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Abstract

A locally regularized orthogonal least squares (LROLS) algorithm is proposed for

constructing parsimonious or sparse regression models that generalize well. By associating

each orthogonal weight in the regression model with an individual regularization parameter,

the ability for the orthogonal least squares model selection to produce a very sparse model

with good generalization performance is greatly enhanced. Furthermore, with the assistance of

local regularization, when to terminate the model selection procedure becomes much clearer.

A comparison with a state-of-the-art method for constructing sparse regression models,

known as the relevance vector machine, is given. The proposed LROLS algorithm is shown to

possess considerable computational advantages, including well conditioned solution and faster

convergence speed.
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1. Introduction

A basic principle in practical nonlinear data modeling is the parsimonious
principle of ensuring the smallest possible model that explains the data. The
orthogonal least squares (OLS) algorithm [9,11] is an efficient learning procedure for
constructing sparse regression models. A key feature of the OLS algorithm is its
ability to reveal the contribution of individual selected model regressor to modeling
accuracy. This enables the selection of only those significant regressors and is
responsible for producing parsimonious models (see [9,11]). A simple mechanism is
automatically built into the OLS algorithm to avoid any ill-conditioning of learning
problems. A data modeling problem becomes ill-conditioned if some of the
eigenvalues of its associated design matrix are almost zero. For the OLS selection
procedure, as a byproduct of orthogonalization, the eigenvalue or the energy of each
candidate regressor is explicitly given. Thus if the energy of a candidate regressor is
smaller than a threshold value, it will not be considered at all. Some other well-
known construction algorithms based on the parsimonious principle can be found in
[16,20,6,7]. The parsimonious principle alone however is not entirely immune to
over-fitting. If data are highly noisy, small models constructed may still fit into noise.
A useful technique for overcoming over-fitting is regularization [19,4,23]. By
combining the parsimonious principle with a regularization method, a regularized
OLS algorithm has been developed [10], which is capable of constructing sparse
models with excellent generalization properties under severely noisy conditions. This
regularized OLS algorithm employs a single common regularization parameter for
every orthogonal weights in the model. For this reason, it is referred to as the
uniformly regularized OLS (UROLS) algorithm.

It is worth pointing out an obvious but often overlooked property of the OLS
algorithm. The subset model selection is carried out in the transformed orthogonal
space, but the selected subset of the orthogonal regressors or bases corresponds
precisely to a subset of the original model bases, that is, the algorithm actually selects
a subset of the original model regressors. In other words, the sub-space spanned by
the selected orthogonal bases is the same space spanned by the corresponding subset
of the original model regressors. This is very different to the situation in many signal
processing applications, where the objective is to transform the original signal space
onto a new space and to tackle the problem on a transformed subspace. This can be
achieved, for example, by using singular value decomposition (SVD) [17]. A subset
of the orthonormal bases, which correspond to the largest eigenvalues, is selected to
form the required subspace. Because each orthogonal base is a linear combination of
all the original model regressors, it is not known which subset of the original model
regressors can exactly represent the subspace spanned by the used orthogonal bases.
When a subset model consisting of a subset of the original model regressors is
required, the OLS algorithm has clear advantages. The one-to-one property of the
OLS algorithm also ensures that introducing regularization in the orthogonal weight
space is equivalent to introducing regularization in the original model weight space.

Recently, the support vector machine (SVM) method [27] has been gaining
popularity and has been regarded as the state-of-the-art technique for regression and
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classification applications. It is believed that the formulation of SVM embodies the
structural risk minimization principle, thus combining excellent generalization
properties with a sparse model representation. Despite of these attractive features
and many good empirical results obtained using the SVM method, data modeling
practicians have begun to realize that the ability for the SVM method to produce
sparse models has perhaps been overstated. For example, it has been shown that the
standard SVM technique is not always able to construct parsimonious models in
system identification [15]. A recent study [21] has compared the SVM and UROLS
algorithms using time series prediction problems, and has found that the both
methods have similar excellent generalization performance but the UROLS
algorithm is able to produce much sparser models. In an application to
communication multiuser detection [12], which is a classification problem, the
SVM method performs well but the resulting detector model is not sparse enough.
The fact that the SVM technique may not guarantee a sufficiently sparse model is the
motivation for Tipping [26] to introduce the relevance vector machine (RVM)
method.

The RVM method can be viewed from a Bayesian learning framework [23,24], and
it has an identical functional form to the SVM. The results given in [26] have
demonstrated that the RVM has a comparable generalization performance to the
SVM but requires dramatically fewer kernel functions or model terms than the SVM.
The introduction of an individual hyperparameter for every weight of the regression
model is the key feature of the RVM method, and is ultimately responsible for the
sparsity properties of the RVM method [26]. During the optimization process, many
of these hyperparameters are driven to large values, so that the corresponding model
weights are effectively forced to be zero. Thus the corresponding model terms are
removed from the trained model. A drawback of the RVM method is a significant
increase in computational complexity, compared with the SVM method. The
iterative optimization process involved in the RVM method is inherently ill-
conditioned, and computationally intensified and numerically robust methods, such
as the SVD or other pseudo-inverse algorithms, often have to be used to solve for the
corresponding optimization problem.

In this paper, an individually regularized approach is adopted to assist the OLS
model selection. In this approach, each candidate regressor has an associated
individual regularization parameter. From the Bayesian viewpoint, a regularization
parameter is equivalent to the ratio of the related hyperparameter to the noise
parameter [23]. In this sense, the proposed locally regularized orthogonal least
squares (LROLS) algorithm bears some relationship to the RVM method. However,
the LROLS algorithm has the ability to reveal the significance of individual model
regressor and only selects those significant terms, just as the original OLS algorithm.
Local regularization further help to enhance the sparsity of the selected model. The
computation requirements are simple and the associated optimization process does
not suffer from numerical ill-conditioning. As in [10], the regularization is introduced
in the orthogonal regression weight space rather than the original regression weight
space. Thus the Hessian matrix associated with the updating of regularization
parameters is diagonal. This further simplifies the computational requirement of the
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iterative optimization process. In the original OLS model selection procedure, when
to terminate the selection process is often not a clear cut. With the individually
regularized approach, deciding when to terminate selection becomes much simpler.
It should be emphasized that local regularization or smoothing has been considered
before [25]. However, in [25] regularization is done in the original regression weight
space. Thus updating of regularization parameters requires intensive computation
and the problem is ill-conditioned. The algorithm of [25] does not select significant
model terms and in this sense it is similar to the RVM method.

Before proceeding to the derivation of the LROLS algorithm, the choice of specific
regularization scheme is commented. Different regularization schemes can be
interpreted as different choices of prior in Bayesian learning. A commonly used
Bayes prior is Gaussian prior [23,24]. Another choice is Laplacian prior [1,18], which
is also known to produce very sparse linear regression models. A Gaussian prior is
adopted in the derivation of the LROLS algorithm. The resulting regularizer is
quadratic and fits naturally into the quadratic cost function for subset model
selection. Furthermore, the evidence procedure [23] can readily be applied to
optimize the regularization parameters. A general limitation inherent to the evidence
framework is that the computation of the associated Hessian matrix is expensive and
it is possible that this Hessian matrix is singular or near singular, and thus non-
invertible. Some eigenvalues of the Hessian matrix may even become negative
numerically [5], and thus cause numerical instability. It is worth re-emphasizing that
this difficulty does not exist in the LROLS algorithm. The Hessian matrix required is
readily provided by the OLS selection process, and it is well-conditioned and
diagonal. The inverse of the Hessian matrix is thus trivial. This ensures that the
iterative procedure for updating regularization parameters in the LROLS algorithm
is well behaved and converges fast.
2. The regression model

Consider the general discrete-time nonlinear system represented by the nonlinear
model [8]:

yðkÞ ¼ f ðyðk � 1Þ; . . . ; yðk � nyÞ; uðk � 1Þ; . . . ; uðk � nuÞÞ þ eðkÞ ¼ f ðxðkÞÞ þ eðkÞ,

(1)

where uðkÞ and yðkÞ are the system input and output variables, respectively, nu and ny

are positive integers representing the lags in uðkÞ and yðkÞ, respectively, eðkÞ is the
system white noise, xðkÞ ¼ ½yðk � 1Þ � � � yðk � nyÞ uðk � 1Þ � � � uðk � nuÞ�

T denotes
the system ‘‘input’’ vector, and f ð�Þ is the unknown system mapping. The system
model (1) is to be identified from an N-sample observation data set fxðkÞ; yðkÞgNk¼1
using some suitable functional which can approximate f ð�Þ with arbitrary accuracy.
One class of such functionals is the kernel regression model of the form:

yðkÞ ¼ ŷðkÞ þ eðkÞ ¼
XnM
i¼1

yifiðkÞ þ eðkÞ; 1pkpN, (2)
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where ŷðkÞ denotes the model output, yi are the model weights, fiðkÞ ¼ fiðxðkÞÞ are
the regressors, and nM is the total number of candidate regressors or model terms.
The model (2) is very general and includes, for example, all the kernel based models,
the polynomial-expansion model [9], and the general ‘‘linear-in-the-parameter’’
nonlinear model [2]. By defining

y ¼ ½ yð1Þ � � � yðNÞ�T, (3)

U ¼ ½U1 � � �UnM �, (4)

Ui ¼ ½fið1Þ � � � fiðNÞ�
T, (5)

h ¼ ½y1 � � � ynM �
T, (6)

e ¼ ½eð1Þ � � � eðNÞ�T, (7)

the regression model (2) can be rewritten in the matrix form

y ¼ Uhþ e. (8)

Let an orthogonal decomposition of the regression matrix U be

U ¼WA, (9)

where

A ¼

1 a1;2 � � � a1;nM

0 1 . .
. ..

.

..

. . .
. . .

.
anM�1;nM

0 � � � 0 1

2
666664

3
777775 (10)

and

W ¼ ½w1 � � �wnM � (11)

with orthogonal columns that satisfy wT
i wj ¼ 0, if iaj. The regression model (8) can

alternatively be expressed as

y ¼Wgþ e, (12)

where the orthogonal regression weight vector g ¼ ½g1 � � � gnM
�T satisfy the

triangular system

Ah ¼ g. (13)

Knowing A and g, h can readily be solved from (13).
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3. The locally regularized OLS algorithm

The LROLS algorithm is based on the following regularized error criterion:

JRðg;kÞ ¼ eTeþ
XnM
i¼1

lig
2
i ¼ eTeþ gTKg, (14)

where k ¼ ½l1 � � � lnM �
T is the regularization parameter vector, and

K ¼ diagfl1; . . . ; lnMg. The UROLS algorithm [10] and the original OLS algorithm
[9] can be viewed as the two special cases of this LROLS algorithm by setting li ¼ l
and li ¼ 0 8i, respectively. After some simplification (see Appendix A), the criterion
(14) can be expressed as

eTeþ gTKg ¼ yTy�
XnM
i¼1

ðwT
i wi þ liÞg

2
i . (15)

Normalizing (15) by yTy yields

ðeTeþ gTKgÞ=yTy ¼ 1�
XnM
i¼1

ðwT
i wi þ liÞg

2
i =y

Ty. (16)

As in the case of the OLS algorithm [9], the regularized error reduction ratio due to
wi is defined by

½rerr�i ¼ ðw
T
i wi þ liÞg

2
i =y

Ty. (17)

Based on this ratio, significant regressors can be selected in a forward-regression
procedure similar to the case of the OLS algorithm [9]. The selection is terminated at
the nsth stage when

1�
Xns

l¼1

½rerr�lox, (18)

is satisfied, where 0oxo1 is a chosen tolerance. This produces a sparse model
containing ns ð5nMÞ significant regressors. The detailed algorithm selection
procedure is given in Appendix B. Note that, in the selection procedure, if wT

i wi is
too small (near zero), this term will not be selected. Thus, any ill-conditioning or
singular situations can automatically be avoided.

The Bayesian evidence procedure [23] can readily be used to ‘‘optimize’’ the
regularization parameters. From the Bayesian viewpoint, the following error
criterion is equivalent to the criterion (14):

JBðg; h; bÞ ¼ beTeþ
XnM
i¼1

hig
2
i ¼ beTeþ gTHg, (19)

where b is the noise parameter (estimate of the inverse of noise variance), h ¼

½h1 � � � hnM �
T is the hyperparameter vector, and H ¼ diagfh1; . . . ; hnMg. The relation-

ship between a regularization parameter and its corresponding hyperparameter is
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obviously given by

li ¼
hi

b
. (20)

Following MacKay [23], it can be shown that the log evidence for h and b is

logðevidenceÞ ¼
XnM
i¼1

1

2
logðhiÞ �

nM

2
logðpÞ �

N

2
logð2pÞ þ

N

2
logðbÞ

�
XnM
i¼1

1

2
hig

2
i �

1

2
beTe�

1

2
logðdetðBÞÞ þ

nM

2
logð2pÞ. ð21Þ

Because of the orthogonalization, the ‘‘Hessian’’ matrix B is diagonal and is given by

B ¼ Hþ bWTW ¼ diagfh1 þ bwT
1w1; . . . ; hnM þ bwT

nM
wnMg. (22)

Setting the derivatives of logðevidenceÞ with respect to h and b to zeros yields the
updating formulas for h and b, respectively. Substituting these updating formulas
into (20) results in the updating formulas for the regularization parameters:

lnewi ¼
goldi

N � gold
eTe

g2
i

; 1pipnM, (23)

where

gi ¼
wT

i wi

li þ wT
i wi

(24)

and

g ¼
XnM
i¼1

gi. (25)

As a special case, the single regularization parameter in the UROLS is updated using
[10]

lnew ¼
gold

N � gold
eTe

gTg
with g ¼

XnM
i¼1

wT
i wi

lþ wT
i wi

. (26)

The iterative model selection procedure can now be summarized:
Initialization:
 Set li, 1pipnM to the same small positive value (e.g. 0.001).
Step 1: Given the current k, use the procedure described in Appendix B to select a
subset model with ns terms.

Step 2: Update k using (23)–(25) with nM ¼ ns. If k remains sufficiently unchanged
in two successive iterations or a pre-set maximum iteration number is reached, stop;
otherwise go to Step 1.

At the beginning of the iterative loop, the value of x for terminating subset model
selection can deliberately be chosen to be smaller than really needed, so that Step 1
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produces a ns-term model which is larger than what is really needed. This ensures
that no significant terms are lost when k is far from its optimal value. When k has
converged (typically after 10 iterations), an appropriate value of x should then be
used to produce a parsimonious final model.

It is worth pointing out, however, that the choice of x is less critical than the
original OLS algorithm. In the original OLS selection procedure, when data is very
noisy, it is possible that the normalized (training) mean square error (MSE) 1�P
½err�l continuously decreases as more terms are added, as these unnecessarily

added regressors may simply fit into the noise in the training data. This may lead to
over-fitting. Often a cross-validation using a separate testing data set is required to
learn an appropriate value for x. For the LROLS algorithm, multiple regularizers
enforce sparsity, and 1�

P
½rerr�l will not continuously decreases as more terms are

added. This is because those unnecessarily added terms will have very large ll

associated with them, effectively forcing their weights to be zero. Thus, when to
terminate model selection or how many regressors to include in the final model
becomes much clearer. This will be illustrated in the simulation examples. It should
also be pointed out that the above iterative procedure can generally find a local
optimal k. As in [14], a genetic algorithm can be combined with the LROLS method
to find a global optimal k. This is however achieved at the cost of a considerable
increase in complexity, and therefore this strategy is not adopted here.
4. Comparison with the relevance vector machine

Adopting the equivalent regularization formula, the RVM for regression [26]
involves an iterative loop of the model parameter estimation and regularization
parameter updating. With given k, the model parameter estimate is the usual
regularized least squares solution:

h ¼ ~B
�1

UTy, (27)

where the Hessian matrix ~B is given by

~B ¼ UTUþ K. (28)

The regularization parameters are updated using

lnewi ¼
~goldi

N � ~gold
eTe

y2i
; 1pipnM, (29)

where

~g ¼
XnM
i¼1

~gi with ~gi ¼ 1� lib̄i;i (30)

and b̄i;i denotes the ith diagonal element of ~B
�1
.

It is clear that the RVM starts with the full model set U and removes those model
regressors that have large values in their associated regularization parameters. In
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other words, it is based on the backward elimination principle. This is in contrast to
the forward selection principle adopted by the LROLS algorithm. It is well known
and obvious that forward selection is computationally more attractive compared
with backward elimination. More importantly, in the LROLS algorithm, only a
subset matrix of the Hessian matrix b�1B (see (22)) is used in updating the
regularization parameters. This subset Hessian matrix is diagonal and well-
conditioned with a small eigenvalue spread. Therefore, the inverse of the Hessian
is trivial, the regularization parameter updating is exact and simple, and the iterative
procedure converges fast. For the RVM, the Hessian matrix may be ill-conditioned
or even singular, the regularization parameter updating is much more expensive, and
the iterative procedure generally converges with slower rate and may suffer from
numerical instability.

To summarize, the generalization capabilities and levels of sparsity produced for
both the RVM and LROLS are expected to be similar, since they both use an
approach of multiple regularizers to enforce sparsity and adopts a similar evidence
procedure for updating regularization parameters. However, the RLOLS algorithm
has considerable computational advantages, it can operate robustly in difficult
modeling conditions, and its iterative loop generally converges faster compared with
the RVM. The RVM may suffer from numerical instability or even fails to work if
the conditional number or eigenvalue spread of the underlying modeling problem is
extremely large.
5. Simulation results

Three examples were used in simulation to illustrate the LROLS algorithm
discussed in Section 3 and to compare its performance with the OLS and UROLS
algorithms, and the RVM method.

Example 1. This was the simple example of modeling the scalar function

f ðxÞ ¼ sinð2pxÞ; 0pxp1, (31)

by a Gaussian radial basis function (RBF) network. The Gaussian kernel function
used had a variance of 0.04. One hundred training data were generated from
y ¼ f ðxÞ þ �, where x was taken from the uniform distribution in ð0; 1Þ and the noise
� had a Gaussian distribution with zero mean and variance 0.16. The noisy training
points y and the underlying function f ðxÞ are plotted in Fig. 1. As each training data
x was considered as a candidate RBF center, there were nM ¼ 100 regressors in the
model (2). Note that the training data were very noisy, and this learning problem was
ill-conditioned as x was drawn randomly from ð0; 1Þ. For this simple example, many
sets of different noisy training data were generated, and the modeling results were
consistent and similar to the results shown below, which were typical.

It is informative to examine the selection process of the OLS algorithm, listed in
Table 1. Notice that the normalized MSE continuously decreased as more terms
were added. The procedure stopped at the 16th stage, when it detected that adding
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Table 1

OLS selection procedure for the simple scalar function modeling problem

Stage l Accuracy 1�
P
½err�l Weight yl

1 0.6461718264 2:60935eþ 06

2 0.2840641827 �2:28370eþ 06

3 0.2416057207 �1:29831eþ 08

4 0.2260673781 �2:21722eþ 09

5 0.2189319619 3:63027eþ 08

6 0.2179112365 1:66438eþ 09

7 0.2169210404 �3:19282eþ 09

8 0.2156145110 1:70011eþ 09

9 0.2135190658 4:06932eþ 09

10 0.2113153903 �1:94658eþ 09

11 0.2108713704 �2:72236eþ 08

12 0.2095033180 �4:28658eþ 07

13 0.2093349973 5:60372eþ 06

14 0.2091282455 �1:59224eþ 06

15 0.2068241235 3:83400eþ 05

Stop due to no term selected at 16 stage

MSE over noisy training set: 0.147430

Fig. 1. A typical set of noisy training data y (dots) and underlying function f ðxÞ (curve) for the simple

scalar function modeling problem.

S. Chen / Neurocomputing 69 (2006) 559–585568
one more term would cause the problem to be singular or very ill-conditioned. This
produced a 15-term model. The model weights had very large value, as can be seen in
Table 1. This was a typical sign of over-fitting. The MSE over the training set was
smaller than the noise variance, indicating that the model was fitted into the noise.
Over-fitting can also be seen clearly by the model map given in Fig. 2. Notice that
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Fig. 2. Model mapping (curve) produced by the OLS algorithm for the simple scalar function modeling

problem. Dots indicate noisy training data y and circles the RBF centers.

Table 2

UROLS selection procedure for the simple scalar function modeling problem after l has converged (10

iterations)

Stage l Accuracy 1�
P
½rerr�l Weight yl

1 0.6490143575 1:62388eþ 00

2 0.2908595802 �2:28935eþ 00

3 0.2508542689 �8:48791e� 01

4 0.2361130705 8:22056e� 01

5 0.2322792890 1:03731eþ 00

6 0.2312755537 �3:73154e� 01

7 0.2312749762 3:01529e� 02

8 0.2312737869 �1:51268e� 02

9 0.2312736479 �5:40054e� 03

10 0.2312736475 3:76698e� 04

11 0.2312736474 9:55162e� 05

12 0.2312736474 �1:27653e� 05

13 0.2312736474 �2:25256e� 07

Stop due to no term selected at 14 stage

MSE over noisy training set: 0.156678

Regularization parameter l: 3:09037e� 01

S. Chen / Neurocomputing 69 (2006) 559–585 569
even smaller models were used, say 12-term or 10-term ones, similar over-fitted
results were produced.

For the UROLS algorithm, it was seen that 10 iterations was sufficient to ensure
the convergence of the iterative procedure. The model selection procedure, after the
single l had converged, is listed in Table 2. The selection stopped at the 14th stage, as
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there was no more candidate which would not cause an ill-conditioning or singular
problem. The modeling accuracy 1�

P
½rerr�l remained unchanged after the 11th

stage. Examining the weight of the 13th regressor, which was effectively zero. This
indicated a 12-term model. The model map produced by this 12-term model
is depicted in Fig. 3, where it is clearly seen that over-fitting did not occur. From
Fig. 3. Model mapping (curve) produced by the UROLS algorithm for the simple scalar function

modeling problem. Dots indicate noisy training data y and circles the RBF centers.

Table 3

LROLS selection procedure for the simple scalar function modeling problem after k has converged (10

iterations)

Stage l Accuracy 1�
P
½rerr�l Weight yl Regularizerll

1 0.6485054202 1:87494eþ 00 2:53227e� 01

2 0.2887313702 �1:70014eþ 00 1:81540e� 01

3 0.2500895914 �1:00970eþ 00 2:01490e� 01

4 0.2349327688 5:67310e� 01 8:64601e� 01

5 0.2336724743 4:17979e� 01 1:36357eþ 00

6 0.2332827490 �1:51352e� 01 6:93984e� 01

7 0.2332827490 �9:49873e� 10 5:67623eþ 07

8 0.2332827490 �2:79967e� 10 1:11770eþ 08

9 0.2332827490 7:14157e� 11 1:03860eþ 07

10 0.2332827490 �2:05313e� 12 1:92708eþ 08

11 0.2332827490 �1:32386e� 13 7:85977eþ 08

12 0.2332827490 2:29641e� 14 4:09979eþ 08

13 0.2332827490 �2:53260e� 38 1:15132eþ 32

Stop due to no term selected at 14 stage

MSE over noisy training set: 0.159167
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Table 2, it can be seen that the 12th and 11th terms also had very small weights,
indicating a 10-term model was also feasible. This 10-term model had an identical
performance to that of the 12-term model. The generalization performance of the
model produced by the UROLS algorithm was obviously very good.

The LROLS selection procedure, after k had converged (10 iterations), is listed in
Table 3. The selection stopped at the 14th stage, as there was no more candidate
which would not cause an ill-conditioning or singular problem. The modeling
accuracy 1�

P
½rerr�l however remained unchanged after the 6th stage. The

regularization parameters related with the 7–13th terms were all very large, and
Fig. 4. Model mapping (curve) produced by the LROLS algorithm for the simple scalar function

modeling problem. Dots indicate noisy training data y and circles the RBF centers.

Table 4

Model obtained by the RVM for the simple scalar function modeling problem after k has converged (40

iterations)

Weight yl Regularizer ll

1:27556e� 01 1:12245eþ 00

1:66234e� 01 8:62460e� 01

7:68171e� 03 1:78695eþ 01

�1:72753e� 01 6:15214e� 01

�1:57279eþ 00 5:90294e� 02

5:29620e� 03 2:09115eþ 01

5:26387e� 03 2:10376eþ 01

�4:34350e� 01 7:69138e� 01

1:08845eþ 00 1:21877e� 01

8:99832e� 01 1:63270e� 01

MSE over noisy training set: 0.157819
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Fig. 5. Model mapping (curve) produced by the RVM algorithm for the simple scalar function modeling

problem. Dots indicate noisy training data y and circles the RBF centers.

Fig. 6. Phase plot of a typical set of noisy training data (yð0Þ ¼ yð�1Þ ¼ 0:0) for the two-dimensional time

series modeling problem.

S. Chen / Neurocomputing 69 (2006) 559–585572
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the associated model weights were effectively zero. This clearly indicated a 6-term
model. The model map produced by this 6-term model is depicted in Fig. 4, where it
can be seen that the generalization performance of this 6-term model was similar to
that of the 12-term model produced by the UROLS algorithm. The LROLS
Fig. 7. Phase plot of the noise-free two-dimensional time series (ydð0Þ ¼ ydð�1Þ ¼ 0:1).

Table 5

OLS selection procedure for the two-dimensional time series problem based on cross-validation

Stage l MSE over training set MSE over testing set

34 0.088584 0.097726

35 0.088541 0.097367

36 0.088423 0.097092

37 0.088099 0.096657

38 0.088027 0.097092

39 0.087922 0.097411

40 0.087875 0.097136

41 0.087745 0.097570

42 0.087561 0.098307

43 0.087426 0.099624

44 0.087106 0.101361
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algorithm had advantages of producing a sparser model with a clear-cut decision on
how many terms to include in the final model.

For the RVM, the iterative loop was observed to converge slower compared with
the LROLS algorithm. In fact, with 20 iterations, the resulting model contained 20
terms, and it took 40 iterations to produced the final sparse model of 10 terms, listed
in Table 4. The model map generated by this 10-term model is shown in Fig. 5. As
expected, the generalization capability of this constructed model is similar to those
produced by the UROLS and LROLS algorithms.
Example 2. This was a two-dimensional simulated nonlinear time series given by

yðkÞ ¼ 0:8� 0:5 expð�y2ðk � 1ÞÞ
� �

yðk � 1Þ � 0:3þ 0:9 expð�y2ðk � 1ÞÞ
� �

yðk � 2Þ

þ 0:1 sinðpyðk � 1ÞÞ þ �ðkÞ, ð32Þ

where the noise �ðkÞ was Gaussian with zero mean and variance 0.09. One thousand
noisy samples were generated given yð0Þ ¼ yð�1Þ ¼ 0:0. The first 500 data points,
plotted in Fig. 6, were used for training, and the other 500 samples were used for
possible cross-validation. The underlying noise-free system
Fig. 8. Phase plot of the iterative RBF model output (ŷdð0Þ ¼ ŷdð�1Þ ¼ 0:1). The 37-term model was

selected by the OLS algorithm.
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ydðkÞ ¼ 0:8� 0:5 expð�y2
dðk � 1ÞÞ

� �
ydðk � 1Þ

� 0:3þ 0:9 expð�y2
dðk � 1ÞÞ

� �
ydðk � 2Þ

þ 0:1 sinðpydðk � 1ÞÞ ð33Þ

was specified by a limit circle, as shown by the one thousand samples given in Fig. 7
with ydð0Þ ¼ ydð�1Þ ¼ 0:1. A Gaussian RBF model of the form

ŷðkÞ ¼ f RBF ðxðkÞÞ, (34)

with xðkÞ ¼ ½yðk � 1Þ yðk � 2Þ�T, was constructed using the noisy training data. The
Gaussian kernel function was chosen to have a variance of 0.81. As each data point
xðkÞ was considered as a candidate RBF center, nM ¼ 500.

When using the OLS algorithm to select a subset model, the MSE continuously
decreased as more terms were added. The choice of x should ensure that the selection
procedure is terminated at an appropriate model size. Basically, a trade-off between
training performance and model complexity is required, and there is no simple
uniform rule for deciding the desired value for x—it often has to be learnt by
interacting with the selection procedure. An alternation termination criterion is
based on the Akaike information criterion [22]

AICðwÞ ¼ N logðeTe=NÞ þ nsw, (35)
Table 6

UROLS selection procedure for the two-dimensional time series problem after l has converged (10

iterations)

Stage l Accuracy 1�
P
½rerr�l Weight yl

25 0.1248104407 �2:75251e� 01

26 0.1248096321 �3:42929e� 01

27 0.1248084895 �6:96862e� 02

28 0.1248074233 7:82537e� 02

29 0.1248067749 1:26036e� 01

30 0.1248061653 1:45025e� 01

31 0.1248057240 8:11109e� 02

32 0.1248051109 �4:57533e� 02

33 0.1248048539 1:29904e� 01

34 0.1248038870 �8:58027e� 02

35 0.1248037989 2:16182e� 02

36 0.1248037697 1:23090e� 02

37 0.1248037567 1:01068e� 02

38 0.1248037541 7:58840e� 03

39 0.1248037474 1:18317e� 02

40 0.1248037434 6:19265e� 03

MSE of 30-term model over training set: 0.091087

MSE of 30-term model over testing set: 0.095067

Regularization parameter l: 8:56570e� 02
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where w is the critical value of the chi-squared distribution with one degree of
freedom and for a given level of significance. The regressors are selected by the OLS
algorithm and the selection is terminated when the AIC reaches the minimum. With
this approach, an appropriate value for w has to be chosen. A practical strategy to
avoid an oversized model is to have a separate validation data set at a cost of
increasing complexity. The model selection is carried out on the training set, and the
MSE of the selected model over the validation set is monitored. When this testing
accuracy ceases to improve, the selection procedure is terminated. Using this
strategy, the OLS model selection procedure is listed in Table 5, which indicated a
37-term model. The selected 37-term model was used to iteratively generate the time
series according to

ŷdðkÞ ¼ f RBF ðx̂dðkÞÞ, (36)

with x̂dðkÞ ¼ ½ŷdðk � 1Þ ŷdðk � 2Þ�T and given the initial condition
ŷdð0Þ ¼ ŷdð�1Þ ¼ 0:1. The resulting phase plot is shown in Fig. 8.

The UROLS selection procedure took 10 iterations to converge and the selection
procedure, after the single l had converged, is given in Table 6. Using the training set
alone and without specifying an appropriate stopping threshold x, there was some
difficulty to determine when to stop the selection but the situation was clearer than
Fig. 9. Phase plot of the iterative RBF model output (ŷdð0Þ ¼ ŷdð�1Þ ¼ 0:1). The 30-term model was

selected by the UROLS algorithm.
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Table 7

LROLS selection procedure for the two-dimensional time series problem after k has converged (10

iterations)

Stage l Accuracy 1�
P
½rerr�l Weight yl Regularizer ll

14 0.1261656992 �1:88490eþ 00 2:97139eþ 00

15 0.1261217915 2:91399e� 01 1:44933eþ 00

16 0.1261071047 2:63144eþ 00 2:50988e� 01

17 0.1257874268 1:84482eþ 00 1:95521e� 02

18 0.1256611544 �9:92855e� 02 7:22097e� 01

19 0.1256611424 5:20550e� 05 4:99250eþ 03

20 0.1256611385 1:37736e� 04 1:88246eþ 02

21 0.1256611372 2:00067e� 05 5:23736eþ 04

22 0.1256611369 �3:17587e� 05 4:16648eþ 03

23 0.1256611366 1:76802e� 05 8:33651eþ 02

24 0.1256611364 1:53437e� 05 7:81282eþ 02

25 0.1256611363 �5:29943e� 06 8:97688eþ 03

26 0.1256611362 �6:65540e� 06 5:65923eþ 03

27 0.1256611361 �1:12777e� 05 6:57092eþ 02

28 0.1256611360 �1:16153e� 05 1:50267eþ 02

29 0.1256611360 4:51493e� 07 6:74909eþ 04

30 0.1256611360 1:01617e� 07 3:54793eþ 05

MSE of 18-term model over training set: 0.092637

MSE of 18-term model over testing set: 0.096775
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the case of the OLS selection. For example, after the 30th stage, the modeling
accuracy 1�

P
½rerr�l was hardly changing. Therefore, it was decided that the final

model had 30 terms. The resulting phase plot of this 30-term model generated
iteratively is depicted in Fig. 9. The LROLS selection procedure, after k had
converged (10 iterations), is listed in Table 7. Note that how many terms to include
in the final model is a clear decision based only on the training set. As any terms
added after the stage 18 all had very large regularization parameters and their
weights were effectively zero, the selected model contained 18 terms. The MSE values
of this 18-term model over the training and testing sets were only slightly worse than
those of the 30-term model selected by the UROLS algorithm. The resulting phase
plot generated iteratively by this 18-term model is shown in Fig. 10. It can be seen
that it had a similar generalization performance as the model produced by the
UROLS algorithm.

The result obtained using the RVM algorithm is almost identical to that produced
by the LROLS algorithm, as can be seen clearly in the final model listed in Table 8
and the phase plot shown in Fig. 11. The only difference in this case appears to be
that the RVM method is computationally more costly due to its backward
elimination nature and the slower convergence of its iterative loop. Again many
different sets of noisy training data were used, and the modeling results obtained
were consistent with the typical results shown here.
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Fig. 10. Phase plot of the iterative RBF model output (ŷdð0Þ ¼ ŷdð�1Þ ¼ 0:1). The 18-term model was

selected by the LROLS algorithm.
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Example 3. This example constructed a model representing the relationship between
the fuel rack position (input) and the engine speed (output) for a Leyland TL11
turbocharged, direct injection diesel engine operated at low engine speed. It is known
that at low engine speed, the relationship between the input and output is nonlinear
[3]. Detailed system description and experimental setup can be found in [3]. The data
set, depicted in Fig. 12, contained 410 samples. The first 210 data points were used in
modeling and the last 200 points in model validation. In the previous investigation
[3], it was found that the appropriate system ‘‘input’’ vector was xðkÞ ¼ ½yðk �

1Þ uðk � 1Þ uðk � 2Þ�T and, therefore, a RBF model of the form:

ŷðkÞ ¼ f RBF ðxðkÞÞ (37)

was used to model the data. As each data vector xðkÞ was considered as a candidate
RBF center, there were nM ¼ 210 regressors in the regression model (2). The
variance of the RBF kernel function was chosen to be 1.69. Note that a strong
periodic component is presented in the data, as can be seen clearly from Fig. 12.

Using the selection strategy identical to that used in Example 2, the OLS
algorithm selected a 60-term model, the UROLS constructed a 46-term model, and
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Table 8

Model obtained by the RVM for the two-dimensional time series problem after k has converged (40

iterations)

Weight yl Regularizer ll

2:45654e� 02 3:59452eþ 00

�2:40398eþ 00 1:57590e� 02

�5:31978e� 02 1:48458eþ 00

�1:56233eþ 00 3:83902e� 02

1:25172e� 02 7:27529eþ 00

1:76934e� 03 4:01853eþ 01

3:01592e� 01 7:26365e� 01

8:22632e� 03 2:92744eþ 01

�1:60659eþ 00 3:58431e� 02

1:57424eþ 00 3:48003e� 02

1:76799eþ 00 2:81382e� 02

1:73747eþ 00 3:07907e� 02

1:85297e� 01 1:28503eþ 00

�9:23914e� 01 1:03374e� 01

2:16866e� 01 3:55010e� 01

�9:70271e� 01 8:24441e� 02

8:29455e� 01 9:85890e� 02

6:81251e� 04 9:18239eþ 01

1:39631eþ 00 4:70555e� 02

MSE over training set: 0.092194

MSE over testing set: 0.096757
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the LROLS algorithm constructed a 34-term model. The MSE values over the
training and testing sets for these three models are given in Table 9, where it can be
seen that the model produced by the LROLS had the best generalization
performance. The constructed RBF model was used to generate the one-step
prediction ŷðkÞ of the system output according to (37). The iterative model output
ŷdðkÞ was also produced using

ŷdðkÞ ¼ f RBF ðx̂dðkÞÞ (38)

with x̂dðkÞ ¼ ½ŷdðk � 1Þ uðk � 1Þ uðk � 2Þ�T. The one-step model prediction and
iterative model output for the 34-term model selected by the LROLS algorithm are
shown in Fig. 13, in comparison with the system output.

For this example, the RVM algorithm as implemented in the form given in Section
4 failed to work due to numerical instability of the iterative loop for updating
regularization parameters. Various initial values for k were tried and a more stable
updating formula for k

lnewi ¼ ð1� ZÞloldi þ Z
~goldi

N � ~gold
eTe

y2i
; 1pipnM, (39)
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Fig. 11. Phase plot of the iterative RBF model output (ŷdð0Þ ¼ ŷdð�1Þ ¼ 0:1). The 19-term model was

constructed by the RVM algorithm.
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was also used, but the iterative loop for updating k was unstable. This numerical
instability caused the algorithm to force every regularization parameters to take very
large values, which was the root of failure. It is conceivable that the RVM method
implemented with some other more robust form may still work well in this situation.
However, the results shown here serve to highlight a potentially inherent instability
of the RVM method, which can affect the algorithm’s performance in adverse
modeling environments.
6. Conclusions

A locally regularized OLS algorithm has been developed for constructing
parsimonious regression models. The proposed algorithm combines both the
advantages of OLS forward model selection, which has ability to select only those
significant regressors to explain training data, and local regularization, which
enforces sparsity of models. Thus this LROLS algorithm is capable of producing
very sparse regression models that generalize well. A further advantage of this
algorithm is that when to terminate the model selection procedure can be made easily
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Fig. 12. Engine data set (a) input uðkÞ and (b) output yðkÞ.

Table 9

Comparison of modeling accuracy for the engine data example

Model MSE for training MSE for testing

60-term (OLS) 0.000336 0.000872

46-term (UROLS) 0.000427 0.000532

34-term (LROLS) 0.000435 0.000487

S. Chen / Neurocomputing 69 (2006) 559–585 581
based only on the training data, thus avoiding the need of costly cross-validation
using a separate testing data set. As regularization is introduced in the orthogonal
weight space, computational requirements of the iterative model selection procedure
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Fig. 13. System output yðkÞ (solid) of the engine data set superimposed on (a) model one-step prediction

ŷðkÞ (dashed) and (b) model iterative output ŷdðkÞ (dashed). The model was selected by the LROLS.
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are simple and straightforward. Any numerical ill-conditioning problems can
automatically be avoided.

A comparison has been given with a state-of-the-art sparse modeling method
known as the RVM. The two algorithms share many common features, and they
both adopt a same approach of using multiple regularizers to enforce sparsity and
use a similar evidence procedure to update regularization parameters or
hyperparameters. It can be seen that the both methods possess similar generalization
capabilities and degrees of sparsity. However, the proposed LROLS algorithm has
clearly computational advantages, is numerically stable and robust, and is capable of
performing well in adverse modeling environments.
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Appendix A

The least squares solution for g is obtained by setting qJR=qg ¼ 0, that is,

WTy ¼ ðWTWþ KÞg. (40)

Now

yTy� 2gTKg ¼ ðWgþ eÞTðWgþ eÞ � 2gTKg

¼ gTWTWgþ eTeþ gTWTeþ eTWg� 2gTKg. ð41Þ

Noting (40),

gTWTe� gTKg ¼ gTWTðy�WgÞ � gTKg ¼ gTðWTy�WTWg� KgÞ ¼ 0.

(42)

Similarly,

eTWg� gTKg ¼ 0. (43)

Thus

yTy� 2gTKg ¼ gTWTWgþ eTe (44)

or

eTeþ gTKg ¼ yTy� gTWTWg� gTKg. (45)
Appendix B

The modified Gram–Schmidt orthogonalization procedure calculates the A matrix
row by row and orthogonalizes U as follows: at the lth stage make the columns Uj ,
l þ 1pjpnM, orthogonal to the lth column and repeat the operation for
1plpnM � 1. Specifically, denoting Uð0Þj ¼ Uj, 1pjpnM, then

wl ¼ Uðl�1Þl ;

al;j ¼ wT
l Uðl�1Þj =ðwT

l wlÞ; l þ 1pjpnM;

UðlÞj ¼ Uðl�1Þj � al;jwl ; l þ 1pjpnM;

9>>>=
>>>;

l ¼ 1; 2; . . . ; nM � 1. (46)

The last stage of the procedure is simply wnM ¼ UðnM�1ÞnM
. The elements of g are

computed by transforming yð0Þ ¼ y in a similar way:

gl ¼ wT
l y
ðl�1Þ=ðwT

l wl þ llÞ;

yðlÞ ¼ yðl�1Þ � glwl ;

)
1plpnM. (47)

This orthogonalization scheme can be used to derive a simple and efficient
algorithm for selecting subset models in a forward-regression manner. First define

Uðl�1Þ ¼ ½w1 � � �wl�1U
ðl�1Þ
l � � �Uðl�1ÞnM

�. (48)
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If some of the columns Uðl�1Þl ; . . . ;Uðl�1ÞnM
in Uðl�1Þ have been interchanged, this will

still be referred to as Uðl�1Þ for notational convenience. Let a very small positive
number Tz be given, which specifies the zero threshold and is used to automatically
avoiding any ill-conditioning or singular problem. The lth stage of the selection
procedure is given as follows.

Step 1: For lpjpnM:
Test—Conditioning number check. If ðUðl�1Þj Þ

TUðl�1Þj oTz, the jth candidate is not
considered.

Compute

g
ðjÞ
l ¼ Uðl�1Þj

� �T
yðl�1Þ= ðUðl�1Þj Þ

TUðl�1Þj þ lj

� �
,

½rerr�
ðjÞ
l ¼ ðg

ðjÞ
l Þ

2
ðUðl�1Þj Þ

TUðl�1Þj þ lj

� �
=ðyTyÞ.

Step 2: Find

½rerr�l ¼ ½rerr�
jl

l ¼ maxf½rerr�
ðjÞ
l ; lpjpnM and j passes Testg.

Then the jlth column of Uðl�1Þ is interchanged with the lth column of Uðl�1Þ, the jlth
column of A is interchanged up to the ðl � 1Þth row with the lth column of A, and the
jlth element of k is interchanged with the lth element of k. This effectively selects the
jlth candidate as the lth regressor in the subset model.

Step 3: Perform the orthogonalization as indicated in (46) to derive the lth row of
A and to transform Uðl�1Þ into UðlÞ. Calculate gl and update yðl�1Þ into yðlÞ in the way
shown in (47).

The selection is terminated at the ns stage when the criterion (18) is satisfied and
this produces a subset model containing ns significant regressors. The algorithm
described here is in its standard form. A fast implementation can be adopted, as
shown in [13], to reduce complexity.
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