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Abstract
Neural models of contextual integration typically incorporate a mean firing rate representation.
We examine representation of the full spike count distribution, and its usefulness in explaining
contextual integration of color stimuli in primary visual cortex. Specifically, we demonstrate that a
factorizable model conditioned on the number of spikes can account for both the onset and
sustained portions of the response. We also consider a simplified factorizable model that
parametrizes the mean of a Gaussian distribution and incorporates a logistic nonlinearity. The
model can account for the sustained response but does not fair as well in accounting for onset
nonlinearities. We discuss implications for neural coding.
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1. Introduction
Sensory neurons exhibit striking nonlinear behaviors in the integration of contextual
information. For example, it has been widely documented that the response of a neuron to an
optimal center stimulus inside the classical receptive field can be nonlinearly modulated by a
surround stimulus that by itself exerts no response in the neuron (e.g., [1,5]). However, the
computational nature of this interaction for a range of center and surround stimuli is not well
understood. Here we focus on contextual integration of color in primary visual cortex (area
V1) [12].

Neural responses are often analyzed and modeled according to the mean firing rate. But
when a neuron is presented with multiple stimulus repeats, one can also characterize the
fluctuations around the mean firing rate, and more generally, a spike count distribution.
Specifically, we examine a neural model that is factorizable in the spike count domain:
conditioned on each spike count (say 0 spikes, 1 spike, and so on) the probability of
response can be factorized into a component selectively determined by the center, and a
component selectively determined by the surround. Similar models have been developed by
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Morton and Massaro to explain a wide range of information integration data in the
psychophysical realm [7,8], and hence have been called Morton Massaro [9,10].

We demonstrate the ability of the Morton Massaro model to account for color contextual
effects in V1 neurons, in comparison to a control model. The control is chosen to exemplify
that there exists a model with the same number of free parameters as Morton Massaro, that
cannot account for the data. This illustrates that the Morton Massaro model can explain the
data not merely due to the flexibility of its number of free parameters. An earlier version of
this workis described in Movellan et al. [10]. We also consider a parametric spike count
distribution model, the Gaussian logistic model, that conforms to Morton Massaro
factorizable coding, but contains significantly fewer parameters. Both factorizable models
account well for the sustained response, including suppression when the center is close to
the surround color; Morton Massaro fairs better in characterizing the onset of the response,
including suppression as before, and excitation when the center is roughly in the opposite
direction from the surround color.

2. Methods
Animal experimental methods and preparation are described in detail in Wachtler et al. [12].
Data were collected from awake fixating rhesus monkeys. Stimuli were homogeneous
isoluminant color squares centered on and at least twice the size of the estimated receptive
field of the neuron. A background stimulus surrounding the center was either color or
neutral gray. The color surround was typically chosen from the colors to which the neuron
showed a clear response. For each trial, one of eight center stimuli and one of the two
surround stimuli were presented for 500 ms. A total of 94 units were recorded, and 20 units
were chosen with strongest background effect and a minimum of 16 trials per condition.
Spike histograms were computed for spike times at the onset (a window at 50–100 ms
following stimulus presentation) and the sustained response (100–200 ms).

Typical nonlinearities observed in the mean firing of V1 neurons for a neutral gray versus
color surround are described in [12]. The color surround often induces suppression when the
center is similar to the surround color. In addition, excitation for the color surround
condition is sometimes observed when the center is roughly opposite the surround color. We
find that such excitation is particularly prominent during the early stages (onset) of the
response, albeit that the color surround alone does not elicit a response. The combination of
excitation and suppression cannot be explained by a multiplicative (factorizable) model in
the mean firing rate domain (data not shown here).

Alternatively, we consider models of the spike count distribution. For each center and
surround stimulus, a spike count distribution is computed by counting in a given time
window the number of stimulus repeats that lead to 0 spikes, 1 spike, 2 spikes and so on.

The Morton Massaro model is defined as follows:

(1)

where P(r|c, s) is the probability of r spikes for center c and surround s, C(c, r) represents the
support of the center component, and S(s, r) the support of the surround component. That is,
conditioned on the number of spikes r, the response probability can be factorized into a
component dependent on the center, and a component dependent on the surround. This form
of model can be understood in the context of a Bayesian system:
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We assume conditional independence of center and surround given the response: P(c, s|r) =
P(c|r)P(s|r); and transform the conditional probabilities P(c|r)P(s|r) into joint probabilities
P(c, r)P(s, r) and prior P(r) (equivalently for the denominator). This effectively yields Eq.
(1), with the term C(c, r)S(s, r) absorbing both the joint probabilities and prior.

We examine a control model for comparison:

(2)

with the same number of parameters as the Morton Massaro model.

We also introduce a parametric model, the Gaussian logistic model, in which the spike count
distribution for center c and surround s is given by a Gaussian distribution passed through a
logistic nonlinearity:

(3)

where X(s) ~ N(μ(s); σ), and X(c) ~ N(μ(c); σ) are Gaussian distributions with mean μ and
standard deviation σ; and logistic(Y) = 1/(1 + exp(−(Y − θ)* α)) includes threshold θ and
gain α. Thus, the mean of the input to the logistic function changes with c and s. Also, the
logistic function defined for values between 0 and 1, is scaled to go between 0 and the
maximal number of spike counts.

Note that this formulation does not include the number of spikes as a free parameter.
Therefore, Eq. (3) is not conditioned on the number of spikes, as are Eqs. (1) and (2). In
addition, one can prove from the properties of a Gaussian distribution that this simplified
model adheres to Morton Massaro factorizability. Nevertheless, the parametrized model is
more constrained and does not necessarily entail the full capabilities of Morton Massaro. For
this data set and up to 9 spikes, there are overall 144 data points, 81 free parameters in the
Morton Massaro and Control models, and only 13 free parameters in the Gaussian logistic
model.

3. Results
We fit each of the V1 neurons with the Morton Massaro, the control, and the Gaussian
logistic model. Fig. 1 depicts the V1 spike count distribution and estimated Gaussian logistic
model fit for an example neuron. The logistic function provides a nonlinear distortion of the
initial Gaussian distribution. For example, when a Gaussian distribution is passed through a
logistic nonlinearity, low values of the distribution are pushed towards zero, resulting in
higher kurtosis. This property is apparent in the data, and well captured by the Gaussian
logistic model (also by the more general Morton Massaro model, see [10]).

Another aspect of interest is whether the models can capture mean firing rate nonlinearities.
From the model fits of the spike count distribution, one can compute the mean tuning
curves. Fig. 2 plots the mean tuning curves and model fits for the example neuron for the
sustained and onset response. The tuning curves are plotted in polar coordinates along an
isoluminant plane, in which the radius corresponds to the strength of the mean spike rate.
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Each polar plot compares the response of the neuron for a color surround versus a gray
surround. Both factorizable models account for the sustained response, in which there is
suppression for center similar to the surround color; Morton Massaro also captures the
nonlinearity apparent at the onset, including both suppression as before, and excitation for
center roughly opposite the surround color. For comparison, the control model with the same
number of free parameters as Morton Massaro cannot account for the mean tuning curve
data.

We also compare the χ2 values of the 20 V1 neurons for the different models for the onset
and sustained response. Fig. 3 shows scatter plots of the normalized (by the degrees of
freedom) χ2 values for all 20 neurons for the different models. One can set a critical value,
signifying significant deviations from the model. During sustained response, 2 neurons show
significant deviations to the Morton Massaro model (χ2 test, 144 − 81 = 63 degrees of
freedom, p < 0.05); 4 to the Gaussian logistic (144 − 13 = 131 degrees of freedom, p <
0.05); and 12 to the control model (144 − 81 = 63 degrees of freedom, p < 0.05). At onset, 5
show significant deviations to the Morton Massaro model; 11 to the Gaussian logistic; and 9
to the control model. The Morton Massaro model performs better than the Gaussian logistic
and control for both the sustained and onset response, as seen by the number of significant
deviations, and by most points falling below the unit slope line in the scatter plots. Both
factorizable models perform better than the control model for the sustained response.

4. Discussion
We have shown that a factorizable operation combining center and surround information per
each number of spikes, as in the Morton Massaro model, can account for contextual color
nonlinearities in area V1. In contrast, a control model with the same number of parameters
as Morton Massaro could not explain the data. These results suggest that the number of
spikes might play an important role in neural representations, and that factorizable coding
conditioned on the number of spikes might constitute a general principle for cortical
processing.

The Gaussian logistic model offers a step forward towards thinking about neural
implementations. However, although the Gaussian logistic model conforms to spike count
distribution factorizability, it is more constrained in its computation per number of spikes. In
practice, it could not account as well for the combination of excitation and suppression often
apparent at early stages of the response. We are investigating in greater detail those cases in
which there are significant deviations from the model. Deviations from the model might
occur if the classical receptive field was underestimated experimentally. We are also
examining variations of the parametric model, and how these might relate to divisive
normalization models that have been proposed for the mean firing rate (e.g., [5,6]).

This framework for thinking about spike count distributions and factorizability can be
applied to a number of future directions. In the modeling perspective, it will be pertinent to
construct more realistic neural circuitry that can account for the data. Morton Massaro
factorizable codes are often described as feedforward, but more recent work has
demonstrated that feedback implementations can in fact be consistent with this form of
factorizability [9]. Additionally, we have tested the model under two time windows (termed
onset and sustained), but a more complete model ought to account dynamically for the
response over time. Experimentally, factorizable models should be examined across other
stimulus attributes and neural areas, with the goal of understanding the generality of spike
count factorizability. We have also found that many experiments either include too few
stimulus repeats, or do not explore sufficiently combinations of contextual stimuli—our
results emphasize the need to increase both. For our particular experiment, it would be
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important to explore a wider range of surround colors. Theoretically, it has been suggested
that a role of early sensory processing might be to increase independence between neuronal
responses, when exposed to natural stimuli (e.g., [2–4,11]). The line of work presented here
and in [10] suggests an alternative (but not mutually exclusive) notion of efficiency: that
when conditioning on the number of spikes, external aspects of stimuli in the world are
independent. These ideas can be explored through statistical analysis of natural scenes.
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Fig. 1.
Spike count distribution representation and Gaussian logistic model fit for example V1
neuron for window 100–200 ms. Each histogram is computed for a given center and
surround condition. First row corresponds to 8 color center stimuli on neutral gray surround;
second row corresponds to the same stimuli on color surround. Data are given by points and
model fits by solid lines. Error bars are obtained from bootstrapping.
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Fig. 2.
Mean spike counts of data and model fits of example V1 neuron. Top row: mean tuning
curves computed for sustained response (100–200 ms); Bottom row: mean tuning curves
computed for onset (50–100 ms). Mean spike counts are calculated from the estimated spike
count distributions in Fig. 1, and plotted as tuning curves in polar coordinates along the (L-
M,S) plane. Data are given by points and model fits by solid lines. Gray corresponds to
neutral gray surround, and black to color surround. Black square indicates the background
color for the color surround condition. Note that for the control model sustained response,
the gray and blacklines largely overlap.
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Fig. 3.
Scatter plots of normalized χ2 values for the 20 neurons as a function of the different
models. Top: sustained response; bottom: onset. To compare across models, we subtract
from each χ2 value the corresponding degrees of freedom, and normalize the axis between 0
and 1. Y-axis always corresponds to normalized Morton Massaro χ2; the X-axis
corresponds to either the Gaussian logistic (left) or Control model (right). Points below unit
slope line indicate a lower normalized χ2 value for the Morton Massaro model.

Schwartz et al. Page 8

Neurocomputing. Author manuscript; available in PMC 2010 November 26.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript


