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Abstract

Computationally efficient sequential learning algorithms are developed for direct-link
resource-allocating networks (DRANSs). These are achieved by decomposing existing recursive
training algorithms on a layer by layer and neuron by neuron basis. This allows network
weights to be updated in an efficient parallel manner and facilitates the implementation of
minimal update extensions that yield a significant reduction in computation load per iteration
compared to existing sequential learning methods employed in resource-allocation network
(RAN) and minimal RAN (MRAN) approaches. The new algorithms, which also incorporate
a pruning strategy to control network growth, are evaluated on three different system
identification benchmark problems and shown to outperform existing methods both in terms
of training error convergence and computational efficiency.
© 2005 Elsevier B.V. All rights reserved.

Keywords: System identification; Radial basis functions; Extended Kalman Filter; Resource allocating-
network.

*Corresponding author.
E-mail addresses: vijanth@ieee.org (V.S. Asirvadam), sean.mcloone@eeng.may.ie (S.F. McLoone),
g.irwin@qub.ac.uk (G.W. Irwin).

0925-2312/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
d0i:10.1016/j.neucom.2005.02.017


www.elsevier.com/locate/neucom

V.S. Asirvadam et al. | Neurocomputing 69 (2005) 142-157 143
1. Introduction

While radial basis functions (RBF) have been used for many years for high
dimensional interpolation, it was not until 1988 that they were introduced by
Broomhead and Lowe [6] as the basis for a neural network architecture. They
operate by generating a weighted linear combination of a set of basis functions
(normally Gaussian) defined on the input space to give an overall input-output
mapping:
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Here /; are the linear output layer weights, ¢; and o; are the centres and widths of the
Gaussian basis functions, b is an optional bias weight and m is the number of
neurons in the network. Practically RBF networks have a number of advantages
over the well-known multilayer perceptron (MLP) with regard to training, locality of
approximation and transparency. In particular, RBF networks with localised basis
functions learn information at one operating point of a nonlinear process without
degrading information assimilated at other operating regimes [16].

The main concern when using RBF networks is how to select the centres for the
basis functions so that they provide adequate support for the mapping. The
traditional approach of placing them on a uniform grid or at the location of each
input vector from a subset of the input-data is generally not practical due to the curse
of dimensionality. Prior selection of RBF centres with the aid of clustering
techniques is possible if representative training data is available a priori. However,
even if such data is available there is no guarantee that number and placement of
centres will be appropriate if the plant operating point and/or dynamics change
significantly with time.

Resource-allocating networks (RAN) were introduced by Platt [17] as a solution
to these problems. RANSs are simply RBFs in which recursive training of parameters
is combined with a procedure for recursively adding centres. In [17] RAN weights
were updated using stochastic gradient descent. Kadirkamanathan and Niranjan [10]
modified RAN by developing a second order recursive method, known as RAN-
EKF (extended Kalman filter) and described it as sequential learning. Yingwei et al.
[19] extended the work on RAN-EKF by including a pruning strategy to obtain a
more parsimonious RBF network and called it minimal RAN (MRAN).

In this paper two approaches to reduce the computational and memory
requirements of sequential learning algorithms are considered. The first involves
decomposing training on a layer by layer and neuron by neuron basis and is achieved
by neglecting inter neuron weight interactions. This leads to a significant reduction in
memory requirements for algorithms that employ cost function curvature informa-
tion in their weight updates as the approximation of the Hessian matrix (or its
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inverse) used to represent the curvature information is consequently much sparser.
Network decomposition was first introduced by Jankowski and Kadirkamanathan
[8] in connection with the weight covariance matrix in the RAN-EKF algorithm and
more recently by Asirvadam et al., [1,3] in connection with a recursive
Levenberg—Marquardt algorithm proposed by Ngia and Sjoberg [14].

The second approach to improving efficiency is the adoption of a minimal weight
update policy. Here the basic idea is that, rather than updating the entire set of
weights at each iteration, only the weights associated with the neuron (or neurons)
closest to the current input in the network, known as the winner neuron(s) are
updated. Junge and Unbehauen [9] did pioneering work on minimal update
approaches and a similar methodology has also previously been applied by
Asirvadam et al. [2]. Li et al. [11] introduced a minimal update policy for MRANs
and showed it to be superior to Junge and Unbehauen’s [9] minimal update
approach.

The main contribution of this paper is to combine these two approaches to
reducing complexity in order to maximize the computational efficiency and
performance of sequential learning of radial basis function models, thus increasing
their viability for real-time identification of nonlinear processes. Extended-Kalman
filter (EKF) and recursive Levenberg-Marquardt (RLM) implementations are
developed for a general class of RAN referred to as direct-link RANs (DRAN) or
direct-link RBFs (DRBF). DRANSs are simply conventional RBFs, as defined by eq.
(1), augmented by a linear input—output mapping, that is

m
e =Y hip(xi;ci00) + b % (3)
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The bias term is included as weight b, in vector b,
b=1[by...b,)" with =l xI]". )

Parameter #; is the number of inputs fed to the network. DRBFs provide a natural
extension from linear-to-nonlinear modelling and facilitate the inclusion of a priori
linear modelling experience. They are particularly beneficial in sequential learning
since the direct link (linear) term has global support and thus provides a degree of
generalisation even when the network is in its infancy.

The remainder of the paper is organised as follows. Section 2 describes sequential
learning for RANs and the pruning strategy developed by Yingwei et al. [19]. Section
3 introduces decomposed EKF and RLM for DRANSs while Section 4 describes the
minimal update alternatives. Simulation results evaluating the new training schemes
are presented in Section 5 and finally Section 6 concludes the paper.

2. Sequential learning algorithms

Sequential learning algorithms differ from classical RBF training rules in that they
combine new centre allocation with weight updating in one routine. The basic
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algorithm structure is as follows:

th{nk—m>_ )

Let (x;, yi) be a new data point to be fitted by the RBF network in (5). The
sequential learning growth criteria (which is based on [16]) for the network are

dpe <200, (6)
and
k
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In (6) d,., defined as,
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is the distance between input vector x, and the centre of the nearest hidden neuron,
¢, while o, is the width of the nearest neuron. The desired output corresponding to
input x; is given by d; while the scalar o (determines the Gaussian locality range) is
usually 1.0. The error threshold parameter, &y, in (7) is computed as

&min = Max (Smin > Vk 8max) . )

An average moving-window instantaneous error is used as a novel criterion instead
of the instantaneous error ¢, as the latter is vulnerable to outliers [12]. Scalars &,
emax and y<1 are the user defined parameters.

If either (or both) criteria in (6) and (7) are not satisfied then all the network
parameters are adapted to fit the new point using a recursive Gauss—Newton
method, also known as the EKF algorithm [10]. This can be described as follows:

T
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Here N,, is the total number of parameters in the network. On the other hand if the
growth criteria in (6) and (7) are satisfied then a new Gaussian basis function is
assigned as follows:

Py=P_ — (14)

dpe
Cntl = Xi,  Npy1 = lekl, Opp1 = 37, (15)
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P = 0 Inon (16)

Piy 0 1

The scalar f is a user defined parameter (usually set to 1.0) which determines the
degree of overlap between neurons and the vector dimension n,, is equal to the
number of new parameters arising from the inclusion of the new Gaussian basis
function. This form of sequential learning is known as RAN-EKF [10]. In Platt’s [17]
RAN algorithm the weight vector update in (11) reduces to

Wi = Wi_1 + Aer, (17

where Ay, is the learning rate which can be a constant or time varying. Meanwhile the
new parameter assignments for the new basis function are simplified to (15) without
the need for the second order weight covariance matrix Py in (16).

2.1. Pruning strateqy for sequential learning algorithms

The pruning strategy is based on Yingwei et al. [19] in which the Gaussian kernels
which show the least contribution to the model output for the past M sample
instants are eliminated. The pruning procedure can be summarised as follows.

e Compute the output of all the Gaussian kernel functions, i = 1,2, ..., m.

2
Xp—¢
ray = hi exp (— M) (18)

o

e Find the largest absolute Gaussian basis function output value

Fmax = max(|rk(,-)f), i=12,...,m. (19)

@ Determine the normalised contribution factor for each basis function

_ Tk

i

,i=12, ..., m (20)

max

e If i; < for M consecutive sample instances then prune the jth hidden neuron and
reduce the dimensionality of wy, ¥, and P, accordingly.

Yingwei et al. [19] called the combination of this pruning strategy with RAN-EKF a
minimal RAN (MRAN).
3. Decomposed training

The EKF covariance matrix, P, involves O(Nﬁ,) storage requirements and
computational complexity, where N,, = dim(wy). As training proceeds, P, grows
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with the number of network parameters and quickly becomes a limiting factor in the
use of EKF for on-line applications. However, by discarding the inter-neuron weight
correlations, as proposed by Jankowski and Kadirkamanathan, P, can be
decomposed on a neuron by neuron basis leading to a much sparser matrix.
Decomposition of the covariance matrix can be further extended and applied to
DRANSs where P; (covariance matrix of DRAN) is also partitioned with respect to
the direct-link and RBF parameters. This corresponds to an additional layer level
decomposition and leads to the following reduced memory implementation.

) [P[D(L] 0
- | 21
3 0 [Pdy.s | :

L ot
[Peo)n, X :

~ O o .. 0

Py = 0 o [Pron=n] s, - | h

0 0 ... P -

| [ k(m 1)] My, X1,y ]\7w><1\~7w

Here f’k(i) represents the correlation matrix (or covariance matrix) for the ith
neuron weights and PPU is represents the covariance matrix of the direct link
weights. The numerical complexity and memory requirements for the decomposed
covariance matrix are O(m x nZ,) compared to O(m?* x nZ) for P in conventional
full matrix second-order sequential learning. A graphical interpretation of the

sparseness achieved is shown in Fig. 1.

The gradient vector can be equivalently decomposed as

v = [‘/’za) Viey - ‘/’z(m)]T- (23)

@) (b)

Fig. 1. Graphical interpretation of layer-level and neuron-level decomposition: (a) Layer-level
decomposition; (b) Neuron-level decomposition.
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There is also the potential for parallel implementation [15] as the weight vector
update is decomposed into m sub-algorithms:

Wik 1) = W) + PriyWi s (24)

T ay
wiiy = (¢ oihi] ", Vi = [—awk/;)] - (25)
)1 n,x

N . )RRV SN2 S - F
Py = Pr1) — . ](l)ll’i(l)!fk(l) =0 i=1,2,...,m (26)
L+ ¥ P
The direct link weights are updated based on the following procedure

by = b1 + PPl xpey, (27

DL T pDL
Pilixix, Pz
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1+ xPh x

(28)
The resulting topology—algorithm combination, a direct-link resource-allocating
network with decomposed EKF weight adaptation, will be referred to as DRAN-
DEKEF.

3.1. Decomposed RLM (DRAN-DRLM)

A major advantage of decomposing Py (for RANs or DRAN:S) is the size of each
of the covariance sub-matrices Pk(,-) is invariant during training in comparison to Py
(for RAN-EKF) which changes dimension from one iteration to the next. This
facilitates the application of the powerful decomposed recursive Levenberg—Mar-
quardt training algorithm [3] to sequential learning of DRBFs (DRAN-DRLM).
The main difference between DRLM and DEKF is that in DRLM a regularisation
term p is added to one of the diagonal element of Py, (of DEKF) at each sample
instant. The routine for updating each }N’k(i) using DRLM is given as follows:

Skiy = A+ Qz(i)ﬁk—l(i)gk(i)a (29)
Priy = Pr1iy — P16 Siy @ P19 (30)
. v, 1 o]
Q. = ! , A= and i=1,...,m,
DT lo .. 1 .0 lO p}
(31)

where Q) is a n,, x 2 matrix whose second column has only one non zero element
located at k,(; mod n,,+ 1. The scalar k,; is a counter that keeps track of the age of
the decomposed kernel function ¢; and is used to determine the location of the non-
zero element in Qg at each iteration. It is initialised to 1 when the ith basis function
is created and incremented every weight update thereafter. If the ith basis function is
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being removed, during pruning, the scalar k,; will be discarded automatically. A
global optimisation of the linear weights of the direct-link network is implemented as
in and (27) and (28).

4. Minimal update algorithms

Minimal weight update algorithms are motivated by memory and time
constraints, particularly in real-time modelling and control applications. In early
work on RANs with minimal update by Bomberger and Seborg [5] the weight update
rule was restricted to the linear connections of RBF neurons which had significant
influence over the model output at a given time. Junge and Unbehauen [9] and Li et
al. [11] proposed limiting weight updates to the parameters of a single winner neuron
to further improve computational efficiency. Here the minimal update winner neuron
concept is extended to DRAN-DEKF and DRAN-DRLM training as follows.

4.1. Minimal decomposed algorithm
Rather than adapting all the decomposed network parameters as in (25)—(26), the

minimal update DRAN-DEKF algorithm (DRAN-mDEKF) updates only the
weights of the neuron whose centre is closest to the current input vector x. Thus:

c:arg{min||xk—c,~||}, i=12,...,m (32)
1
Wiie) = Wi—1(0) + PriWio ks (33)
T /’l T ayk
Wi(c) = [Cc O C] 5 l/’k((v) = Vk(@) la (34)
X

~ T
Pr v ¥V Pr-10
o= )
L o PV

Alternatively, covariance matrix Py can be estimated using DRLM and updated as
follows:

Proy = Py — (35)

Ske) = A + Qo Prm1(0Quc0- (36)
Priey = P10 — Pre1(0Q%(0 Sy Qe =100+ (37)
-1
Vi bo
Q) = © and A= : 38
A I\ S R | 0 p (%)

where Q) is a n,, x 2 matrix whose second column has only one non-zero element
located at k,(, mod n,,+ 1. Counter k,, is incremented every time wy., is updated.
The direct link network weights are unaffected by this modification and are updated
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using (27) and (28) as before. The resulting algorithm is referred to as minimal
DRAN-DRLM (DRAN-mDRLM).

5. Simulation results
5.1. Benchmark problems

Three benchmark modelling problems are used in the evaluation of the proposed
DRBF sequential learning algorithms.

Time series prediction benchmark: the objective here is to model a simulated
nonlinear time series described by the nonlinear difference equation

yi=108-05 exp(—yi_l)]yk_1
—[03—=0.9exp(—yi_;)]yi_; + 0.1sin(ny,_;). (39)

The neural model is based on the nonlinear autoregressive (NAR) model structure,
that is

Vi zf(yk—layk72) + Mg (40)

where the noise #;, is a Gaussian white noise sequence with zero mean and variance
0.01.

Coupled-tank system benchmark: modelling the nonlinear dynamics of a two tank
system [7] (shown in Fig. 2) is used as the second benchmark. The two tanks are
connected by a short pipe and the amount of liquid flowing into the tanks is
regulated by a control valve. The identification problem considered here is the
prediction of liquid level (/) of the second tank (Tank 2) given the input flow (¢;) to
the first tank (Tank 1). The network input vector for the DRBF model is

X, = [hZ(kfl) q1(k—1) (41)

and the output is /5. Complete details of the benchmark can be found in [7].

Continuous stirred tank reactor benchmark: Continuous stirred tank reactors
(CSTR) are highly nonlinear systems and as such useful benchmarks for neural
network modelling techniques. The CSTR considered here is a single-input—single-
output (SISO) one, where the output is the product concentration, C and the input is
the coolant flow rate, ¢g. The chemical reaction which produces the compound inside
the reactor is an exothermic process, which raises the temperature, and reduces the
reaction rate. The objective is to control the measured concentration of the product,
C, by manipulating the coolant flow rate, ¢g. The CSTR equations are given by

dT . q,«f

_E

L Kag [1 —exp (— %ﬂ (Tg—T) 42)
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Fig. 2. Split level two-tank system.
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Details of the equation constants, nominal setting and operating conditions for the
CSTR benchmark can be found in [13]. Here the process is identified using a neural
model assuming a second order nonlinear autoregressive with external input
(NARX) model structure. The network input vector is thus of the form

Xp = [Ck—l Ck2 Qi1 G (44)

and the output is the product concentration at the kth sample instant, Cj.

5.2. Performance evaluation

To get an indication of the global modelling quality of a DRAN at a particular
iteration of the sequential learning process model performance is measured in terms
of the percentage normalised mean squared error (% NMSE),

100 & s [,
J(wp) = 72 GCnwe) —dn) [ dy, (45)
n=1 n=1

computed over an N, pattern representative test data set, (x,,, d,). Figs. 3(a) and 4(a)
show the typical evolution of this performance index for the coupled-tank and CSTR
benchmark problems with each of the four sequential learning algorithms under
consideration. The learning curves for RAN-EKF are also included for comparison.
Fig. 3(b) also shows the typical growth of a DRAN during training while Fig. 4(b)
demonstrates the parallel modelling performance achievable with a minimal update-
DRLM trained DRAN for the CSTR benchmark.
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Fig. 3. Sequential learning performance on coupled tank system (without pruning). (a) % NMSE learning
curve for two tank system; (b) Number of hidden neurons.

Tables 1-3 summarise the performance of each of the sequential learning
algorithms discussed in the paper (with and without pruning) on the three
benchmarks following 1000 iterations of training. For comparison purposes results
are also included for RAN-EKF and DRAN-EKF. The recorded performance
indices are the mean NMSE (FE [J(w;)]) computed over the last 500 iterations, the
final number of hidden neurons (m) and the corresponding number of network
parameters (N,,). The user defined algorithm parameters were the same for each
problem and are as given in Table 4. Finally, Table 5 summarises the approximate
memory and computational requirements of each algorithm.

These results show that, in addition to providing significant savings in memory
and computational requirements, the decomposed EKF and RLM algorithms
consistently yield better NMSE performance than DRAN-EKF. The results also
show that the minimal update implementations are promising alternatives to
DRLM and DEKF as they have an even lower computational cost yet achieve
comparable performance. When used in conjunction with pruning the proposed
algorithms maintain their superiority while at the same time producing parsimonious
networks.

The decomposed algorithms significantly outperform conventional RAN-EKF
and MRAN, but a comparison with the results for DRAN-EKF reveals that this is
principally due to the benefits offered by the DRAN architecture.

An examination of the NMSE performance of the different EKF and
RLM implementations shows that RLM is marginally superior to EKF.
This is consistent with other comparisons of the algorithms reported in the
literature [3,14].

The superior NMSE achieved by the decomposed training algorithms may seem
remarkable given that they discard a significant proportion of the curvature
information in computing the weight updates. However, this is in fact the reason for
their success. The stochastic nature of the covariance matrix as it is computed
recursively over several iterations and the fact that it varies as a function of RAN
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Fig. 4. Sequential learning performance on CSTR benchmark (without pruning). (a) %NMSE learning
curve for CSTR benchmark; (b) Parallel model obtain using DRAN-mDRLM.
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Table 1
Performance of sequential learning algorithms on the time series benchmark

Without pruning With pruning

E(NMSE) m N, E(NMSE) m N,
RAN-EKF? 0.0300 52 313 0.0289 15 91
DRAN-DEKF 0.0320 6 27 0.0320 6 27
DRAN-DRLM 0.0191 7 31 0.166 7 31
DRAN-mDEKF 0.0223 6 27 0.0223 6 27
DRAN-mDRLM 0.0102 7 31 0.0102 7 31
DRAN-EKF 0.0293 13 81 0.0293 13 81

“RAN-EKF with pruning is usually reffered to as MRAN.

Table 2
Performance of sequential learning algorithms on the two tank benchmark problem

Without pruning With pruning

E(NMSE) m N, E(NMSE) m N,,
RAN-EKF* 0.0628 44 265 0.1189 41 247
DRAN-DEKF 0.0099 7 45 0.0239 5 33
DRAN-DRLM 0.0096 17 105 0.0082 6 39
DRAN-mDEKF 0.0151 9 57 0.0282 4 27
DRAN-mDRLM 0.0146 7 45 0.0309 4 27
DRAN-EKF 0.0450 7 45 0.0450 7 45

“RAN-EKF with pruning is usually reffered to as MRAN.

Table 3
Performance of sequential learning algorithms on the CSTR benchmark

Without pruning With pruning

E(NMSE) m N, E(NMSE) m N,
RAN-EKF?* 0.2854 30 301 0.2910 21 211
DRAN-DEKF 0.0069 9 95 0.0020 2 25
DRAN-DRLM 0.0042 9 95 0.0027 3 35
DRAN-mDEKF 0.0057 9 95 0.0020 2 25
DRAN-mDRLM 0.0062 9 95 0.0026 3 35
DRAN-EKF 0.0090 19 195 0.0095 12 125

“RAN-EKF with pruning is usually reffered to as MRAN.

Table 4
User defined parameters

Growth Criteria parameters Emin = 0.3 &max =0.5 =098
Pruning method parameters M =30 o=0.0001
Others p=1 i1=1
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Table 5
Comparison of the memory requirements and computation for various DRBF sequential learning
algorithms

Algorithms Memory requirement Computation load
RAN-EKF (MRAN) O(N2) O(3N2)
DRAN-EKF (v + R.)) o(3(Nu + My)°)
DRAN-DEKF/DRLM 0(,,,”3 + Nf) 0(3mn + 3K )
DRAN-mDKEF/mDRLM 0( 2y Nf) 0(3}1“, + 3Nl->

Note: N,, is the total number of weights, n,, is the number of weights for one hidden neuron, N; is the
number of inputs including the bias, m is the number of hidden neurons.

parameters makes it ill-conditioned and unreliable. Focusing on the near diagonal
curvature information is thus beneficial in this respect. Furthermore, decomposed
training can be viewed as an approximation to separable recursive least squares
which in turn is an approximation to off-line separable nonlinear least squares
training. One of the properties of separable nonlinear least squares is that the
resulting covariance matrix is better conditioned than the corresponding matrix in
conventional nonlinear least squares [18]. Empirical studies have shown that this also
holds true for separable recursive least squares [4]. Thus, it is likely that the
decomposed and minimal update algorithms also benefit from being better
conditioned.

6. Conclusions

Two computationally efficient learning algorithms have been developed for
DRAN:S, a generalisation of RANs where the RBF topology is modified to include
direct links between the inputs and the output node. The first is obtained by
partitioning the network in terms of the direct-link and RBF parameters and
decomposing the RBF parameter covariance matrix on a neuron by neuron basis.
The second is a variant of the first in which only the parameters of a winner neuron
are updated at each iteration to reduce the computational burden. Results presented
for implementations, with and without pruning, show that the decomposed
sequential learning approaches consistently outperform DRAN-EKF in terms of
the final percentage NMSE achieved. In addition, the algorithms use less memory,
require less computation time per iteration and produce more parsimonious
networks.

The minimal update algorithms (DRAN-mDEKF and DRAN-mDRLM) are
especially noteworthy as they achieve a substantial reduction in computational load
compared to DRAN-mDEKF and DRAN-mDRLM without sacrificing NSME
performance.
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While originally motivated by the search for computationally efficient algorithms,
the superior learning capabilities of DRLM and mDRLM make them the first choice
algorithms for training DRANs even when memory requirements and real-time
constraints are not an issue.
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