
ai =al, if py > 64 and @} >0 9)

3.2. The quantum dot model

A simple model of quantum dots is used as a
layer on top of the chemical model. In this layer,
each cell (again, a 4-tuple) is excited in each of its
components by each of the concentrations of pa-
rameters in the electrochemical layer below (i.e., in
our model taking values from one of the vectors
a’ above), plus some excitation from its immediate
neighbours (the a¥ € N above). Therefore each cell
is assumed to hold 4 quantum dots, represented as
red, green, blue and alpha, which in turn represent
fluorescence due to F, V, M and pH in layer 2.

Using cellular automata, we can simulate ab-
stract chemical processes (see Fig. El for example
screenshots), that may be monitored using a coat-
ing with an embedded network of QDs. One ap-
proach to classify inputs using randomly placed el-
ements is described in the following subsection.

Figure 7: Different versions of Cellular Automata (CAs),
used for simulation of an abstract chemical process. The
left screen shot is from a Gray-Scott model, the right one
using the model described in the text as an abstraction of a
corrosion process.

3.3. Reservoir computing

Recurrent neural networks (RNN) are one ap-
proach to model dynamical systems, and produce
outputs based on some input and their current in-
ternal state. They can be used for prediction or
classification, provided the connections weights be-
tween neurons are appropriately set by a training
procedure. Traditional RNN training methods can
suffer from problems like slow convergence and van-
ishing gradients [6l, [7].

To address these challenges, a mathematical
model for generic neural microcircuits, the liquid
state machine (LSM) was proposed [3]. The frame-
work for this model is based on real-time computa-
tion without stable attractors. The neural micro-
circuits are considered as dynamical systems, and
the time-varying input is seen as a perturbation to
the state of the high-dimensional excitable medium
implemented by the microcircuit. The neurons act
as a series of non-linear filters, which transform the
input stream into high-dimensional space. These
transient internal states are then transformed into
stable target outputs by readout neurons, which
are easy to train. This approach to neural model-
ing has become known as reservoir computing (see
also, e.g., [2]), and the LSM is one particular kind
of model following this paradigm.

Echo state networks (ESN) [8] are a reservoir
computing model similar to LSM. They imple-
ment the same concept of keeping a fixed high-
dimensional reservoir of neurons, with random con-
nection weights between reservoir neurons small
enough to guarantee stability. Learning procedures
train only the output weights of the network, but
while LSM use spiking neuron models, ESN are usu-
ally implemented with sigmoidal nodes, which are
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Figure 8: Architecture of an echo state network. In ESNs,
usually only the connections represented by the dashed lines
are trained, all other connections are setup randomly and
remain fixed. The recurrent layer is also called a reservoir,
analogously to a liquid, which has fading memory properties.

updated in discrete time steps. An illustration of an
ESN architecture is shown in Fig. A reservoir-
computing inspired approach is interesting for an
implementation with QDs, because hidden connec-
tions do not need to be trained, allowing for random
placements of QDs.

3.4. Simulation of reservoir computing approaches
in hardware

In a software implementation of neural networks,
no costs are associated with connecting any two ar-
bitrary neurons. Reservoir computing approaches
typically make use of this by fully connecting lay-
ers. In a hardware implementation, each neuron
has a spatial location, resulting in a cost to con-
nect to another neuron (e.g., wiring length), and
some connections may not be feasible at all. ESNs
with a one-dimensional topography have been in-
vestigated in [9], and a topography where several
(randomly connected) reservoirs are regularly con-
nected in a grid-like fashion using a wireless sensor
network is used in our previous work [10]. Despite
these constraints on connectivity between hidden
units, e.g., prediction of future states is possible
with a reservoir computing method — in the case of
sensor networks with one of the applications to de-
tect anomalies [T1]. Use of piecewise linear approxi-
mations of the hyperbolic tangent transfer function
in individual units, similar to our nonlinearities in
Figs. [4] and |5}, have been investigated in [12]. Some
other restricted topologies have also been a subject
of investigation in [4].

In the following, we use a simple setup of a
reservoir with a two-dimensional topography to
demonstrate feasibility of a restricted connectivity.
For this demonstration, we restrict the input-to-
hidden and hidden-to-hidden layer connectivity, so
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Figure 9: (Left) Randomly placed neurons over a grid of
28 x 28 inputs. (Right) Input pattern presented on the
surface; neurons are activated both from the input pattern
and from nearby active neurons.

that strength of connections between two neurons
falls off exponentially with their distance from each
other, i.e., we get

; —dist (i, k)
= exp(—————), 10
= exp(— ) (10)
—dist(7, j
Wi ;= eXp(?pE j)) + €5, (11)

for connections between input unit £ and hidden
unit ¢, or connections between hidden units ¢ and
j, respectively. A small constant u (e.g., u = 0.01)
is used to adjust the falloff of signal propagating
from a neuron. ¢;; is normally distributed noise
with zero mean, and small standard deviation (e.g.,
o = 0.007). With this small amount of noise, the
resulting connection matrices will be nearly sym-
metric since connection strength is a function of
distance. For our demonstration, we use a regu-
lar 28 x 28 grid representing input, e.g., from some
surface area of a material. Objects in our experi-
mental data set are represented by 28 x 28 pixels,
but the exact size is not a limitation of our ap-
proach, and can be adjusted. Over this area, we
randomly distribute 100 neurons that are connected
to the input and to each other according to
and , respectively. These neurons become ac-
tive when inputs in their proximity are active, and
also when other neurons in their neighbourhood are
active (see also the schemata in Fig. [9). Smaller
(and also larger) number of neurons can be chosen.
Activation of the neurons X are updated based on
the states of their neighbours and inputs I:

X1 = tanh(WX; + WT, ) (12)

Connected to the hidden layer, we have a set of
10 outputs. Connection strengths to these out-
puts is determined by a training procedure. For



this demonstration, output units may be fully con-
nected. During the training, we present 60000
handwritten digits from the MNIST dataset [13] as
an input to the system. Each input pattern is pre-
sented for a brief period until the state of the reser-
voir remains stable. Then, its state is collected in
a matrix M (100 neurons x 60000 steps), in addi-
tion to a matrix V containing the desired state of
the 10 outputs for each of the pattern (10 x 60000).
Matrices M and V can now be used to calculate
the desired weights from hidden layer to the out-
puts, by using simple linear regression, using the
Moore-Penrose pseudoinverse of M, i.e.,

Wo = VM. (13)

Alternatively, a logistic regression can also be
used, and will automatically restrict the outputs to
values. When we present a new pattern to the sys-
tem, we can classify the input into one of 10 classes
by selecting the most active output. For a test
with 10000 new patterns, this approach classified
approx. 85% using linear regression or 91% (logis-
tic regression) of the presented handwritten digits
correctly. The purpose of this experiment is not to
achieve a competitive recognition rate — even sim-
ple, but spatially unconstrained approaches achieve
much higher rates on the very same data set — but
to show that even with these constraints complex
computation may be possible.

For a system implemented with quantum dots,
the number of neurons in the hidden layer could be
much larger.

4. Conclusion

In this work, we have demonstrated the feasibil-
ity of the accumulator-based sensing system. This
constitutes first steps towards a nano-scale reser-
voir computing approach. On the chemistry side,
our next steps will be to miniaturise the accumula-
tor to the molecular level. An investigation is cur-
rently underway to determine suitable approaches
for fabricating them. The first attempt currently
undertaken involves coupling the QD particles with
a pH sensitive dye. Approaches include incorpora-
tion of the materials into permeable polymeric films
or in mesoporous inorganic particles. Research into
suitable porous membranes, chromogenic polymers
and growth strategies are currently underway. On
the information processing side, we are investigat-
ing different connectivities as well as possible train-
ing methods [I4]. One goal is to also constrain the

number of connections to output units, for example
by using hierarchies of hidden neurons.

In principle, a system built using our approach
may allow for universal computation. A more di-
rect application, however, would be in monitoring
of contaminants in fluids at high sensitivity. In par-
ticular, important areas include monitoring water
quality, detection of hydrocarbons in petroleum ex-
ploration, detecting the presence of low levels of
contamination in process gases or in bio-security ar-
eas. A second practical application is in detecting
contaminants or changes in solid-state structures.
This is of high importance for structural health
monitoring of both engineering and bio-mechanical
structures. The third application of potential high
impact is in the development of structures that re-
spond to changes in their external environment.
Such use has the potential to create new possi-
bilities in “ageless structures”, such as membranes
for both water and hydrogen permeability, amongst
others.

For the last two application areas, the structure
is itself critical and could be a coating on a metal
structure (aircraft etc.) or a lining on a bio-implant.
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