
Nano Communication Networks 32–33 (2022) 100410

e
s
m
m
d
t
i

c

C

(

i

h
1

Contents lists available at ScienceDirect

Nano Communication Networks

journal homepage: www.elsevier.com/locate/nanocomnet

Mobile human ad hoc networks: A communication engineering
viewpoint on interhuman airborne pathogen transmission
Fatih Gulec a,b,∗, Baris Atakan b, Falko Dressler a

a School of Electrical Engineering and Computer Science, TU Berlin, Germany
b Izmir Institute of Technology, Department of Electrical and Electronics Engineering, Izmir, Turkey

a r t i c l e i n f o

Article history:
Received 2 April 2022
Received in revised form 3 August 2022
Accepted 14 August 2022
Available online 18 August 2022

Keywords:
Airborne pathogen transmission
Infectious disease
Molecular communication
Mobile human ad hoc networks
Epidemiology
COVID-19

a b s t r a c t

A number of transmission models for airborne pathogens transmission, as required to understand
airborne infectious diseases such as COVID-19, have been proposed independently from each other, at
different scales, and by researchers from various disciplines. We propose a communication engineering
approach that blends different disciplines such as epidemiology, biology, medicine, and fluid dynamics.
The aim is to present a unified framework using communication engineering, and to highlight future
research directions for modeling the spread of infectious diseases through airborne transmission.
We introduce the concept of mobile human ad hoc networks (MoHANETs), which exploits the
similarity of airborne transmission-driven human groups with mobile ad hoc networks and uses
molecular communication as the enabling paradigm. In the MoHANET architecture, a layered structure
is employed where the infectious human emitting pathogen-laden droplets and the exposed human
to these droplets are considered as the transmitter and receiver, respectively. Our proof-of-concept
results, which we validated using empirical COVID-19 data, clearly demonstrate the ability of our
MoHANET architecture to predict the dynamics of infectious diseases by considering the propagation
of pathogen-laden droplets, their reception and mobility of humans.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Throughout the history, epidemics caused by infectious dis-
ases have been a major threat to human life. Epidemic diseases
uch as smallpox, Spanish flu and recent COVID-19 gave rise to
illions of human deaths [1]. In addition, epidemics can induce
ental disorders in humans and recessions in the world economy
ue to prevention and control measures such as lockdown. Owing
o these facts, it is essential to accurately model the spread of
nfectious diseases among humans.

The interhuman spread of infectious diseases occur via direct
ontact and airborne transmission1 where pathogens are trans-
ferred from an infectious human to a susceptible one. In airborne
transmission, these pathogens (viruses, bacteria, fungi, and so on)
are carried by large droplets and aerosols (droplet nuclei) which
are emitted via breathing, speaking, coughing and sneezing [2,3].
Throughout this paper, we use the term droplet to refer to both
large droplets and aerosols together.
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1 Here, transmission is employed synonymously with contagion rather than

ts usage in communication engineering.
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878-7789/© 2022 Elsevier B.V. All rights reserved.
As for the modeling of infectious diseases between two hu-
mans, a human emitting expiratory droplets is an information
source [4–6]. When these emitted information carrying droplets
are received by another human through sensory organs, we
can consider there exists a communication path between them.
Hence, a molecular communication (MC) perspective, has re-
cently been proposed for airborne transmission modeling
[7–9]. [8] and [9] lay the theoretical and experimental founda-
tions of dualities between pathogen-laden droplet propagation
and MC. [10] gives a detailed review and discussion about the us-
age of MC for viral infection research. In [7], an end-to-end system
model for airborne pathogen transmission between two humans
is proposed by considering this transmission as an information
transfer through an air-based channel. In addition, the effect of
face masks on the infection probability is investigated in [11].
In [12] and [13], MC is employed to model the transmission of
pathogens through the human respiratory tract. In these recent
studies with the MC perspective, the proposed models are for
static humans. However, as people displace, there exist dynamic
human groups exchanging pathogens among each other. Due
to their mobility, humans form different groups in an ad hoc
fashion as their smart phones do in a mobile telecommunication
network. Hence, an analogy between human groups and mobile
telecommunication networks can be established, since they both
possess an intermittent connectivity.
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Fig. 1. The spread of an infectious disease through airborne pathogen transmission with communication engineering perspective and effective issues for an indoor
sneezing/coughing scenario.
On the other hand, researchers from many disciplines work
separately at different scales to reveal the mechanisms of air-
borne pathogen transmission and model the behavior of epi-
demics. In fluid dynamics literature, researchers focus on the
propagation of pathogen-laden droplets and their interactions
with air [2,3]. Biologists deal with the survival of airborne patho-
gens in macroscale [14] and their interactions with the human
cells in microscale [15]. Furthermore, the medical literature con-
ducts researches in cellular level to discover new drugs which
cure the infectious diseases. At a larger scale, epidemiology liter-
ature focuses on empirical data to develop mathematical models
for the spread of epidemics in time and space [1,16]. However,
these epidemiological models do not consider the information
from fluid dynamics, biology and medicine and make estimations
by fitting statistical data [17]. The fluid dynamics of droplets,
the geometries and air distribution of indoor environments, the
pathogen-human interaction, the medical efficacy of the drugs
and locations of mobile humans are essential to be taken into
account for accurate models. Thus, there is a need to merge all
of these research efforts in a unified framework.

To integrate the research attempts from different disciplines
and utilize the analogy between mobile telecommunication net-
works and human groups, we propose a framework for modeling
interhuman airborne pathogen transmission with communication
engineering perspective. Here, mobile humans forming a group
are considered as a mobile human ad hoc network (MoHANET).
In a MoHANET, the infectious human is the transmitter (TX),
the susceptible human is the receiver (RX) and pathogen-laden
droplets are information carriers propagating in the communi-
cation channel, i.e., air. Here, MC employing chemical signals
instead of electrical signals emerges as an enabler paradigm for
the communication among humans due to its biocompatibility
with the human body and multiscale applicability.

Furthermore, communication engineering approach provides
a unified framework by combining micro- and macroscale mod-
eling issues. With this framework, a MoHANET is partitioned
into layers where each layer is associated with a research area
at different scales such as fluid dynamics, biology, medicine or
epidemiology. As in the conventional telecommunication net-
works, each layer sends its outputs to an upper layer. In this
way, the spread of infectious diseases can be modeled more

accurately by considering all parameters from various disciplines.

2

In addition, researchers will be able to utilize theoretical tools
of communication theory in order to model the complicated
nature of airborne pathogen transmission. In this paper, a proof-
of-concept study is given for the MoHANET architecture. To this
end, an omnidirectional multicast transmission (OMT) algorithm
in which the average number of contacts in a MoHANET is cal-
culated by exploiting the truncated Lévy walk for the mobility
of humans is proposed. The infection states of humans are de-
termined according to their relative distance. Then, the effective
contact rate is determined by using the probability of infection
for airborne pathogen transmission and the average number of
contacts. Lastly, this effective contact rate is employed in an epi-
demiological model to estimate the time course of an epidemic.
Numerical results validated by empirical COVID-19 data show
that the number of infected people during an epidemic can be
estimated by taking into account the propagation and reception of
pathogen-laden droplets and the mobility of humans. Moreover,
the results show that the increment of the population’s immune
system strength or the reduction in the number of received
airborne pathogen-laden droplets leads to a milder outbreak over
time.

In the remainder of this paper, we first review the airborne
pathogen transmission mechanisms. Then, the communication
engineering approach which merges different disciplines is intro-
duced. In this approach, the layered architecture of the MoHANET
is presented in detail and open research issues are discussed.
In the next section, proof-of-concept study is given with the
proposed OMT algorithm and numerical results. Finally, we give a
discussion on the existing and possible experimental techniques
and conclude the paper.

2. Overview of main issues on airborne pathogen transmission

This section provides a brief overview for the main issues of
the airborne pathogen transmission mechanisms as illustrated in
Fig. 1.

2.1. Respiratory activity, droplet size and evaporation

Pathogen-laden droplets are emitted to the air from an in-
fected human via respiratory activities such as coughing, sneez-

ing, speaking and breathing. These activities have different initial
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roplet velocities allowing different propagation distances. For
nstance, the initial velocities for coughing and breathing are
bout 10 m/s and 2.67 m/s, respectively [18]. Therefore, a cough
an infect people at a greater distance than breathing in still
ir in a short time interval. However, breathing can be more
ffective than coughing or sneezing for longer intervals due to
he continuous emission. Furthermore, the expiratory droplets
re defined according to their diameters where aerosols and large
roplets are assumed to have smaller and larger diameters than
0 µm, respectively [3]. While speaking, sneezing, and coughing
elease more large droplets into the air, breathing mostly contains
erosols. In addition, larger droplets settle to the ground due
o gravity before evaporation and smaller droplets can become
erosols via evaporation depending on the temperature and rela-
ive humidity (RH) [19]. For long durations, aerosols can be more
nfectious than large droplets, since they can remain suspended
n the air and be drifted by airflows.

.2. Air distribution

In addition to the initial velocity, emitted droplets are influ-
nced by the airflows, similar to a MC channel with drift. In
utdoor environments, winds carry the droplets and dilute the
oncentration of pathogens via dispersion. Therefore, it is less
robable to get infected in outdoor environments. However, in in-
oor environments such as hospitals or offices, airflows generated
y ventilation systems are critical for the spread of pathogens due
o the circulation of air in bounded conditions [18].

.3. Posture, relative orientation, distance and movement of the
uman

For short distances, the posture, that is, standing, sitting or
ying position, and the relative orientation of the infected and
usceptible persons are important for the infection risk as shown
n Fig. 1. For instance, a doctor can reduce the exposure from an
nfected lying patient in a hospital ward via a standing posture
nd sideways orientation instead of face-to-face orientation [18].
urthermore, a walking person can increase the infection risk
n a closed and ventilated room by increasing the dispersion of
roplets [18]. Another important factor influencing the infection
isk is the relative distance of the humans which is also referred
s the social distance. Surely, the infection risk decreases, as the
elative distance between two people increases.

.4. Thermofluid boundary conditions

The temperature difference between the human body surface
nd the surrounding air generates a thermal plume which is a
uoyancy-driven upward flow of the surrounding air. As illus-
rated in Fig. 1, this thermal plume leads to a convective boundary
ayer (CBL) around the human body, which should be taken
nto account for the movement of the droplets in the breathing
one [20]. This upward flow can change the channel impulse re-
ponse, which mathematically characterizes the alteration caused
y the channel located between the TX and RX during airborne
ransmission, via generating an upward drift for the pathogens
uring the reception into the human body as shown in Fig. 1.

.5. Survival of pathogens

Subsequent to a respiratory activity, all of the emitted path-
gens may not survive. In [14], it is shown that more than 80 per-
ent of the influenza viruses cannot survive within one minute.
owever, these survival rates are severely influenced by envi-

onmental factors such as temperature and RH. While increasing

3

temperature decreases survival rates of the pathogens due to
its effect at molecular levels, increasing RH results in decreasing
evaporation of droplets [21]. The decreasing number of pathogens
results in a time-varying channel due to the dependence on the
previous number of pathogens.

3. Communication engineering approach to interhuman air-
borne pathogen transmission

In this section, we present a framework with communica-
tion engineering perspective to model the spread of infectious
diseases through airborne pathogen transmission. Furthermore,
open research issues are given.

As shown in Fig. 2, the proposed framework merges all of the
multiscale research efforts in various disciplines such as fluid dy-
namics, biology, medicine, and epidemiology under the umbrella
of communication engineering. MC emerges as the key paradigm
that connects the studies among different disciplines in macro-
and microscales. First, the MoHANET is introduced through a
layered architecture as depicted in Fig. 2. Layers are associated
with different disciplines from µm to km scale in this architecture
where each layer sends its output to an upper layer. The first
layer is defined as the physical layer where the infectious human
(TX) emits pathogen-laden droplets through the communication
channel (air) as illustrated in Fig. 1. The next layer is the recep-
tion layer which takes place at the susceptible human (RX) and
includes two sub-layers, that is, outer and inner reception sub-
layers. The outer reception sub-layer comprises the interactions
of the facial sensory organs with the droplets and inner reception
sub-layer provides the details about the interactions of pathogens
with the biological cells in the human body. The networking layer
where infectious diseases spread among different people is given
at the top of the MoHANET architecture where methods from
mobile telecommunication networks literature and epidemiology
are exploited and the outputs of the lower layers are employed.

Here, we note that there is not a one-to-one correspondence
between the layers of a MoHANET and the layers of a conven-
tional telecommunication (or computer) network. The physical
layer is defined in a slightly different way from the physical
layer of a conventional network, since the reception of molecular
signals is not included in the physical layer of the MoHANET and
information is transferred via pathogen-laden droplets instead
of electromagnetic waves. The usage of the proposed layered
architecture of the MoHANET is utilized to understand the phe-
nomenon of infectious disease spread instead of designing an
efficient, high data rate and reliable telecommunication network.
The details of this layered architecture are introduced as follows.

3.1. Physical layer

3.1.1. Transmitter
In a MoHANET, an infected person is considered as a TX and

her/his respiratory activities determine the TX parameters such as
initial droplet velocities and droplet size distribution [4]. The res-
piratory activities which are mentioned earlier can be classified
as impulsive (sneezing and coughing) and continuous (breathing
and speaking) emission signals. For continuous emissions, the res-
piration rate is an influential factor for the transmission models.
In addition, the respiratory organs such as nose or mouth affect
the direction of the emitted signals. For example, the infection
risk increases, when the TX uses the mouth instead of nose [18].
Furthermore, the convective boundary layer (CBL) of the human
body, posture and relative orientation should be taken into ac-
count for accurate TX models. In addition, the load of pathogens
in an exhaled breath or cough/sneeze, which can change ac-

cording to the droplet size, temperature and RH, can affect the
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Fig. 2. Communication engineering framework to model the spread of infectious diseases through airborne pathogen transmission and the layered MoHANET
rchitecture.
ransmission of a disease, i.e., infectivity [19]. On the other hand,
he infectivity of a pathogen can increase during its evolution in
n epidemic and can bring about super spreading events [22].
n this work, the transmitted pathogens are assumed identical
nd the inclusion of this infectivity, which can be estimated via
phylogenetic analysis, droplet size and environmental factors,

nto the model is left as an open research issue.

.1.2. Channel
The channel is the physical medium between the TX and RX

ncluding the boundary conditions. As shown in Fig. 2, channel
odeling in the physical layer requires knowledge from fluid dy-
amics and biology due to the air-droplet interaction and survival
f pathogens, respectively. The propagation dynamics of droplets
an be examined under two subheadings depending on whether
here is an external airflow or not.

till air. In indoor environments such as residential buildings, it
s generally assumed that there is no airflow, if there is not any
entilation system. After the emission of pathogen-laden droplets
ith an initial velocity, they are subject to Newtonian mechanics
uring their interactions with the air. Emitted droplets can be
odeled as a cloud consisting of droplets and air particles [7,23].
he movement of this cloud can be defined as a two-phase flow
here these phases represent the gaseous state of air and liquid
tate of droplets [24,25]. Due to gravity, large droplets may fall
arlier to the ground with respect to aerosols and evaporation can
hrink the size of droplets. As mentioned earlier, the temperature
f air and evaporation influence the survival rates of pathogens.
or continuous emissions, this fact can affect the channel mem-
ry, which is crucial for channel modeling. Furthermore, initial
elocities of droplets determined by respiratory activities can give
ise to laminar and turbulent flows which fade out as the distance
etween the TX and RX increases [26].
4

Windy air. For windy outdoor environments and indoor envi-
ronments with airflows such as ventilation or wind arising from
the open doors and windows, airflows dominate the propagation
of droplets rather than other factors given for still air environ-
ments. The airflow which carries the pathogen-laden droplets can
be examined by advection and dispersion (turbulent diffusion)
mechanisms. Briefly, advection results from the airflow velocity
and dispersion depends on the turbulent eddies during the mass
transfer [27]. It should be noted that molecular diffusion related
with the thermal energy of molecules is negligible in macroscale.
In order to calculate the concentration of droplets in time and
space, deterministic and stochastic approaches which are based
on differential Navier–Stokes and continuity equations are em-
ployed. In addition, indoor ventilation types such as under floor
air distribution, mixing, displacement, and downward ventilation
should be incorporated into these airflow models. For example,
downward ventilation can reduce the infection risk by diluting
the dispersion of droplets [18].

3.2. Reception layer

A human gets infected, when the transmitted pathogens are
received into the body. As shown in Fig. 2, the reception layer
covers the issues related to biology and medicine in microscale
where MC is utilized for the interactions of pathogens with hu-
man body. The reception of these pathogens by the exposed
human (RX) have not been well investigated, although there are
myriads of theoretical, experimental and clinical studies for the
propagation of pathogens. To this end, we propose a two-layered
RX as shown in Fig. 3 and detailed below.

3.2.1. Outer reception layer
The reception of pathogen-laden droplets occur in the eyes,

mouth and nose for many pathogens such as influenza virus [19].
Hence, we define the first step of reception as the outer layer



F. Gulec, B. Atakan and F. Dressler Nano Communication Networks 32–33 (2022) 100410

p
b
b
a
m
F
b
c
t
a
a
b
n

b
e

a
v
(
t
h
h
i
r
t
f
e
a
e
t
b
w
t
o
a
m
d
p

3

H
e
m
h
I
a
e
f

R
q
t
w
m
l
o
i
d

r
c
t
b
t
g
t
b
c
i
p

Fig. 3. Two-layered receiver.

Fig. 4. The mean number of droplets in the cloud and their reception by the
RX.

sensing for the reception via facial sensory organs as illustrated in
Fig. 3. The whole surface of the human face is also important for
the reception, since an infection may occur by touching the face
contaminated with pathogens and these organs consecutively.

Pathogen-laden droplets emitted via a respiratory activity
ropagate as a mixture of droplets and air particles, which can
e represented as a spherical cloud [7,23]. This cloud is affected
y the momentum due to the initial velocity of droplets, gravity
nd buoyancy stemming from the temperature difference of the
outh and ambient air. According to the model detailed in [7],
ig. 4 gives the change of the number of droplets in the cloud
y taking settling and reception of droplets into account for a
oughing TX in still air as illustrated in Fig. 1. The cross-section of
he RX is assumed to cover a circular area including eyes, mouth
nd nose at the outer layer as shown in Fig. 3. At this point,
n analogy with the communication systems can be established
y considering the infected state of the RX as symbol 1 and
o infection as symbol 0. This reception is accomplished by a

detection according to a threshold value (γ = 80) indicating
the number of droplets required to become infected, as given in
Fig. 4. γ is a critical parameter, since it depends on the strength of
human’s immune system. To this end, biomedical data of humans
such as body mass index, glucose level and whether or not having
chronic diseases can be employed to estimate γ . Moreover, γ can
e effective to determine the number of infected people in an
pidemic as given in Section 3.3.
 t

5

In addition to these issues in the outer layer, the posture,
relative orientation and CBL should be considered for an accurate
RX model as considered for the TX. Furthermore, the reception of
pathogen-laden droplets at the outer layer with different types of
masks is an open issue to be investigated.

3.2.2. Inner reception layer
As shown in Fig. 3, pathogens actually enter human body

t the cellular level and increase their population. For example,
iruses replicate themselves by inserting their genetic material
DNA or RNA) into human cells in two ways: They can bind
heir fusion (or spike) protein on specific receptor sites on the
uman cell or they can enter by using endosomes like a Trojan
orse [15]. Their binding sites can have different concentrations
n different parts of the body. For instance, severe acute respi-
atory syndrome coronavirus-2, which causes COVID-19, binds
o angiotensin converting enzyme-2 receptors which are mostly
ound at upper respiratory tract [28]. While large droplets are
ffective in upper respiratory tract, aerosols can reach down to
lveoli in lower respiratory tract. Hence, the droplet size can be
ffective to determine the infection risk according to the type of
he disease. Moreover, the viruses diffuse among human cells,
ind to receptors and copy their genetic material in a random
ay. All of these issues at the inter- and intracellular level need
o be modeled for an accurate transmission model for the spread
f infectious diseases in MoHANETs. These modeling efforts can
lso contribute to drug and vaccine developments. By using the
odels at physical and reception layers, the infection rate can be
erived to be used in the networking layer as given in the next
art.

.3. Networking layer

What we examine up to here in lower layers of the Mo-
ANET architecture is about the transmission of infectious dis-
ases between two humans. However, these transmissions occur
any times in an epidemic, which requires a perspective to
andle the population as a connected group, that is, a network.
n the networking layer, the details of the MoHANET architecture
re presented in order to model the spread of infectious dis-
ases at a large scale (km) within the communication engineering
ramework as shown in Fig. 2.

For indoor airborne transmission, various versions of Wells–
iley model are widely employed in the literature. These models
uantify the average number of pathogens by using exposure
ime, pulmonary and room ventilation rates in a well-mixed room
ith pathogens [19]. Although these models are useful to deter-
ine the guidelines for indoor places in an epidemic [29], they

ack the capability to estimate the number of infected humans
ver a long term for larger areas. Therefore, a different approach
s adopted for long term estimations of an epidemic, which is
etailed as follows.
In epidemiology literature, each human, i.e., a node, can be

epresented as susceptible (S), exposed (E), infectious (I) or re-
overed (R) according to the SEIR-based models [16]. Based on
he disease type, different combinations of these node types can
e employed for the models such as SIR or SIRS. By utilizing
he widespread SIR model, a MoHANET is given in Fig. 5 which
ives both the spatial and temporal changes. As the time elapses,
he number of nodes may alter and nodes can make transitions
etween states such as S, I or R. For example, a susceptible node
an become infected, if it is in the transmission range of an
nfectious node or an infectious node can recover after a certain
eriod. By using a communication engineering perspective, the
ransmission among the nodes can be classified as given next.
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3.3.1. Transmission types in MoHANETs
As illustrated in Fig. 5, three transmission types are defined for

the propagation of pathogen-laden droplets from the infectious
nodes to the susceptible nodes as follows:

• Point-to-Point Transmission includes the communication
between two nodes where the infectious and susceptible
nodes are the TX and RX, respectively.

• Multicast Transmission is the scheme that one infectious
node spreads the disease to more than one node within its
communication range.

• Multiple-Access Transmission comprises the scenario
where a susceptible node is exposed to pathogen-laden
droplets from multiple infectious nodes.

In this paper, multicast transmission scheme is employed in
the networking layer as detailed in Section 4.1.

3.3.2. Epidemiological models
The numbers of the nodes as illustrated in Fig. 5 are modeled

in SEIR-based models by ordinary differential equations where
these numbers can be deterministic or stochastic processes. The
transition among different types of nodes are defined with certain
rates which are obtained by fitting statistical epidemic data in
epidemiological studies [16,17]. In experimental studies, these
data are obtained by oral surveys or exploiting wireless sen-
sor network technology [16]. On the other hand, agent-based
modeling (ABM) which uses agents possessing individual contact
patterns and behaviors is applied in epidemiology [30]. Although
ABM has the advantage of fine-grained results, it requires high
computational power for the simulation of millions of agents,
which makes it challenging [30]. Therefore, the standard SIR
model is adopted in this paper.

The transition between the states in the SIR model are defined
via the transition rates λ1(t) and β2 as given by

λ1(t)
−−→ I

β2
−−→ R, (1)

here λ1(t) = β1I(t)/N , β1 is the effective contact rate, I(t) is
he number of infected humans at time t , N is the number of total
opulation and β2 is the recovery rate. The number of these node
ypes are modeled by ordinary nonlinear differential equations as
iven by [31]
dS(t)

=
−β1S(t)I(t)

, (2)

dt N

6

dI(t)
dt

=
β1S(t)I(t)

N
− β2I(t), (3)

dR(t)
dt

= β2I(t), (4)

where S(t) and R(t) are the numbers of the susceptible and
recovered humans at time t , respectively. Here, we assume that
N is constant during the epidemic so that there is not any death
or birth.

The solution of this equation system is generally calculated
numerically. However, analytical solutions also exist as given
by [32]

S(t) = S(0)e−ϵ(t), (5)

R(t) = R(0) +
β2N
β1

ϵ(t), (6)

I(t) = N − S(t) − R(t) (7)

here ϵ(t) is defined as the expected number of transmissions at
ime t and derived as

(t) =
β1

N

∫ t

0
I(t∗)dt∗. (8)

This solution requires a numerical integration for ϵ(t) which is
very similar to the solution in [33]. Furthermore, the final values
of S(t), I(t) and R(t) is derived analytically in [34]. This standard
SIR model is employed as shown with the proof of concept study
in Section 4.

3.3.3. Routing and mobility in MoHANETs
Humans are susceptible to infectious diseases in indoor places.

However, this is not the case that is encountered continuously.
Instead, the risk to get infected is intermittent due to the mo-
bility of humans. As people displace, their smart phones can
communicate opportunistically with each other as they are in the
communication range. The same type of networking is also used
in many applications such as wireless sensor, vehicular, and flying
ad hoc networks. These dynamically changing structures defined
as mobile ad hoc networks (MANETs) enable communication us-
ing the infrastructure at their location without a dedicated router.
Therefore, a MoHANET can be resembled as a specific type of
MANET, that is, a delay tolerant network (DTN) in which an end-
to-end link among the nodes may not always exist. The nodes in
a DTN store their data and wait until they find a suitable con-

nection. By considering this waiting delay, routing algorithms in



F. Gulec, B. Atakan and F. Dressler Nano Communication Networks 32–33 (2022) 100410

D
h
s
s
e
o
w
i
a
f
d

4

4

t
g
m
t
i

β

w
I
w
a

r
l
B
P

P

t
s
d
r
f
t
i
a
d

i
w
S

β

s
f
s
a
I
t
o
M
h

m
t
1
i
s
2
t
U
t
b

t
t
t
b
t
t
s
f
a
n
c
o
d
a
t
l
b
(
s
l
o
b
p
c
N

TNs provide the path to the desired user. Similarly, an infected
uman can only infect via airborne transmission once it has a
usceptible human within the coverage area of transmission as
hown in Fig. 5. Hence, opportunistic routing protocols such as
pidemic or spray and wait can be adopted to model the spread
f the infectious diseases. Interestingly, epidemic routing protocol
hich is a reference method for routing in MANETs was already

nspired by the mechanism of infectious disease spread during
n epidemic [35]. Furthermore, the mobility models employed
or MANETs can be utilized to model the spread of an infectious
isease in a MoHANET as given in the next part.

. Proof of concept for the MoHANET architecture

.1. Omnidirectional multicast transmission algorithm

In the SIR model, the effective contact rate (β1) is employed
o find the rate of transitions from state S to state I which is
enerally estimated by epidemic data [31]. β1 is defined as the
ultiplication of the number of contacts per unit time (ke) and

he probability of infection when there is a contact between an
nfectious and a susceptible human (β0) as given by [31,36]

1 = keβ0. (9)

By using mobility models as applied in MANETs, the average
contact rate of humans (N̄c), which corresponds to ke, can be
determined via mobility models. As given in the literature about
the human mobility at different scales, humans follow a Lévy
walk pattern [37]. In this pattern, the flight is defined as the
longest distance in a straight line between two points. During
their movement, humans also stop moving for several reasons
such as staying at home, or working in the office. These walks are
characterized by heavy-tailed distributions such as Lévy alpha-
stable (or hereafter called Lévy), lognormal or power-law for the
flight lengths and pause times [38].

In this paper, the truncated Lévy walk (TLW) model is em-
ployed for the mobility of humans, since this model relies on real
location data of humans and also has the applicability advantage
of a random walk for an ad hoc network [39]. In TLW, each node
follows a Lévy walk pattern. After each flight, a node stops for
a certain pause time (∆tp). The flight time (∆tf ) is calculated
according to the relation based on the GPS traces as given by [39]

∆tf =

{
30.55∆r0.11, ∆r < 500 m (a)
0.76∆r0.72, ∆r ≥ 500 m (b),

(10)

where ∆r is the flight length. Here, ∆r and ∆tp are random vari-
ables which have Lévy distributions having the probability den-
sity function (pdf) with respect to the inverse Fourier transform
of its characteristic function as given by [40]

fX (x; α, c) =
1
2π

∫
∞

−∞

exp(−jtx − |ct|α)dt, (11)

here c and α are scale and shape parameters, respectively.
n TLW, Lévy distributions

(
S(αt , ct ) and S(αr , cr )

)
are truncated

ith an interval 0 ≤ ∆tp < τp and 0 ≤ ∆r < r1 for pause time
nd flight length, respectively.
In addition, the average probability of infection P̄inf can be de-

ived by considering the propagation and reception of pathogen-
aden droplets in physical and reception layers of the MoHANET.
y using the system model in [7] whose results are given in Fig. 4,

¯inf is given by [7]

¯inf = P(N̄R > γ ) = Q
(

γ − µR
)

(12)

σR

7

where N̄R is the average received number of droplets with
N (µR, σ

2
R ) and γ is the detection threshold as defined in Sec-

ion 3.2. Here, µR and σR depend on the physical layer parameters
uch as densities of droplets and air, dynamic viscosity of air,
istance, initial velocity and size distribution of droplets and
eception layer parameters such as the dimensions of the human
ace. Here, the infection range (dinf ) which defines the radius of
he circular coverage area of airborne transmission as illustrated
n Fig. 5 is introduced as a new parameter. Within this coverage
rea, it is assumed that P̄inf does not change according to the
istance between the TX and RX.
P̄inf given in (12) corresponds to the parameter β0 given in (9)

n the SIR model. Thus, by using (12) and N̄c computed via TLW,
e propose that the effective contact rate to be employed in the
IR model can be derived by

1 = N̄c P̄inf . (13)

It is important to note that (12) is derived for a channel with
till air and a receiver with only outer reception layer. There-
ore, the inclusion of different transmission mechanisms such as
urvival of pathogens or thermofluidic boundary conditions and
lso inner reception layer issues are left as open research issues.
n addition, it should be underlined that (13) and (12) provide
he connection between the airborne transmission and epidemi-
logy studies by using communication engineering within the
oHANET architecture. The following describes the method of
ow this connection is established.
In order to calculate the effective contact rate based on the

obility and airborne transmission, an omnidirectional multicast
ransmission (OMT) algorithm is proposed as given in Algorithm
. In the first step of this algorithm, the 2-D positions of the nodes
n a MoHANET is determined via the aforementioned TLW. At the
tart of the simulation, the nodes are uniformly distributed in a
-D rectangular area which has limits (xmax, ymax). For each flight,
he nodes choose a random direction from a uniform distribution
(0, 2π ). At each flight, the positions of the nodes are checked so
hat they do not go outside the defined borders. If they reach the
order, then the nodes bounce back to the simulation zone.
In the second step of the OMT algorithm, the time course of

he disease spread is evaluated. For each node at each time step,
he contact state is checked according to the distance between
he infectious and susceptible nodes. Here, it is assumed that
oth the infectious node emits and the susceptible node receives
he pathogen-laden droplets in an omnidirectional way. Hence, if
he distance between these nodes is smaller than dinf , then the
usceptible node is assumed to be contacted and ‘‘potentially in-
ected’’. The actual infection state of the population is determined
ccording to the probability of infection, since a contact does
ot necessarily lead to an infection. Then, the average number of
ontacts of the nodes (Nct ) is calculated by summing the number
f contacts of the nodes for each time step to distinguish the
ifference of the contact states with respect to time. Next, the
verage contact rate of the nodes (N̄c) is determined by taking
he average value of Nct over time and dividing it to the simu-
ation time (tsim). Finally, the effective contact rate (β1) is found
y using (13) which is employed in the SIR model defined in
2)–(4). The idea behind the OMT algorithm is to find β1 for a
hort period, e.g., half day, and exploit this contact pattern for
ong-term estimation of the infectious disease spread. In terms
f epidemiological models, the proposed OMT algorithm stands
etween the SEIR-based and agent-based models. While contact
atterns are determined similar to ABM, the long term time
ourse of the epidemic is estimated by using a SEIR-based model.
ext, numerical results for the OMT algorithm are given.
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Table 1
Simulation parameters.
Parameter Value Parameter Value

tsim 12 h τ 10 s
N 1000 dinf 1 m
xmax 2000 m ymax 2000 m
αr 1.6 cr 10
αt 0.8 ct 1
r1 1000 m τp 1000 s
µR 120 σR 10
γ 140 β2 0.037
I(0) 1 S(0) 999

Algorithm 1 Omnidirectional Multicast Transmission Algorithm

1: Input: tsim, τ , N , xmax, ymax, dinf , αr , cr , r1, αt , ct , τp, µR, σR, γ
2: Determine the initial x and y positions of the nodes with

U(0, xmax) and U(0, ymax), respectively
3: ▷ Step 1: Truncated Lévy Walk
4: Ns = tsim/τ ▷ Number of time steps
5: for i = 1 : 1 : N do
6: k = 1
7: while k ≤ Ns do
8: Generate φ ∼ U(0, 2π )
9: Generate ∆r ∼ S(αr , cr ) with 0 ≤ ∆r < r1

10: Generate ∆tp ∼ S(αt , ct ) with 0 ≤ ∆tp < τp
11: ∆x = ∆r cos(φ); ∆y = ∆r sin(φ)
12: Calculate ∆tf by (10)a–(10)b
13: nf = ⌊

∆tf
τ

+
1
2⌋

14: x(i, k + 1 : k + nf ) = x(i, k) + (∆x
nf

:
∆x
nf

: ∆x)

15: y(i, k + 1 : k + nf ) = y(i, k) + (∆y
nf

:
∆y
nf

: ∆y)

16: np = ⌊
∆tp
τ

+
1
2⌋

7: x(i, k + 1 + nf : k + nf + np) = x(i, k + nf )
18: y(i, k + 1 + nf : k + nf + np) = y(i, k + nf )
19: if ith node is out of borders then
20: Bounce the node back from the border
21: end if
22: k = k + nf + np
23: end while
24: end for
25: ▷ Step 2: Omnidirectional Transmission
26: Nc(1, :) = 1 ▷ One infected node initially
27: for k = 1 : 1 : Ns do
28: for ix = 1 : 1 : N do
29: if Nc(ix, k) == 1 then
30: for i = 1 : 1 : N do
31: if d < dinf and i ̸= ix then
32: Nc(i, k : end) = 1
33: end if
34: end for
35: end if
36: end for
37: end for
38: Nct =

∑N
i=1 Nc(i, :)

39: N̄c =
1

Nstsim

∑Ns
k=1 Nct (k)

0: P̄inf = Q
(

γ−µR
σR

)
1: β1 = N̄c P̄inf
o

8

Fig. 6. Number of infected humans (nodes) in a MoHANET with γ = 142.4,
β2 = 0.037 and the COVID-19 data of Italy for the first 150 days (31 January
2020–28 June 2020) at the beginning of the pandemic. The root mean square
error between these curves is 5110.2.

4.2. Numerical results

In this part, numerical results are obtained by employing the
SIR model which uses the effective contact rate via the proposed
OMT algorithm. The simulation parameters are given in Table 1. In
the OMT algorithm, N̄c is determined via Monte Carlo simulation
for a time period (tsim) of half day assuming that humans stay
at their homes for the rest of the day. The values of the shape
and scale parameters for flight and pause time distributions in
TLW, i.e., αr , cr , αt , ct , and their truncation values, i.e., r1, τp, are
hosen according to values based on real location data in [39] for
2000 m × 2000 m area. In the simulation of the SIR model, it

s initially assumed that there is only one infected human in the
oHANET, other nodes are susceptible. In addition, it is assumed

hat the number of people does not change due to death, birth,
tc. during the simulation due to the constant population density
f Italy [41]. The idea of the OMT algorithm is to find an average
ontact rate for a limited population in a limited area with a
ealistic mobility pattern and to apply it by scaling to a larger area
nd population. The parameters of physical and reception layers
uch as µR, σR, γ and dinf are determined in accordance with the
alues in [7]. In addition, please note that β1 value is converted

from the unit s−1 to day−1 to be used in the SIR simulations.
In Fig. 6, the results obtained with the MoHANET architecture

are validated by the active infected cases of the COVID-19 out-
break in Italy for the first 150 days (31 January 2020–28 June
2020) by using the data set in [42]. The start date of the data
is the first day an active case was recorded. In this data set,
the number of actively infected cases (Id(t)) are calculated by
ubtracting the number of recovered and death humans from
he number of total confirmed cases. The number of deaths are
mitted in the SIR model, since it is negligible with respect to
he population of Italy (≊ 6 × 107). In addition, the estimated
umber of infectious humans is scaled via multiplying I(t) by

max(Id(t))/max(I(t)) where max(.) shows the peak value, as also
pplied in [43]. In order to visually fit the COVID-19 data, γ and
2 values, which are given in the caption of Fig. 6, are arranged
anually in order to fit the empirical data visually and having
root mean square error as small as possible. The chosen value

f β2 is also in agreement with a similar SIR modeling study
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Fig. 7. Total number of actively infected humans (nodes) in a MoHANET for
different threshold values.

for COVID-19 [43]. This figure shows that airborne transmission
issues and mobility can be combined with the SIR model within
the MoHANET architecture. Here, N̄R depends on the parameters
uch as the velocity and size distribution of droplets, air-droplet
nteraction and receiver geometry. Thus, this modeling approach
ives the opportunity to include the parameters of the physical
nd reception layers in the networking layer of the MoHANET.
or convenience, β2 for the transitions from state I to state R is
aken as a constant value. However, β2 can be estimated at the
reception layer by using human’s immune system response or
drug-human interaction at the cellular level.

Surely, the empirical data set includes situations such as peo-
ple with and without masks or limited mobility due to lockdown
which lasted from 9 March 2020 until 18 May 2020 in Italy.
Furthermore, the population is not stationary even in a lockdown.
However, the results obtained with the MoHANET architecture
aim to give an average estimate for an epidemic as also applied
in the epidemiology literature with the SIR based models. The
effects of different scenarios are included in the proposed model
via arranging the parameters in (12) for airborne transmission
issues and TLW parameters for mobility issues as also given in
Figs. 8 and 9. In the rest of this section, the results are obtained
for the parameters given in Table 1 without scaling and for a
generic scenario to show the effects of the different layers of the
MoHANET on an epidemic.

The results given in Fig. 7 depicts the effect of reception layer
issues on the time course of the epidemic. Here, it is shown
that the rate of an epidemic reduces as γ which depends on
the average strength of the humans’ immune system increases.
This actually corresponds to the fact that people in a society can
reduce the impact of epidemics by preferring a healthier lifestyle
that includes practices such as following a balanced diet, living
in a less stressful way or exercising regularly. Here, it can be
observed that a small change in γ can affect the course of the
epidemic dramatically. This shows that health authorities should
promote and support to boost the immune system strength of the
population constantly as well as supporting vaccine development
for infectious diseases.

In Fig. 8, the effect of the mean received number of droplets
(µR) during the airborne pathogen transmission on an epidemic is
shown. In case of a longer stay in an indoor place, a more violent
respiratory event, a closer distance to an infectious human or not
wearing a mask, µ of a susceptible human can increase. Hence,
R a

9

Fig. 8. Effect of the received number of droplets on infectious disease spread
through airborne transmission.

Fig. 9. Effect of different pause time distributions on infectious disease spread
through airborne transmission for dinf = 1 m and γ = 140.

Fig. 8 can be interpreted as the effect of social distance rules such
as wearing masks in an epidemic. If these rules are followed,
i.e., µR is decreased, the curve can be flattened in an epidemic.
In addition, Fig. 8 can also be considered as the effect of different
types of masks. As the filtering capacity of the mask used in the
population increases, e.g., FFP-2 mask, the epidemic has a milder
course. On the other hand, the increased infectivity of a pathogen
along the different stages of an epidemic due to its evolution can
be simulated by increasing µR as shown in Fig. 8.

Fig. 9 depicts the time course of the infectious disease spread
for different pause time distributions of the nodes. As αt de-
creases, the nodes in the MoHANET have shorter pause times
at their locations. Hence, their contact rate decreases. This also
corresponds to the situation where people avoid long visits to
each other and less people get infected. Here, αt = 2 corresponds
o a normal distribution which severely differs from TLW with
he realistic value αt = 0.8. Thus, these results show that the
obility parameters should be chosen carefully according to the
cenario so that they affect the estimations of the time course
f an epidemic. In addition, these results can also be considered
s the effect of a lockdown in an epidemic. As α decreases,
t
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he degree of mobility decreases. Hence, it is shown that the
ockdown can help to decrease the number of infected people.
or realistic results on the effect of airborne transmission, several
xperimental methods can be employed, which is discussed in the
ext section.

. A discussion on experimental techniques and simulations
or MoHANETs

In order to observe and model the airborne transmission
echanisms among humans, experimental setups and computer
imulations can be employed. In this section, we present and dis-
uss how the performance of the proposed methods in different
ayers of the MoHANET architecture can be evaluated.

In physical and reception layers, the emulation of breathing,
oughing and sneezing in experimental setups are realized by
espiratory machines or thermal manikins which can be heated
o change their temperature. These devices emit tracer gases
ncluding droplets. The concentration of droplets is measured by
ir samplers or via imaging techniques such as particle image ve-
ocimetry which gives the velocity and directions of droplets [18].
oreover, sprayer-based MC systems can also be used instead of

espiratory machines, manikins and air samplers [24,25].
Albeit reliable results can be obtained by physical experiments

egarding the consideration of droplet-air interaction and air-
lows, collected data have a low-resolution in space and time and
xperimental devices are expensive. Therefore, computational
luid dynamics (CFD) simulations are employed to evaluate the
irborne transmission mechanisms with a high spatiotemporal
esolution and less cost [18]. However, the simulation software
rograms are based on Navier–Stokes equations which lack the
apability to model all of the effects during the transmission
ealistically.

These experimental techniques and CFD simulations can be
mployed in physical and reception layers [26,44]. In the net-
orking layer, it is essential to model the spread of infectious
iseases with an approach that takes into account the interac-
ion of people and their mobility in both time and space. The
ovement patterns of humans can be simulated by synthetic
odels or trace-based models which rely on real mobility data of
obile nodes [45]. The adapted routing protocols for MoHANETs
an also be evaluated in time and space by employing these
obility models according to the scenario via network simulation
oftware. With a holistic perspective, new software is needed to
odel all of the issues at different layers of the MoHANET in a
ingle platform.

. Conclusion

This paper presents a framework to model airborne pathogen
ransmission with a communication engineering perspective. First
irborne pathogen transmission mechanisms are reviewed and
C is utilized to model the propagation and reception of this

ransmission. The concept of MoHANET is proposed to handle the
nfectious disease spread modeling problem by using a layered
tructure in macro- and microscales. Furthermore, a proof-of-
oncept study is given about the MoHANET architecture via
he proposed OMT algorithm. The holistic viewpoint of com-
unication engineering can bring different disciplines such as

luid dynamics, medicine, biology and epidemiology together for
ccurate predictions about the spread of infectious diseases. Nu-
erical results confirm that prevention measures that reduce the
umber of pathogen-laden droplets received by individuals or a
ealthier population, i.e., people with stronger immune systems,
an flatten the curve in an epidemic.
10
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