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Computationally efficient sequential learning algorithms are developed for dir

resource-allocating networks (DRANs). These are achieved by decomposing existing r

training algorithms on a layer by layer and neuron by neuron basis. This allows n

weights to be updated in an efficient parallel manner and facilitates the implementa

minimal update extensions that yield a significant reduction in computation load per i

compared to existing sequential learning methods employed in resource-allocation n

(RAN) and minimal RAN (MRAN) approaches. The new algorithms, which also inco

a pruning strategy to control network growth, are evaluated on three different

identification benchmark problems and shown to outperform existing methods both i

of training error convergence and computational efficiency.
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While radial basis functions (RBF) have been used for many years fo
dimensional interpolation, it was not until 1988 that they were introdu
Broomhead and Lowe [6] as the basis for a neural network architecture
operate by generating a weighted linear combination of a set of basis fun
(normally Gaussian) defined on the input space to give an overall input-
mapping:

yk ¼ f ðxkÞ ¼
Xm

i¼1

hifiðxk; ci; siÞ þ b,

fiðxk; ci;siÞ ¼ exp �
xk � cik k2

s2i

� �
.

Here hi are the linear output layer weights, ci and si are the centres and widths
Gaussian basis functions, b is an optional bias weight and m is the num
neurons in the network. Practically RBF networks have a number of adva
over the well-known multilayer perceptron (MLP) with regard to training, loc
approximation and transparency. In particular, RBF networks with localise
functions learn information at one operating point of a nonlinear process w
degrading information assimilated at other operating regimes [16].
The main concern when using RBF networks is how to select the centres

basis functions so that they provide adequate support for the mappin
traditional approach of placing them on a uniform grid or at the location o
input vector from a subset of the input-data is generally not practical due to th
of dimensionality. Prior selection of RBF centres with the aid of clu
techniques is possible if representative training data is available a priori. Ho
even if such data is available there is no guarantee that number and placem
centres will be appropriate if the plant operating point and/or dynamics
significantly with time.
Resource-allocating networks (RAN) were introduced by Platt [17] as a s

to these problems. RANs are simply RBFs in which recursive training of para
is combined with a procedure for recursively adding centres. In [17] RAN w
were updated using stochastic gradient descent. Kadirkamanathan and Niranj
modified RAN by developing a second order recursive method, known as
EKF (extended Kalman filter) and described it as sequential learning. Yingwe
[19] extended the work on RAN-EKF by including a pruning strategy to o
more parsimonious RBF network and called it minimal RAN (MRAN).
In this paper two approaches to reduce the computational and m

requirements of sequential learning algorithms are considered. The first in
decomposing training on a layer by layer and neuron by neuron basis and is ac
by neglecting inter neuron weight interactions. This leads to a significant reduc
memory requirements for algorithms that employ cost function curvature in
tion in their weight updates as the approximation of the Hessian matrix



inverse) used to represent the curvature information is consequently much sparser.
nathan
m and
cursive

weight
set of
urons)
s) are
update
ied by
RANs
update

hes to
y and
reasing
alman
ns are
N) or
by eq.

(3)

(4)

atural
priori
arning
gree of

uential
ection
bes the
chemes

ARTICLE IN PRESS

V.S. Asirvadam et al. / Neurocomputing 69 (2005) 142–157144
Network decomposition was first introduced by Jankowski and Kadirkama
[8] in connection with the weight covariance matrix in the RAN-EKF algorith
more recently by Asirvadam et al., [1,3] in connection with a re
Levenberg–Marquardt algorithm proposed by Ngia and Sjöberg [14].
The second approach to improving efficiency is the adoption of a minimal

update policy. Here the basic idea is that, rather than updating the entire
weights at each iteration, only the weights associated with the neuron (or ne
closest to the current input in the network, known as the winner neuron(

updated. Junge and Unbehauen [9] did pioneering work on minimal
approaches and a similar methodology has also previously been appl
Asirvadam et al. [2]. Li et al. [11] introduced a minimal update policy for M
and showed it to be superior to Junge and Unbehauen’s [9] minimal
approach.
The main contribution of this paper is to combine these two approac

reducing complexity in order to maximize the computational efficienc
performance of sequential learning of radial basis function models, thus inc
their viability for real-time identification of nonlinear processes. Extended-K
filter (EKF) and recursive Levenberg-Marquardt (RLM) implementatio
developed for a general class of RAN referred to as direct-link RANs (DRA
direct-link RBFs (DRBF). DRANs are simply conventional RBFs, as defined
(1), augmented by a linear input–output mapping, that is

yk ¼
Xm

i¼1

hifðxk; ci;siÞ þ bTx̄k.

The bias term is included as weight b0 in vector b,

b ¼ b0 . . . bni

� �T
with x̄k ¼ 1 xT

k

� �T
.

Parameter ni is the number of inputs fed to the network. DRBFs provide a n
extension from linear-to-nonlinear modelling and facilitate the inclusion of a
linear modelling experience. They are particularly beneficial in sequential le
since the direct link (linear) term has global support and thus provides a de
generalisation even when the network is in its infancy.
The remainder of the paper is organised as follows. Section 2 describes seq

learning for RANs and the pruning strategy developed by Yingwei et al. [19]. S
3 introduces decomposed EKF and RLM for DRANs while Section 4 descri
minimal update alternatives. Simulation results evaluating the new training s
are presented in Section 5 and finally Section 6 concludes the paper.
2. Sequential learning algorithms

at they
basic
Sequential learning algorithms differ from classical RBF training rules in th
combine new centre allocation with weight updating in one routine. The
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yk ¼
Xm

i¼1

hi exp �
xk � cik k2

s2i

� �
.

Let (xk, yk) be a new data point to be fitted by the RBF network in (5
sequential learning growth criteria (which is based on [16]) for the network

dnco2asnc

and

Xk

j¼k�ðM�1Þ

ej

�� ��
M

4�̄min; ej ¼ dj � yj.

In (6) dnc, defined as,

dnc ¼ min
i

xk � cik k; i ¼ 1; 2; . . .m,

is the distance between input vector xk and the centre of the nearest hidden n
fnc while snc is the width of the nearest neuron. The desired output correspon
input xj is given by dj while the scalar a (determines the Gaussian locality ra
usually 1.0. The error threshold parameter, �̄min; in (7) is computed as

�̄min ¼ max �min; gk�max
� �

.

An average moving-window instantaneous error is used as a novel criterion
of the instantaneous error ek as the latter is vulnerable to outliers [12]. Scala
emax and go1 are the user defined parameters.
If either (or both) criteria in (6) and (7) are not satisfied then all the n

parameters are adapted to fit the new point using a recursive Gauss–N
method, also known as the EKF algorithm [10]. This can be described as fo

wk ¼ cT1 ; s1; h1; . . . ; cTm;sm; hm

� �T
Nw�1

,

wkþ1 ¼ wk þ Pkwkek,

ek ¼ dk � yk,

wk ¼
q

qwk

yðxk;wkÞ,

Pk ¼ Pk�1 �
Pk�1wkw

T
k Pk�1

1þ wT
k Pkwk

.

Here Nw is the total number of parameters in the network. On the other han
growth criteria in (6) and (7) are satisfied then a new Gaussian basis func
assigned as follows:

cmþ1 ¼ xk; hmþ1 ¼ ekj j; smþ1 ¼ b
dnc

2
,
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Pk ¼
0 Inw�nw

.

The scalar b is a user defined parameter (usually set to 1.0) which determi
degree of overlap between neurons and the vector dimension nw is equal
number of new parameters arising from the inclusion of the new Gaussia
function. This form of sequential learning is known as RAN-EKF [10]. In Plat
RAN algorithm the weight vector update in (11) reduces to

wk ¼ wk�1 þ lkwkek,

where lk is the learning rate which can be a constant or time varying. Meanwh
new parameter assignments for the new basis function are simplified to (15) w
the need for the second order weight covariance matrix Pk in (16).

2.1. Pruning strategy for sequential learning algorithms

The pruning strategy is based on Yingwei et al. [19] in which the Gaussian
which show the least contribution to the model output for the past M

instants are eliminated. The pruning procedure can be summarised as follow

	 Compute the output of all the Gaussian kernel functions, i ¼ 1; 2; . . . ; m:
(18)
rkðiÞ ¼ hi exp �
xk � ckk k2

s2i

� �
.

	 Find the largest absolute Gaussian basis function output value� �� �

(19)
rmax ¼ max rkðiÞ

� � ; i ¼ 1; 2; . . . ; m.

	 Determine the normalised contribution factor for each basis function� �

(20)

on and
ki ¼
rkðiÞ

rmax

��� ���; i ¼ 1; 2; . . . ; m.

	 If kjod for M consecutive sample instances then prune the jth hidden neur
EKF a
reduce the dimensionality of wk, wk and Pk accordingly.

Yingwei et al. [19] called the combination of this pruning strategy with RAN-
minimal RAN (MRAN).
3. Decomposed training

ts and
grows
The EKF covariance matrix, Pk involves O N2
w

� �
storage requiremen

computational complexity, where Nw ¼ dimðwkÞ. As training proceeds, Pk



with the number of network parameters and quickly becomes a limiting factor in the
weight
an be
matrix.
lied to
pect to
r level

(21)

(22)

the ith
ct link
posed
ntional
of the

(23)

ARTICLE IN PRESS

V.S. Asirvadam et al. / Neurocomputing 69 (2005) 142–157 147
use of EKF for on-line applications. However, by discarding the inter-neuron
correlations, as proposed by Jankowski and Kadirkamanathan, Pk c
decomposed on a neuron by neuron basis leading to a much sparser
Decomposition of the covariance matrix can be further extended and app
DRANs where P̄k (covariance matrix of DRAN) is also partitioned with res
the direct-link and RBF parameters. This corresponds to an additional laye
decomposition and leads to the following reduced memory implementation.

P̄k ffi
PDL

K

� �
0

0 ~Pk

� �
~Nw� ~Nw

2
4

3
5

N̄w�N̄w

,

~Pk ffi

~Pkð1Þ

� �
nw�nw

� � � 0 0

� � � � � � � � � 0

0 � � � ~Pkðm�1Þ

� �
nw�nw

� � �

0 0 � � � ~Pkðm�1Þ

� �
nw�nw

2
666664

3
777775

~Nw� ~Nw

.

Here ~PkðiÞ represents the correlation matrix (or covariance matrix) for
neuron weights and PDL

k is represents the covariance matrix of the dire
weights. The numerical complexity and memory requirements for the decom
covariance matrix are O m � n2w

� �
compared to O m2 � n2w

� �
for Pk in conve

full matrix second-order sequential learning. A graphical interpretation
sparseness achieved is shown in Fig. 1.

The gradient vector can be equivalently decomposed as

wk ¼ wT
kð1Þ wT

kð2Þ . . . wT
kðmÞ

h iT
.

(a) (b) 

Pk
˜

Pk
DL

P k
DL

Pk(i)
˜

Fig. 1. Graphical interpretation of layer-level and neuron-level decomposition: (a) Layer-level

decomposition; (b) Neuron-level decomposition.



There is also the potential for parallel implementation [15] as the weight vector
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update is decomposed into m sub-algorithms:

wkþ1ðiÞ ¼ wkðiÞ þ ~PkðiÞwkðiÞek,

wkðiÞ ¼ cTi sihi

� �T
; wkðiÞ ¼

qyk

qwkðiÞ

� �
nwx1

,

~PkðiÞ ¼ ~Pk�1ðiÞ �
~Pk�1ðiÞwkðiÞw

T
kðiÞ

~Pk�1ðiÞ

1þ wT
kðiÞ

~PkðiÞwkðiÞ

; i ¼ 1; 2; . . . ; m

The direct link weights are updated based on the following procedure

bk ¼ bk�1 þ PDL
k xkek,

PDL
k ¼ PDL

k�1 �
PDL

k�1xkxT
k PDL

k�1

1þ xT
k PDL

k�1xk

.

The resulting topology–algorithm combination, a direct-link resource-allo
network with decomposed EKF weight adaptation, will be referred to as D
DEKF.

3.1. Decomposed RLM (DRAN-DRLM)

A major advantage of decomposing P̄k (for RANs or DRANs) is the size o
of the covariance sub-matrices ~PkðiÞ is invariant during training in compariso
(for RAN-EKF) which changes dimension from one iteration to the nex
facilitates the application of the powerful decomposed recursive Levenberg
quardt training algorithm [3] to sequential learning of DRBFs (DRAN-D
The main difference between DRLM and DEKF is that in DRLM a regular
term r is added to one of the diagonal element of ~PkðiÞ (of DEKF) at each
instant. The routine for updating each ~PkðiÞ using DRLM is given as follows

SkðiÞ ¼ Lþ OT
kðiÞ

~Pk�1ðiÞOkðiÞ,

~PkðiÞ ¼ ~Pk�1ðiÞ � ~Pk�1ðiÞOkðiÞS
�1
kðiÞO

T
kðiÞ

~Pk�1ðiÞ,

OT
kðiÞ ¼

wT
kðiÞ

0 . . . 1 . . . 0

" #
; L ¼

1 0

0 r

" #�1

and i ¼ 1; . . . ; m

where OkðiÞ is a nw � 2 matrix whose second column has only one non zero e
located at kr(i) mod nw+1. The scalar kr(i) is a counter that keeps track of the
the decomposed kernel function fi and is used to determine the location of th
zero element in OkðiÞ at each iteration. It is initialised to 1 when the ith basis fu
is created and incremented every weight update thereafter. If the ith basis fun



being removed, during pruning, the scalar kr(i) will be discarded automatically. A
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global optimisation of the linear weights of the direct-link network is impleme
in and (27) and (28).
4. Minimal update algorithms
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Minimal weight update algorithms are motivated by memory and
constraints, particularly in real-time modelling and control applications. In
work on RANs with minimal update by Bomberger and Seborg [5] the weight
rule was restricted to the linear connections of RBF neurons which had sign
influence over the model output at a given time. Junge and Unbehauen [9] an
al. [11] proposed limiting weight updates to the parameters of a single winner

to further improve computational efficiency. Here the minimal update winner

concept is extended to DRAN-DEKF and DRAN-DRLM training as follow

4.1. Minimal decomposed algorithm

Rather than adapting all the decomposed network parameters as in (25)–(2
minimal update DRAN-DEKF algorithm (DRAN-mDEKF) updates on
weights of the neuron whose centre is closest to the current input vector xk.

c ¼ arg min
i

xk � cik k

� �
; i ¼ 1; 2; . . . ; m

wkðcÞ ¼ wk�1ðcÞ þ ~PkðcÞwkðcÞek,

wkðcÞ ¼ cTc sc hc

� �T
; wkðcÞ ¼

qyk

qwkðcÞ

� �
nw�1

,

~PkðcÞ ¼ ~Pk�1ðcÞ �
~Pk�1ðcÞwkðcÞw

T
kðcÞ

~Pk�1ðcÞ

1þ wT
kðcÞ

~PkðcÞwkðcÞ

.

Alternatively, covariance matrix ~PkðcÞ can be estimated using DRLM and upd
follows:

SkðcÞ ¼ Lþ OT
kðcÞ

~Pk�1ðcÞOkðcÞ,

~PkðcÞ ¼ ~Pk�1ðcÞ � ~Pk�1ðcÞOkðcÞS
�1
kðcÞO

T
kðcÞ

~Pk�1ðcÞ,

OT
kðcÞ ¼

wT
kðcÞ

0 . . . 1 . . . 0

" #
and L ¼

1 0

0 r

" #�1

,

where OkðcÞ is a nw� 2 matrix whose second column has only one non-zero e
located at kr(c) mod nw+1. Counter kr(c) is incremented every time wk(c) is up
The direct link network weights are unaffected by this modification and are u



using (27) and (28) as before. The resulting algorithm is referred to as minimal
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DRAN-DRLM (DRAN-mDRLM).
5. Simulation results
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5.1. Benchmark problems

Three benchmark modelling problems are used in the evaluation of the pr
DRBF sequential learning algorithms.

Time series prediction benchmark: the objective here is to model a sim
nonlinear time series described by the nonlinear difference equation

yk ¼ 0:8� 0:5 exp �y2k�1
� �� �

yk�1

� 0:3� 0:9 exp �y2k�1
� �� �

y2k�1 þ 0:1 sin pyk�1

� �
.

The neural model is based on the nonlinear autoregressive (NAR) model str
that is

yk ¼ f yk�1; yk�2

� �
þ Zk,

where the noise Zk is a Gaussian white noise sequence with zero mean and v
0.01.

Coupled-tank system benchmark: modelling the nonlinear dynamics of a tw
system [7] (shown in Fig. 2) is used as the second benchmark. The two tan
connected by a short pipe and the amount of liquid flowing into the ta
regulated by a control valve. The identification problem considered here
prediction of liquid level (h2) of the second tank (Tank 2) given the input flow
the first tank (Tank 1). The network input vector for the DRBF model is

xk ¼ h2ðk�1Þ q1ðk�1Þ

h i
and the output is h2(k). Complete details of the benchmark can be found in

Continuous stirred tank reactor benchmark: Continuous stirred tank r
(CSTR) are highly nonlinear systems and as such useful benchmarks for
network modelling techniques. The CSTR considered here is a single-input–
output (SISO) one, where the output is the product concentration, C and the i
the coolant flow rate, q. The chemical reaction which produces the compound
the reactor is an exothermic process, which raises the temperature, and redu
reaction rate. The objective is to control the measured concentration of the p
C, by manipulating the coolant flow rate, q. The CSTR equations are given

dT

dt
¼

qif

V
Tif � T
� �

þ K1C exp
�E

R � T

� �

þ K2q � 1� exp �
K3

q

� �� �
� T cf � Tð Þ,



dC qif � � �E
� �

(43)

for the
neural
input

(44)

ticular
terms

(45)

nd 4(a)
CSTR
under
arison.
ig. 4(b)
pdate-

ARTICLE IN PRESS

Open

OpenH

h2

h1
K1

K2

q1

q3

q2

Tank 1

Tank 2
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dt
¼

V
Cif � C � KoC exp

R � T
.

Details of the equation constants, nominal setting and operating conditions
CSTR benchmark can be found in [13]. Here the process is identified using a
model assuming a second order nonlinear autoregressive with external
(NARX) model structure. The network input vector is thus of the form

xk ¼ Ck�1 Ck�2 qk�1 qk�2

h i
and the output is the product concentration at the kth sample instant, Ck.

5.2. Performance evaluation

To get an indication of the global modelling quality of a DRAN at a par
iteration of the sequential learning process model performance is measured in
of the percentage normalised mean squared error (%NMSE),

J wkð Þ ¼
100

p

XNv

n¼1

y xn;wkð Þ � dnð Þ
2

,XNv

n¼1

d2
n,

computed over an Nv pattern representative test data set, (xn, dn). Figs. 3(a) a
show the typical evolution of this performance index for the coupled-tank and
benchmark problems with each of the four sequential learning algorithms
consideration. The learning curves for RAN-EKF are also included for comp
Fig. 3(b) also shows the typical growth of a DRAN during training while F
demonstrates the parallel modelling performance achievable with a minimal u
DRLM trained DRAN for the CSTR benchmark.
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Fig. 3. Sequential learning performance on coupled tank system (without pruning). (a) %NMSE learning

curve for two tank system; (b) Number of hidden neurons.
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algorithms discussed in the paper (with and without pruning) on the
benchmarks following 1000 iterations of training. For comparison purposes
are also included for RAN-EKF and DRAN-EKF. The recorded perfor
indices are the mean NMSE (E [J(wk)]) computed over the last 500 iteratio
final number of hidden neurons (m) and the corresponding number of n
parameters (Nw). The user defined algorithm parameters were the same fo
problem and are as given in Table 4. Finally, Table 5 summarises the appro
memory and computational requirements of each algorithm.
These results show that, in addition to providing significant savings in m

and computational requirements, the decomposed EKF and RLM algo
consistently yield better NMSE performance than DRAN-EKF. The resul
show that the minimal update implementations are promising alternati
DRLM and DEKF as they have an even lower computational cost yet a
comparable performance. When used in conjunction with pruning the pr
algorithms maintain their superiority while at the same time producing parsim
networks.
The decomposed algorithms significantly outperform conventional RAN

and MRAN, but a comparison with the results for DRAN-EKF reveals that
principally due to the benefits offered by the DRAN architecture.
An examination of the NMSE performance of the different EK

RLM implementations shows that RLM is marginally superior to
This is consistent with other comparisons of the algorithms reported
literature [3,14].
The superior NMSE achieved by the decomposed training algorithms ma

remarkable given that they discard a significant proportion of the cur
information in computing the weight updates. However, this is in fact the rea
their success. The stochastic nature of the covariance matrix as it is com
recursively over several iterations and the fact that it varies as a function o
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Fig. 4. Sequential learning performance on CSTR benchmark (without pruning). (a) %NMSE learning

curve for CSTR benchmark; (b) Parallel model obtain using DRAN-mDRLM.
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Table 1

Performance of sequential learning algorithms on the time series benchmark

Without pruning With pruning

E(NMSE) m Nw E(NMSE) m Nw

RAN-EKFa 0.0300 52 313 0.0289 15 91

DRAN-DEKF 0.0320 6 27 0.0320 6 27

DRAN-DRLM 0.0191 7 31 0.166 7 31

DRAN-mDEKF 0.0223 6 27 0.0223 6 27

DRAN-mDRLM 0.0102 7 31 0.0102 7 31

DRAN-EKF 0.0293 13 81 0.0293 13 81

aRAN-EKF with pruning is usually reffered to as MRAN.

Table 2

Performance of sequential learning algorithms on the two tank benchmark problem

Without pruning With pruning

E(NMSE) m Nw E(NMSE) m Nw

RAN-EKFa 0.0628 44 265 0.1189 41 247

DRAN-DEKF 0.0099 7 45 0.0239 5 33

DRAN-DRLM 0.0096 17 105 0.0082 6 39

DRAN-mDEKF 0.0151 9 57 0.0282 4 27

DRAN-mDRLM 0.0146 7 45 0.0309 4 27

DRAN-EKF 0.0450 7 45 0.0450 7 45

aRAN-EKF with pruning is usually reffered to as MRAN.

Table 3

Performance of sequential learning algorithms on the CSTR benchmark

Without pruning With pruning

E(NMSE) m Nw E(NMSE) m Nw

RAN-EKFa 0.2854 30 301 0.2910 21 211

DRAN-DEKF 0.0069 9 95 0.0020 2 25

DRAN-DRLM 0.0042 9 95 0.0027 3 35

DRAN-mDEKF 0.0057 9 95 0.0020 2 25

DRAN-mDRLM 0.0062 9 95 0.0026 3 35

DRAN-EKF 0.0090 19 195 0.0095 12 125

aRAN-EKF with pruning is usually reffered to as MRAN.

Table 4

User defined parameters

Growth Criteria parameters �min ¼ 0:3 �max ¼ 0:5 g ¼ 0:98
Pruning method parameters M ¼ 30 d ¼ 0:0001
Others r ¼ 1 l ¼ 1
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Table 5

Comparison of the memory requirements and computation for various DRBF sequential learning

algorithms

Algorithms Memory requirement Computation load

RAN-EKF (MRAN) O N2
w

� �
O 3N2

w

� �
DRAN-EKF O Nw þ N̄i

� �2� �
O 3 Nw þ N̄i

� �2� �
DRAN-DEKF/DRLM O mn2w þ N̄

2
i

� �
O 3mn2w þ 3N̄

2
i

� �
DRAN-mDKEF/mDRLM O mn2w þ N̄

2
i

� �
O 3n2w þ 3N̄

2
i

� �

Note: Nw is the total number of weights, nw is the number of weights for one hidden neuron, N̄i is the

number of inputs including the bias, m is the number of hidden neurons.

V.S. Asirvadam et al. / Neurocomputing 69 (2005) 142–157 155
curvature information is thus beneficial in this respect. Furthermore, decom
training can be viewed as an approximation to separable recursive least s
which in turn is an approximation to off-line separable nonlinear least s
training. One of the properties of separable nonlinear least squares is th
resulting covariance matrix is better conditioned than the corresponding ma
conventional nonlinear least squares [18]. Empirical studies have shown that th
holds true for separable recursive least squares [4]. Thus, it is likely th
decomposed and minimal update algorithms also benefit from being
conditioned.
6. Conclusions

ed for
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ed by
rs and
basis.

neuron
sented
posed
rms of
emory,
onious

) are
al load
NSME
Two computationally efficient learning algorithms have been develop
DRANs, a generalisation of RANs where the RBF topology is modified to
direct links between the inputs and the output node. The first is obtain
partitioning the network in terms of the direct-link and RBF paramete
decomposing the RBF parameter covariance matrix on a neuron by neuron
The second is a variant of the first in which only the parameters of a winner
are updated at each iteration to reduce the computational burden. Results pre
for implementations, with and without pruning, show that the decom
sequential learning approaches consistently outperform DRAN-EKF in te
the final percentage NMSE achieved. In addition, the algorithms use less m
require less computation time per iteration and produce more parsim
networks.
The minimal update algorithms (DRAN-mDEKF and DRAN-mDRLM

especially noteworthy as they achieve a substantial reduction in computation
compared to DRAN-mDEKF and DRAN-mDRLM without sacrificing
performance.



While originally motivated by the search for computationally efficient algorithms,
choice
al-time
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the superior learning capabilities of DRLM and mDRLMmake them the first
algorithms for training DRANs even when memory requirements and re
constraints are not an issue.
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