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Abstract

Molecular communications via diffusion (MCvD) systems are easily simulated
for micro-scale topologies and applications. On the other hand, due to the high
path loss, there is a need for the emission of a very large number of molecules
to have a detectable signal for the macro-scale topologies. Therefore, the simu-
lation of macro-scale MCvD systems or applications has its own challenges. In
this work, a voxel-based simulator for MCvD is proposed and analyzed. The
proposed simulator is able to consider a very large amount of molecules since
it does not track every molecule, instead it simulates the aggregate behavior.
We assess the correctness of such a simulation approach through comparative
studies with a particle-based (i.e., per-molecule) simulation. We present the
effect of voxel side-length on the modeling accuracy and devise a framework for
selecting the optimal voxel side-length for high-accuracy simulations.

Keywords: Diffusion-based molecular communications, Voxel-based solver,
Multi-grid neighbor method

1. Introduction

Collaborative behavior of very tiny and simple devices has the potential to be
complex enough for advanced applications [1]. Therefore, the deriving applica-
tions of nanotechnology requires communication among these devices. It is not
effective to utilize the conventional communication techniques at small scales5

due to the inherent physical constraints such as the antenna size to wavelength
ratio and some environments that are not suitable for propagation of electro-
magnetic waves [2, 3]. In nature, molecular communications (MC) emerges as
a solution to tackle with these hurdles at micro and macro scales as a result
of the evolutionary processes [4]. In MC, molecules are utilized to convey in-10

formation among communication nodes at micro- and macro-scales. Some of
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the micro-scale MC systems can be listed as: quorum sensing in bacteria [5, 6],
neurotransmitter signaling in neuromascular junctions [7], and inter-cell cal-
cium signaling [8, 9]. Examples of macro-scale MC systems in nature include
pheromone signaling among plants, chemical signaling among animals, and odor15

tracking of blue crabs in ocean. Utilizing MC is proposed for man-made and/or
man-modified systems to counter the hurdles of the communication in small
scales and the hurdles of some macro-scale environments where the conven-
tional methods do not work effectively (e.g., networks of tunnels or salty water
environments) [1, 2, 3, 10].20

Molecular communications via diffusion (MCvD) is one of the promising MC
systems proposed especially due to its energy efficiency and its advantages in
certain environments such as pipe networks filled with fluid [1, 3]. In MCvD,
information molecules propagate in the fluid environment via diffusion process
and they arrive at the receiver node in a probabilistic manner in which the25

received molecules constitute the received molecular signal [2, 3]. Therefore,
modeling the received molecular signal is one of the main challenges in MCvD
with different environments and conditions.

In the literature, there are analytical channel models for simple and symmet-
rical MCvD topologies with absorbing and passive receivers: absorbing receiver30

in 1-dimensional (1D) environment [11]; absorbing spherical receiver in 3D envi-
ronment [12]; absorbing receptors on a spherical receiver [13]; passive spherical
transmitter and receiver in 3D environment [14, 15, 16]. In addition, simulators
are highly utilized for complex topologies and for verifying analytical models
of simple topologies in micro-scales [17, 18, 19, 20]. Simulators that are in-35

troduced for MCvD are designed for micro-scale environments effectively -with
tracking feasible number of molecules. On the contrary, simulators for macro-
scale MCvD systems have not been developed due to the hurdles caused by high
path loss. For macro-scale applications, significant amount of molecules should
be released and tracked, therefore a new approach should be considered for the40

MCvD simulations at macro-scale.
Computer simulations in fluid dynamics are studied for reaction-diffusion

processes in biochemical applications [21, 22, 23, 24]. The Gillespie method was
proposed in 1976 [25] and became popular in 1977 with its application to chem-
ical and biochemical systems of reactions based on the diffusion reaction master45

equations [26]. Then, the Gillespie method was extended to multi-particle sys-
tems and adapted to the lattice gas automata model by Chopard et al. [21]. The
Gillespie multi-particle method utilizes discretization in time and space, and
each lattice site holds a discrete number of uniformly distributed particles. It
employs the diffusion process for particles to distribute them randomly among50

the nearest lattice site neighbors at certain time instances. In this method,
however, the main concern is accurately mimicking the reactions at local sites.
The diffusion step is followed by the reaction step at each local grid structure.
Chopard et al. eliminated the checkerboard effect, at the diffusion step, by in-
troducing still molecules [21]. However, the probability of staying in a lattice is55

left as a system parameter. In this work we define the probability of staying in
a lattice with a more structured framework. Moreover, the time resolution in
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the Gillespie multi-particle method is defined as λ2/6D, where λ is the lattice
side length and D is the diffusion coefficient. However, the defined time res-
olution can be considered for the systems in equilibrium. For communication60

purposes the accuracy of the time dependent received signal should be analyzed
with different simulation time step and lattice side length values. The Gillespie
multi-particle gas automata method is utilized in MC domain [27]. However,
authors considered the default time resolution and λ values, which resulted in
theory and simulation mismatch. In [20], a hybrid simulation approach (in terms65

of utilizing mesoscopic and microscopic approaches) is proposed and named as
AcCoRD. AcCoRD utilizes the tau-leaping concept and the reactions in the
environment without any consideration on the optimal lattice size.

In this work, we propose to use a grid-based (voxel-based, where a voxel
stands for a partition structure of the environment that can be a cube or a square70

depending on the dimension of the environment) MCvD simulator that can sim-
ulate a very large number of molecules, since it does not track the molecules
individually. After deriving the transition probabilities between the voxels ana-
lytically, the aggregate behavior of the molecules is simulated at each iteration
for the transition from one voxel to another. The accuracy of the received75

molecular signal is evaluated via comparison with particle-based simulations for
different scenarios. Moreover, the framework for selecting the grid size for the
accurate simulations is presented by also considering the probability of staying
in a voxel. Note that the voxel-based simulator is independent from the num-
ber of released molecules and evaluates the mean received signal at the receiver80

from a communications perspective. This work is an extension of a prelimi-
nary work in [28] with an improved mathematical framework considering also
3D environments, and introducing a new framework for selecting the optimum
voxel side-length. In our previous study, we presented only the effect of voxel
side-length on the model accuracy.85

2. System Model: Molecular Communications via Diffusion

MCvD system mainly consists of a transmitter node, a fluid environment,
the information molecules, and a receiver node [1, 2, 3]. The information is
transferred via the emitted molecules that have been modulated by a predeter-
mined modulation scheme (e.g., concentration shift keying (CSK) and molecular90

shift keying (MoSK)) [29]. We focus on the received molecular signal which is
mainly affected by the system topology and the diffusion model.

2.1. Topology Model

We consider an MCvD system with a point transmitter and an absorbing
receiver with any given shape in a 2D/3D environment, as illustrated in Fig. 195

for 3D environment. The point source and the receiver both reside in a fluid
propagation medium. It is assumed that the medium is unconfined, thus ex-
tending to infinity in all dimensions and the interactions between the diffusing
molecules are ignored. Emitted molecules propagate by the diffusion process
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Figure 1: Processes, entities, and system model for MCvD with a point transmitter (TX)

when they are emitted from the Tx point. The receiver is defined by its center100

and the shape properties (e.g., edges for a prism and radius for a sphere). The
distance between the emission point and the closest receiver surface point is
denoted by d.

2.2. Diffusion & Reception Model

When a molecule is released from a point source, its movement in a fluid
is governed by diffusion process. Average movement of the emitted particles is
in the direction of the concentration gradient. The derivative of the flux with
respect to time results in Fick’s Second Law, given by

∂p(r, t)

∂t
= D∇2p(r, t) (1)

where ∇2 is the Laplacian operator, p(r, t) is the molecule distribution function105

at time t and with the location vector r starting from the emission point.
We assume that the receiver is a perfectly absorbing node and whenever a

molecule hits the surface of the receiver node, it is removed from the environ-
ment. Therefore, each molecule can contribute to the received signal only once
for an absorbing receiver. When these dynamics are introduced as initial and
boundary conditions, the solution to this differential equation system is enabled
for symmetrical and simple topologies and is solved for the cumulative mean
fraction of molecules that hit the receiver in n-dimensional space until time
t, which is denoted by F̃nD

hit(t). After obtaining F̃nD
hit(t), the mean number of

received molecules between t1 and t2 (i.e., ÑnD
Rx(t1, t2)) can be evaluated by:

ÑnD
Rx(t1, t2) = NTx × (F̃nD

hit(t2)− F̃nD
hit(t1)) (2)

where NTx is the number of emitted molecules. F̃3D
hit(t) is presented and analyzed

for a perfectly absorbing spherical receiver in [12]. The authors present the
formula for the mean fraction of molecules that hit the receiver until time t, as
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follows:

F̃3D
hit(t) =

rRx

d+rRx
erfc

(
d√
4Dt

)
(3)

where d represents the distance between the transmitter and the receiver sur-
face, rRx is the receiver radius, and erfc(.) represents the complementary error
function. For the point transmitter and spherical absorbing receiver case, the
solution for the system of differential equations is enabled due to the circular110

symmetry. In addition, it is feasible to implement particle-tracking based sim-
ulators to verify the derived analytical models. On the other hand, for more
complex topologies, it is harder to derive the number of received molecules an-
alytically. Moreover, for some cases such as irregular shapes or long distances,
also the simulations become infeasible due to increased complexity and require-115

ment of very high number of molecules.

3. Simulation Approaches

Main simulation approaches are presented in Fig. 2 as: particle-tracking and
voxel-tracking. In particle-tracking case, all the molecules are tracked in time
(i.e., coordinates of all the molecules are tracked at each time instance). On the120

other hand, voxel-tracking based simulator tracks the voxels in discretized time
(i.e., the mean aggregate number of molecules in each voxel is tracked at each
time instance).

For macro-scale MCvD applications, F̃3D
hit(t) becomes extremely small, which

requires huge number of molecules to be tracked for statistically meaningful125

results. Such a high number of molecules becomes intractable for macro-scale
MCvD applications, which in turn creates the scalability problem for particle-
tracking based simulators. To tackle this challenge, we propose an effective way
to simulate macro-scale MCvD systems.

3.1. Particle-tracking Based Simulation130

The dynamics of diffusion can be described by Brownian motion. Simulating
the Brownian motion includes consecutive steps in an n-dimensional space that
obeys Wiener process dynamics. For a particle-tracking based simulation, time
is discretized with a sufficiently small time intervals (∆t) and at each time
interval molecules take random steps in all dimensions that follows:

∆ri ∼ N (0, 2D∆t) (4)

where ri is the ith dimension, D is the diffusion coefficient, and N (µ, σ2) is the
Gaussian distribution with mean µ and the variance σ2. After each random step,
molecule positions are checked for possible hit to receiver and if molecules are
inside the receiver they are recorded for that time instance. Hence, we obtain
an empirical estimate for the received molecular signal that includes diffusion135

noise (i.e., N̂nD
Rx(t1, t2) for n-dimensional space).
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Figure 2: Two main simulation approaches for MCvD systems. In particle-tracking based
simulations, a random displacement according to diffusion dynamics is generated and added to
the current position of the diffusion molecules at each simulation time step. In voxel-tracking
based simulations, environment is divided into voxels and the transitions between voxels are
simulated according to diffusion dynamics.

For micro-scale environments, it is feasible to track all the emitted molecules,
which is in the order of millions. However, for macro-scale MCvD applications,
we have to consider very large amount of molecules (e.g., more than Avogadro
number) and it becomes infeasible to use particle-tracking based simulators.140

3.2. Voxel-tracking Based Simulation

In voxel-tracking based simulator, the environment is divided into voxels
(i.e., square or cubes in 2D or 3D environments, respectively) and molecules
are released from a point in the environment. For each voxel, only the total
number of molecules reside in that voxel is tracked for each time instance in145

an aggregate manner [28]. Moreover, we assume that the molecules in a voxel
are distributed homogeneously. The transition between the voxels are simu-
lated as follows for the 2D environment: For the molecules of a given voxel,
the molecules either stay at the same voxel with a probability of stay or move
to the 4-neighbors (the vertical and horizontal neighbors) with equal transition150

probabilities. Alternatively, 8-neighbors are considered (by including the neigh-
bors at the diagonals) with a different transition probability for the diagonal
neighbors. In the 3D environment, the molecules might move to the 6-neighbors
according to a common transition probability or 26-neighbors with three types
of transition probabilities [28].155

For the aggregate molecule transition/movement concept in 2D or 3D en-
vironment, first, we evaluate the probability of staying (P2D

stay or P3D
stay, respec-
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tively) for the molecules in a voxel -by utilizing (4)- as follows:

P2D
stay =

1

λ2

∫ λ

0

∫ λ

0

P∆r1P∆r2 dr1 dr2

P3D
stay =

1

λ3

∫ λ

0

∫ λ

0

∫ λ

0

P∆r1P∆r2P∆r3 dr1 dr2 dr3

P∆ri = P(−ri < ∆ri < λ− ri)

P∆ri =
1

2

[
erf

(
λ−ri√
4D∆t

)
−erf

(
−ri√
4D∆t

)]
(5)

where λ and ∆t are the length of the voxel sides and the simulation time step
size, respectively. After the integration, P2D

stay can be written as follows:

P2D
stay =

e−
2λ2

S2

[
Seλ

2/S2 − λ
√
π erf

(
λ
S

)
eλ

2/S2 − S
]2

λ2π

S =
√

4D∆t

(6)

After evaluating P2D
stay or P3D

stay, we derive the aggregate transition probabilities
that is depending on the number of neighbors that we use in the passage.

RXd

nh1

nh2

nh3

nh4

nh5

nh6nh7

nh8

Figure 3: Example topology for voxel neighbors in 2D MCvD system. Neighbors are shown
for the voxel that has the transmitter point. Neighbors that are denoted by nh1 to nh4 are
the direct neighbors and nh5 to nh8 are the diagonal neighbors for this example topology.
Evaluations and modeling are invariant of the neighbor indexing system, for which we used a
clockwise order.

In Fig. 3, an MCvD system is presented for an example topology for a
2D environment. The neighboring voxels of a selected center voxel are also
presented for defining the neighbors. The system model with 4-neighbors in 2D
environment is also called the neighborhood model without diagonal neighbors.
In 2D environment, if we use 4-neighbors then 1 − P2D

stay is distributed equally
to all 4-neighbors as follows:

P2D
trans(nhi) =

{
1−P2D

stay

4 for i = 1, 2, 3, 4

0 for i = 5, 6, 7, 8
(7)
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where P2D
trans(nhi) represents the molecule’s probability of passing to ith neigh-

bor. The system model with 8-neighbors in 2D environment is called the
neighborhood model with diagonal neighbors. In 2D environment, if we use
8-neighbors then 1−P2D

stay is distributed to direct neighbors and diagonal neigh-
bors as follows:

P2D
trans(nhi) =

{
α1 (1−P2D

stay) for i = 1, 2, 3, 4

α2 (1−P2D
stay) for i = 5, 6, 7, 8

α1 =
1

4

Φ2D
direct

Φ2D
direct + Φ2D

diag

α2 =
1

4

Φ2D
diag

Φ2D
direct + Φ2D

diag

(8)

where

Φ2D
direct =

1

λ2

∫ λ

0

∫ λ

0

P∆r1(0, λ)P∆r2(λ, 2λ) dr1 dr2

Φ2D
diag =

1

λ2

∫ λ

0

∫ λ

0

P∆r1(λ, 2λ)P∆r2(λ, 2λ) dr1 dr2

P∆ri(rleft, rright) =
1

2

[
erf

(
rright−ri√

4D∆t

)
−erf

(
rleft−ri√

4D∆t

)] (9)

Similarly, we can derive the transition probabilities to the neighbors for 3D
environment. At each time step (∆t), the number of molecules that leave the
voxels is determined and they are distributed to the neighbor voxels. For the160

arrival process, we assume perfect absorption. Whenever molecules reach to
the receiver voxels, they are removed from the environment. Note that if the
receiver body is partially intersecting with a voxel in the environment (as in
Fig. 3), then the molecules are received proportional to volumes/areas in 3D/2D
environments.165

Since the voxel-tracking based simulator keeps track of the voxels (not the
molecules individually), the time complexity is in the order of the number of
voxels in the environment. However, in voxel-tracking based simulator, there
is a hyper-parameter that needs to be optimized: length of the voxel sides
(λ). If the voxel side-length is too small then the simulator will not be able170

to capture the diffusion behavior of molecules that would be moving to two
voxel distant places. On the other hand, a large voxel-side length results in a
higher aggregation, which will again deteriorate the simulator accuracy. In the
following, we investigate this trade-off through numerical evaluations.

4. Simulation Results175

4.1. Parameters and Performance Metrics

In this work, we compare particle-tracking and voxel-tracking simulators by
considering a fully absorbing receiver in 2D and 3D environments. Simulation
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parameters are listed in Table 1. At the receiver side, the number of received
molecules (NRx) is recorded at each time step, which corresponds to the received180

signal. We compare the received molecular signals generated by both simulators.
We applied Kolmogorov-Simirnov (KS) test on the received molecular signals
(i.e., the number of received molecules versus time) with significance level 0.05
for comparing particle-tracking and voxel-tracking simulators, while considering
the particle-tracking based simulations as the ground truth. We also evaluated185

normalized mean squared error (NMSE) for finding the optimal λ, which is
denoted as λOPT. Then, we analyzed the effect of system parameters on λOPT.

Table 1: Simulation parameters

Parameter Value

Distance (d) {7, 9, 18}µm
Diffusion coefficient (D) 100 ∼ 400 µm2/s
Simulation time step (∆t) 0.00005 ∼ 0.001s
Number of released molecules (NTx) 100 000
Number of Replications 100
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Figure 4: NMSE and KS-test plots for 2D environment with different neighborhood models.
Received signals from particle-based and voxel-based simulations are compared. Best voxel
side-lengths in terms of NMSE lies in fail-to-reject region of the KS-test for both systems.

9



4.2. Analysis on Neighborhood Model

First, we analyze the effect of considering diagonal neighbors within the190

neighborhood model. In Fig. 4, the NMSE and KS-test results are presented
for both systems (i.e., the systems with and without diagonal neighbors for the
voxel-based simulations). If we focus on λOPT in Fig. 4a and Fig. 4b separately,
the optimal voxel side-length shifts right when D increases and is not affected by
changing the distance. Moreover, λOPT values are higher for the system without195

diagonal neighbors since a larger area is covered at any given step. To reduce the
error due to the redistributed molecules from the diagonals, the system without
diagonal neighbors requires two simulation steps to see the effect in the diagonal
voxels. For both of the systems, λOPT in terms of NMSE lies in the fail-to-reject
region of the KS-test. The main take home message of this figure is that the200

NMSE difference between the two voxel-based systems are negligible, hence in
the remaining of this paper we only consider the neighborhood system without
the diagonal neighbors due to its simplicity.

4.3. Analysis on Received Signal

We analyze the received signal based on the output of particle-based sim-205

ulator and the voxel-based simulator without diagonal neighbors, by varying
the scenario parameters such as distance and diffusion coefficient (see Fig. 5
and Fig. 6). In Fig. 5, we first observe that the voxel-based simulations with
λOPT in 2D environments gives the best fit to the received signal of particle-
based simulations. As expected, the accuracy of the received signal degrades210

when we have λ away from the λOPT. The conventional λ value for cellu-
lar automata-based simulators is chosen as

√
4D∆t for 2D environment in the

Gillespie multi-particle method [21, 22, 25, 27]. We denote this choice of λ as
λGMP in performance plots. As was mentioned before, λGMP is effective for
steady state regimes [21, 22, 25, 27]. However, the time dependent received sig-215

nal accuracy in non-steady state regimes is also important for MCvD systems.

Similarly, in Fig. 6, the received signals in 3D environments are presented for
different system parameters. We again observe that the voxel-based simulations
with λOPT gives the best fit to the received signal of particle-based simulations.220

Note that the λOPT values for 3D environment are different than those of the
2D environments. When we compare Fig. 5 and Fig. 6, we also observe that the
number of received molecules decreases for 3D environments due to one extra
spreading dimension. For 3D environments, the conventional λ value is

√
6D∆t

in cellular automata-based simulators that are inspired by the Gillespie multi-225

particle method [21, 22, 25, 27]. Similarly to the 2D environments case, the
received signal in 3D environments that is corresponding to λGMP does not fit
well to the ground truth especially in the peak region, which is a crucial data
for the MCvD systems. Therefore, we focus on using λOPT and finding a closed
form approximation for λOPT in the following subsection.230
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Figure 5: Received signal plots for different parameters in 2D environments. Received signals
corresponding to different voxel side-lengths are compared with λOPT (∆t = 0.0001 s).
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Figure 6: Received signal plots for different parameters in 3D environments. Received signals
corresponding to different voxel lengths are compared with λOPT (∆t = 0.0001 s).
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4.4. Analysis on Optimal Voxel Side-length

In this section, we analyze the effect of D and ∆t on the optimal voxel
side-length since the step size of the molecules are affected by D and ∆t. We
first focus on the effect of D which is followed by the effect of ∆t. Later on we
propose a method to represent the framework for finding λOPT in a more generic235

way. In Fig. 7, the diffusion coefficient versus the optimum voxel side-length
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Figure 7: Optimal voxel side-length plot for 2D environment and the system without diagonal
neighbors. A linear model is fitted to obtain λOPT in terms of D (∆t = 0.0001 s).
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Figure 8: Optimal voxel side-length plot for 2D environment and the system without diagonal
neighbors. A linear model is fitted to obtain λOPT in terms of ∆t (D = 225µm2/s).

is depicted for ∆t = 0.0001 s. We observe that the optimum voxel side-length
does not change when the distance is varied. On the other hand, D affects the
optimum voxel side-length linearly. Therefore, a linear model is fitted to the
experimental data and shown in Fig. 7. Similarly, when we consider the effect240

of ∆t on the optimal voxel side-length, in Fig. 8, we observe that the optimum
voxel side-length does not change with varying distance. On the other hand,
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∆t affects the optimum voxel side-length linearly. Therefore, a linear model is
fitted to the experimental data and shown in Fig. 8.

Let P2D
stay,OPT denote P2D

stay for a given λOPT in 2D environment. We dis-245

covered that P2D
stay,OPT does not vary between scenarios with different system

parameters, i.e. for different λOPT. Therefore, for the optimal voxel side-lengths
in 2D environment, P2D

stay,OPT is not affected by D or ∆t. This is shown in

Fig. 9, where P2D
stay,OPT values are presented for different distances and diffusion

coefficients. It can be clearly seen that the P2D
stay,OPT is invariant for varying250

distance and diffusion coefficient values. Such invariant P2D
stay,OPT value allows

us to calculate λOPT by using the numerical evaluation of the inverse function
for the formulation of P2D

stay in (5). Fixing the system dynamics (e.g., using
voxel-based simulator that does not consider the diagonal neighbors) leads to a
single P2D

stay,OPT hence an effective way to find optimum voxel side-length.
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Figure 9: Probability of stay plot for 2D environments (model without diagonal neighbors)

255

5. Conclusion

In this work, we introduced the voxel-based simulator for MCvD systems es-
pecially for macro-scale applications. In macro-scale MCvD applications, there
is a need for simulating a very large number of molecule movements due to high
path loss. Therefore, we proposed a specialized voxel-based simulator for MCvD260

systems that is independent of the number of emitted molecules and that is
keeping track of aggregate movements via voxel transition probabilities. There-
fore, the voxel-tracking based simulator is capable of simulating huge amount
of molecules since the voxel-tracking based simulations are simulating the envi-
ronment and independent of the number of emitted molecules. The proposed265

voxel-tracking based simulator is validated via particle-tracking based simula-
tions. We proposed and assessed two voxel-based simulation frameworks that
define different neighborhood models and showed that the difference is negli-
gible in terms of accuracy and we continued with the one that does not use
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diagonal voxels due to its simplicity. In the literature, the voxel side-length is270

commonly chosen as in the Gillespie method and it is sufficient to model the
received signal in steady state, however we showed the existence of the optimal
voxel side-length that is capable of modeling the peak region of the received
signal. Finally, we derived a mathematical framework for selecting the optimal
voxel side-length, which minimizes the NMSE error of the simulator.275
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