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Abstract

Generalization ability of neural networks is very important and a rule of thumb for good generalization in neural systems is that the

smallest system should be used to fit the training data. Unfortunately, it is normally difficult to determine the optimal size of networks,

particularly, in the sequential training applications such as online control. In this paper, an online training algorithm with a dynamic

pruning procedure is proposed for the online tuning and pruning the neural tracking control system. The conic sector theory is

introduced in the design of this robust neural control system, which aims at providing guaranteed boundedness for both the input–output

signals and the weights of the neural network. The proposed algorithm is applied to a multilayer perceptron with adjustable weights and

a complete convergence proof is provided. The neural control system guarantees the closed-loop stability of the estimation, and in turn, a

good tracking performance. The performance improvement of the proposed system over existing systems can be qualified in terms of

better generalization ability, preventing weight shifts, fast convergence and robustness against system disturbance.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, extensive research and significant progress
have been made in the area of robust discrete time neural
controller designed for nonlinear system [25,14,5,30,7,
10,21,2,15,18,19,23,28,31]. However, when a neural system
is used to handle unlimited examples, including training
date and testing data, an important issue is how well it
generalizes to patterns of the testing data, which is known
as generalization ability [1,12]. For large discrete time
domain sequential signals such as online control applica-
tions, it is usually impossible to cover every sample data
even with proper training [9,11]. One would like the system
to generalize from training samples to the underlying
function and give reasonable answers to novel inputs with
the existing training data. A rule of thumb for obtaining
good generalization is to use the smallest system that fits
the data. When a network has too many free parameters
e front matter r 2006 Elsevier B.V. All rights reserved.
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(i.e. weights and/or units), it may end up by just
memorizing the training patterns. Both theoretical [1] and
practical results [6,12] show that networks with minimal
free parameters exhibit better generalization performance,
which can be illustrated by recalling the analogy between
neural network learning and curve fitting. Moreover,
knowledge embedded in smaller trained networks is
presumably easier to interpret and thus the extraction of
simple rules can hopefully be facilitated. Lastly, from
an implementation standpoint, small networks only re-
quire limited resources in any physical computational
environment.
In this paper, a dynamic training and pruning algorithm

for a generic neural control systems is proposed in which
the impact of pruning is taken as a dynamic term and a
general stability proof for the neural control system is
derived. The plant under consideration is a nonlinear
dynamic system and neural network is applied in the
system to estimate the nonlinear function in the closed-
loop. Conic sector theory [17,20] is introduced to design the
robust control system, which aims to provide guaranteed
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Fig. 1. Structure of the control scheme.

J. Ni, Q. Song / Neurocomputing 69 (2006) 2097–21112098
boundedness for both the input–output signals and the
weights of the neural network. The neural network is
trained by this algorithm in the close-loop to provide an
improved training and generalization performance over the
standard back-propagation algorithm, in terms of guaran-
teed stability of the weights, which in turn, yields good
tracking performance for the dynamical control system.

Since the stability is the primary concern of a closed-loop
system, instead of a direct convergence analysis in [29], we
take the traditional approach of adaptive control system to
provide a robust input–output (I/O) stability design and
analysis for the neural control system, which does not
require the weights to converge to the ideal values. And
different to [16], we treat the effect of pruning as a dynamic
term, which will be discussed in the robustness analysis
part. The conic sector theory is applied to isolate the
learning and pruning part from the rest of the closed-loop
system. A special normalized cost function is provided to
the algorithm to reject disturbance and solve the so-called
vanished cone problem. The improved performance of the
proposed algorithm can be described in terms of better
generalization ability, preventing weight shifting, fast
convergence and robustness against system disturbance.
2. NN tracking controller and the dynamic training and

pruning algorithm

2.1. Design of the controller

A dynamic control system can be presented at an
input–output form [25,24] as the following:

yk ¼ f k�1 þ uk�1 þ ek, (1)

where f k�1 2 Rm is a dynamic nonlinear function, ek 2 Rm

denotes the system noise vector and uk�1 2 Rm is the control
signal vector. The tracking error of the control system can
be defined as

sk ¼ yk � dk, (2)

where dk 2 Rm is the command signal.
Define the control signal as

uk�1 ¼ �f̂ k�1 þ dk þ kvsk�1, (3)

where kv is the gain parameter of the fixed controller and
f̂ k�1 is the estimate of the nonlinear function f k�1 by the
neural network. Then the error vector can be presented as

ek ¼ f k�1 � f̂ k�1 þ ek (4)

to train the neural network as shown in Fig. 1 where the d̄k

denotes the impact of the pruning over the whole system
which will be further investigated in Sections 3 and 4.

Note that the training error ek may not be directly
measurable, so we should use the tracking error to generate
it using the closed-loop relationship (1), (3) and (4)

ek ¼ ð1� z�1kvÞsk. (5)
2.2. Basic form of adaptive simultaneous perturbation

algorithm

The adaptive simultaneous perturbation (ASP) approach
[27] is composed of two parallel recursions: one for the
weights W and one for the Hessian of the loss function,
LðW Þ. The two core recursions are, respectively:

Ŵ k ¼ Ŵ k�1 � akðHÞ
�1

k GkðŴ k�1Þ, ð6Þ

Hk ¼MkðHk�1Þ, ð7Þ

Hk ¼
k

k þ 1
Hk�1 þ

1

k þ 1
Ĥk, ð8Þ

where ak is a non-negative scalar gain coefficient, GkðŴ k�1Þ

is the input information related to the gradient or the
gradient approximation. Mk is a mapping designed to cope
with possible non-positive definiteness of Hk, and Ĥk is a
per-iteration estimation of the Hessian discussed below.
The parallel recursions can be implemented once Ĥk is
specified and the formula for estimating the Hessian at
each iteration can be presented as

Ĥk ¼
1

2

dGT

k

2ck

rk þ
dGT

k

2ck

rk

� �T
" #

, (9)

where

dGk ¼ Gð1Þk ðŴ k þ ckDkÞ � Gð1Þk ðŴ k � ckDkÞ, (10)

Gð1Þk ðŴ k � ckDkÞ

¼
LðŴ k � ckDk þ ~ck

~DkÞ � LðŴ k � ckDk � ~ck
~DkÞ

2~ck

~rk

ð11Þ

with Dk ¼ ðDk1;Dk1; . . . ;DkpÞ
T is generated via Monte Carlo

according to conditions specified in [26,29] and rk ¼ ðD
�1
k1 ;

D�1k2 ; . . . ;D
�1
kn Þ.

~Dk ¼ ð ~Dk1; ~Dk2; . . . ; ~DkpÞ
T is generated in the

same statistical manner as Dk, but independently of Dk, and
~rk ¼ ð ~D

�1
k1 ;

~D�1k2 ; . . . ; ~D
�1
kp Þ

T. ck is a positive scalar satisfying
certain regularity conditions [26,29] and with ~ck satisfying
conditions similar to ck.
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The output of a three-layer neural network can be
presented as

f̂ k�1 ¼ Hðŵk�1;xk�1Þv̂k�1, (12)

where the input vector xk�1 2 Rni of the neural network is

xk�1 ¼ ½y
T
k�1; y

T
k�2; . . . ; u

T
k�2; u

T
k�3 . . . �

T (13)

v̂k�1 2 Rpv is the weight vector of the output layer, and
ŵk�1 2 Rpw is the weight vector of the hidden layer of
the neural network with pv ¼ m� nh and pw ¼ nh � ni,
where ni and nh are the number of the neurons in the input
and hidden layers of the network, respectively.
Hðŵk�1;xk�1Þ 2 Rm�Pv is the nonlinear activation function
matrix:

Hðŵk�1; xk�1Þ

¼

hk�1;1; hk�1;2; . . . ; hk�1;nh
0 . . . . . . 0

0 . . . hk�1;1; hk�1;2; . . . ; hk�1;nh
. . . 0

. . . . . . . . .

2664
3775

with hk�1;i is the nonlinear activation function

hk�1;i ¼ hðxT
k�1ŵk�1;iÞ ¼

1

1þ e
�4lxT

k�1
ŵk�1;i

(14)

with ŵk�1;i 2 Rni , ŵk�1 ¼ ½ŵ
T

k�1;1; . . . ; ŵ
T

k�1;nh
�
T and 4l40,

which is the gain parameter of the threshold function.
2.3. Hessian based pruning

The basic idea of this approach is to use the information
on the second-order derivatives of the error surface in
order to make a trade-off between network complexity and
training error minimization. A similar idea was originated
from optimal brain damage (OBD) procedure [13] or
optimal brain surgeon (OBS) procedure [8]. The starting
point in the construction of such a model is the
approximation of the cost function xav using a Taylor

series about the operating point, described as follows:

xavðŴ k þ DŴ kÞ ¼ xavðŴ kÞ þ GT

k ðŴ kÞDŴ k

þ 1
2
DŴT

k HkðŴ kÞDŴ k

þOðkDŴ kk
3
Þ, ð15Þ

where DŴ k is a perturbation applied to the operating point
Ŵ k, with the GkðŴ kÞ is the gradient vector and HkðŴ kÞ is
the per-iteration estimated Hessian matrix. The require-
ment is to identify a set of parameters whose deletion from
multilayer perceptron that cause the minimal increase in
the value of the cost function xav. However, for our
dynamic pruning algorithm, the criteria for pruning should
be based on a consecutive L-step information (the
estimation error of all these L steps are smaller than the
criteria, so we regard it reaches a local minimum), where L
is a finite positive integer. So

xavðŴ k þ DŴ kÞ

¼ xavðŴ kÞ þ Ḡ
T

LðŴ kÞDŴ k

þ 1
2
DŴT

k H̄LðŴ kÞDŴ k þOðkDŴ kk
3
Þ,

Ḡ
T

LðŴ kÞ ¼
Xk

k�1þL

ðGT

k ðŴ kÞÞ=L,

H̄LðŴ kÞ ¼
Xk

k�1þL

ðHkðŴ kÞÞ=L. (16)

To solve this problem in practical terms, the following
approximations are made:
(1)
 Quadratic approximation: The error surface around a
local minimum or global minimum is nearly ‘‘quad-
ratic’’. Then the higher-order terms in Eq. (16) may be
neglected.
(2)
 Extremal approximation: The parameters have a set of
values corresponding to a local minimum or global
minimum of the error surface. In such a case, the
gradient vector ḠkðŴ kÞ may be set equal to zero and
the term Ḡ

T

k ðŴ kÞDŴ k on the right-hand of Eq. (16)
may therefore be ignored.
Under these two assumptions, Eq. (16) can be presented
approximately as

Dxav ¼ xavðŴ k þ DŴ kÞ � xavðŴ kÞ

’ 1
2
DŴT

k H̄LðŴ kÞDŴ k. ð17Þ

The goal of OBS is to set one of the synaptic weights to
zero to minimize the incremental increase in xav given in
Eq. (17). Let Ŵ ki denote this particular synaptic weight.
The elimination of this weight is equivalent to the
condition

IT
i DŴ k þ Ŵ ki ¼ 0, (18)

where I i is the unit vector whose elements are all zero,
except for the ith element, which is equal to unity. And the

goal is to minimize the quadratic term 1
2
DŴT

k H̄LðŴ kÞDŴ k

with respect to the perturbation DŴ k, subject to the

constraint that IT
i DŴ k þ Ŵ ki is zero, and then minimize

the result with respect to the index i.
To solve this constraint optimization problem, the

following penalty function is used:

S ¼ 1
2
DŴT

k H̄LðŴ kÞDŴ k � lðIT
i DŴ k þ Ŵ kiÞ, (19)

where l is the Lagrange multiplier. Apply the derivative of
the risk function S with respect to DŴ k, use the constraint
of Eq. (18), and matrix inversion, the optimum solution of
the weight vector Ŵ k is

DŴ k ¼ �
Ŵ ki

½H�1
i;i �

H�1I i (20)
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and the corresponding optimum value of the risk function
S for element W i is

Si ¼
ðŴ kiÞ

2

2½H�1
i;i �

, (21)

where H�1 is the inverse of the Hessian matrix H̄L, and
½H�1

i;i � is the iith element of the inverse matrix. The value Si

optimized with respect to DŴ k, subject to the constraint
that the ith synaptic weights Ŵ ki be eliminated, is called the
saliency of Ŵ ki.

In this method, the weight corresponding to the smallest
saliency is the one selected for deletion. Moreover, the
corresponding optimal changes in the remainder of the
weights are given in Eq. (20).

And till now, the idea of this novel dynamic training
and pruning (DTP) algorithm is going to be established.
The perturbation is applied to update the weights of
both layers by using ASP algorithm and some useful
information is extracted in this process to do the
pruning when some criteria are satisfied. The detailed
steps for implementing this novel algorithm are illustrated
next.

Remark 1. To simplify the notation, we could define the
overall estimate parameter vector Ŵ k ¼ ½v̂

T
k ŵT

k � 2 Rp with
p ¼ pv þ pw in the DTP algorithm. However, for a multi-
layered neural network, it may not be possible to update
all the estimated parameters with a single gradient
approximation function to meet the stability requirement.
Therefore, it is better that the estimated parameter
vectors v̂k and ŵk are updated separately in the DTP
algorithm using different gradient approximation functions
as in the standard BP training algorithm. This point will
be explored further in the robustness analysis in the
next section.

2.4. The DTP algorithm
Summary of the DTP algorithm for neural controller

Step 1.
Initializing: Form the new input vector xk�1 of the neural
network defined in Eq. (13).

Step 2.

Calculating the output f̂ k�1 of the neural network: Use the
input state xk�1 and the existing or initial weights of the
network in the first iteration.

Step 3.
Calculating the control input uk�1 by using

uk�1 ¼ �f̂ k�1 þ dk þ kvsk�1.

Step 4.
Evaluating the estimation error ek by feeding the tracking
error signal sk into a fixed filter.
Summary of the DTP algorithm for neural controller

Step 5.
Evaluate the squared error of L consecutive training
samples: If all of them are less than the criteria for pruning
x (where we assume it reaches a local minimum), goto step
6; else, goto step 7.

Step 6.
Do the pruning by choosing the weight corresponding to
the minimum saliency, then goto step 7.

Step 7.
Updating the weights for the output layer

ŷv

k ¼ ŷv

k�1 �
av

k
ðMv

k
Þ�1e

pT
k

Hðŷw
k�1

;xk�1Þ2D
v
k

rv
k

rv
k (see Eq. (35) in

Section 3)
and hidden layer

ŷk ¼ ŷk�1 �
ak ðM

w
k
Þ�1e

pT
k
ðf̂ w�

k�1
�f̂ wþ

k�1
Þ

cw
k
rw

k

rw
k (see Eq. (68) in

Section 4),
respectively, and the role of rv

k and rw
k is also illustrated

later.

Step8.
Go back to step 2 to continue the iteration.

After summarizing the DTP algorithm, it is necessary to
investigate the robustness for this algorithm.
3. Conic sector condition for the robustness analysis of the

learning law in the output layer

The general idea is that we do not deal with the
convergence property of the parameter estimate of the
dynamic training and pruning algorithm directly, which is
well established under certain conditions. Rather we shall
prove the tracking error and the parameter estimation
error of the output layer of the neural network, which are
derived after pruning, are bounded using the conic sector
theory under some mild assumptions. Furthermore, the
boundedness condition for the parameter estimation error
of the hidden layer is also derived in the next section. The
purpose of the training algorithm is to make the estimate
parameter vector Ŵ k approximate the optimal one, and in
turn, to produce an optimal tracking error for the control
system. To do this, one important condition is that the
time-vary equation should be bounded as required for
adaptive control systems. To guarantee the boundedness
condition, the robust neural controller uses a normalized
DTP algorithm. In this paper, the robustness of the system
is analyzed using the conic sector theory. A two-stage
normalized training strategy is proposed for the DTP
algorithm with guaranteed I/O stability using conic sector
condition, which also provides guidelines for the selection
of the DTP learning parameters and normalization to
obtain an improved performance.
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As for this training and pruning algorithm, it is more
convenient to analyze the conic conditions for the training
and pruning processes separately.

3.1. Conic sector condition for the training process in the

output layer

We use k:k to denote the Frobenius norm of a matrix
and Euclidean norm of a vector in this paper [4]. The
stability of the input–output neural control system can be
analyzed by the conic sector theory. The main concern is
with the discrete time tracking error signal sk, which is an
infinite sequence of real vectors. Consider, the extended
space L2e, in which the variable truncations lie in L2 with

ksk2;t ¼
Xt

k¼1

sTk sk

( )1=2

o1 (22)

8t 2 Zþ (the set of positive integer). The following theory is
a necessary extension to the conic sector stability of
Safanov [20] for discrete time control systems.

Theorem 1. Consider the following error feedback system:

sk ¼ e�k � Pk,

Fk ¼ H1sk,

Pk ¼ H2Fk

with operators H1;H2 : L2e ! L2e and discrete time signal

sk;Pk;Fk 2 L2e and e�k 2 L2. If

ðaÞ H1 : sk ! Fk satisfiesXN

k¼1

½sTkFk þ ssTk sk=2�4� g,

ðbÞ H2 : Fk ! Pk satisfiesXN

k¼1

½sPT
k Pk=2� PT

kFk�p� ZkðPk;FkÞk
2
N

for some s; Z; g40, then the above feedback system is stable

with sk;Fk 2 L2.

Proof. See Corollary 2.1 [3]. &
ek
ek

v∼

+ −
H

1

v

1

Φv
k

Fig. 2. The equivalent error feedback systems using the conic sector

conditions for the estimate error eTk and the output Fv
k ¼ �Hðŵk�1; xk�1Þ~vk,

where H2 ¼ 1.
Note that operator H1 represents the training algorithm
here, the input error signal is the tracking error sk defined
in Eq. (2) and the output is Fk, which will be defined later
and is related to the weight error vectors, and in turn, the
estimation parameter error vector ek and tracking error sk

through Eq. (5). H2 usually represents the mismatched
linear model uncertainty in a typical adaptive linear control
system and will be defined later in this section.
The first step to use the conic sector stability Theorem 1

is to restructure the control system into an equivalent error
feedback system as shown in Fig. 2. Then the parameter
estimation error vector should be derived and referred to
the output signal Fk. For this purpose, define the desired
output of the neural network as the plant nonlinear
function in Eq. (1)

f k�1 ¼ Hðw�k�1;xk�1Þv
�, (23)

where v� 2 Rpv is the ideal weight vector in the output layer
of the neural network, w� 2 Rpw is the desired weight vector
of the hidden layer. Therefore, the parameter estimate
error vectors can be defined as ~vk ¼ v� � v̂k 2 Rpv and ~wk ¼

w� � ŵk 2 Rpw for the output and hidden layers, respec-
tively.

Assumptions. (a) The sum of the system disturbance ek is
L2 norm bounded.
(b) The ideal weight vector v� and w� are L2 norm

bounded.
Now we are ready to establish the relationship between

the tracking error signal sk and the parameter estimate
vectors of the neural network, which is referred to the
operator H1 in Theorem 1 (i.e. the DTP algorithm).
According to Eq. (4) the error signals can be extended as

ek ¼ f k�1 � f̂ k�1 þ ek

¼ H2ðf k�1 � f̂ k�1 þ ekÞ

¼ H2ðHðw
�;xk�1Þv

� �Hðŵk�1;xk�1Þv̂k�1 þ ekÞ

¼ H2ðHðw
�;xk�1Þv

� �Hðŵk�1;xk�1Þv
�

þHðŵk�1; xk�1Þv
� �Hðŵk�1;xk�1Þv̂k�1 þ ekÞ

¼ H2ðHðŵk�1; xk�1Þ~vk�1 þ ~Hðŵk�1;xk�1Þv
� þ ekÞ

¼ H2Hðŵk�1;xk�1Þ~vk�1 þ ~e
v
k

¼ �H2F
v

k þ ~e
v
k, ð24Þ

where the operator H2 ¼ 1 and

Fv

k ¼ �Hðŵk�1;xk�1Þ~vk�1, (25)

~ev
k ¼ H2ð ~Hðŵk�1; xk�1Þv

� þ ekÞ, (26)

~Hðŵk�1; xk�1Þv
� ¼ ðHðw�;xk�1Þ �Hðŵk�1;xk�1ÞÞv

�, (27)

f̂
vþ

k�1 ¼ Hðŵk�1;xk�1Þðv̂k�1 þ ckD
v

kÞ, (28)

f̂
v�

k�1 ¼ Hðŵk�1;xk�1Þðv̂k�1 � ckD
v

kÞ (29)

with Dv

k and rv
k 2 Rpv , which can be viewed as the first pv

components of Dk and rk defined before.
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Remark 2. There is an important implication in Eq. (44).
The tracking error signal sk is directly linked to the output
signal Fv

k, and in turn, the parameter estimation error vector
~vk of the output layer of the network, which implies that the
training procedure of the output layer of the neural network
should be treated separately from the hidden layer of the
network to obtain a bounded disturbance term ~ev

k as defined
in Eq. (26), i.e. ~ev

k 2 L2 as required by Theorem 1.
Therefore, using Eq. (44), we are able to form an equivalent
error feedback system Fig. 2 as the one in Theorem 1. Note
that H2 usually represents the mismatched linear model
uncertainty in a typical adaptive linear control system.
Since the neural network has powerful approximation
ability to match the nonlinear function without the need to
worry about the linear model mismatch.

We define the operator Hv

1, which represents the training
process of the output layer, and the loss function as

Lðv̂k�1; ŵk�1Þ ¼ kf k � f̂ kk
2 (30)

and with definitions in equation, we have a gradient
approximation using the simultaneous perturbation vector
Dv

k 2 Rpv to stimulate the weights of the output layer:

ĝðv̂k�1; ŵk�1;D
v

kÞ

¼
Lðv̂k�1 þ cv

kD
v

k; ŵk�1Þ � Lðv̂k�1 � cv
kD

v

k; ŵk�1Þ þ ev
k

2cv
k

rv
k

¼
ðf k�1 � f̂

vþ

k�1Þ
2
� ðf k�1 � f̂

v�

k�1Þ
2
þ ev

k

2cv
k

rv
k

¼
ðf k�1 � f̂ vþ

k�1 þ f k�1 � f̂ v�

k�1Þðf̂
v�

k�1 � f̂ vþ

k�1Þ þ ev
k

2cv
k

rv
k

¼
eT

k ðf̂
v�

k�1 � f̂ vþ

k�1Þ

cv
k

rv
k

¼ eT
k Hðŵk�1;xk�1Þ2D

v

krv
k. ð31Þ

Since in the basic form of ASP, Hk is actually the sample
mean of Ĥk during the period, which is

Hk ¼
1

k þ 1

Xk

k¼0

Ĥk (32)

and according to the definition of Ĥk, we can get

Ĥk
v
¼

1

2

dGvT

k

2cv
k

rv
k þ

dGvT

k

2cv
k

rv
k

� �T
" #

dGv

k�1

¼
Lðŵk�1; v̂k�1 þ cv

kD
v

k þ ~c
v

k
~Dv

kÞ � Lðŵk�1; v̂k�1 þ cv
kD

v

k � ~c
v

k
~Dv

kÞ þ ~e
v

k

2~cv

k

~rv

k

þ
Lðŵk�1; v̂k�1 � cv

kD
v

k þ ~c
v

k
~Dv

kÞ � Lðŵk�1; v̂k�1 � cv
kD

v

k � ~c
v

k
~Dv

kÞ þ ~e
v

k

2~cv

k

~rv

k

¼ gðŵk�1; v̂k�1 þ cv
kD

v

kÞ � gðŵk�1; v̂k�1 � cv
kD

v

kÞ

¼ eðv̂k�1 þ cv
kD

v

kÞHðŵk�1;xk�1Þ2 ~D
v

k
~rv

k

� eðv̂k�1 � cv
kD

v

kÞHðŵk�1; xk�1Þ2 ~D
v

k
~rv

k

¼ ðf k�1 � f̂
vþ

k�1 þ ekÞHðŵk�1;xk�1Þ2 ~D
v

k
~rv

k

� ðf k�1 � f̂
v�

k�1 þ ekÞHðŵk�1; xk�1Þ2 ~D
v

k
~rv

k

¼ ðf̂
v�

k�1 � f̂
vþ

k�1ÞHðŵk�1;xk�1Þ2 ~D
v

k
~rv

k

¼ 4Hðŵk�1;xk�1ÞH
T
ðŵk�1;xk�1Þc

v
kD

v

k ð33Þ

with Dv

k;
~Dv

k; r
v
k; ~r

v

k 2 Rpv , which can be viewed as the first pv

components of Dk; ~Dk; rk; ~rk, respectively.
And then we can get the Hv

k

Hv

k ¼
1

k þ 1

Xk

k¼0

Ĥ
v

k ¼
1

k þ 1

Xk

k¼0

ð2Hðŵk; xkÞH
T
ðŵk;xkÞÞ.

(34)

After we define the Mv

k, which is after the mapping of Hv

k

and consider the pruning, we have a normalized learning
law for the weight of the output layer:

v̂k ¼ v̂k�1 �
av

kðM
v

kÞ
�1

eT
k Hðŵk�1;xk�1Þ2D

v

k

rv
k

rv
k, (35)

where r is the bounded normalization factor, which is
traditionally used in adaptive control system to bound the
signals in learning algorithm [3], is defined as

rv
k ¼ mrv

k�1 þmax ½ðMv

kÞ
�1

Hðŵk�1;xk�1Þ�
2; r̄

� �
(36)

with r̄40; u 2 ð0; 1Þ.
Then the stability analysis of the robust neural controller

can be justified by the conic sector condition, which
requires the feedback system in Fig. 2 to meet certain
dissipative condition as in Theorem 1 and can be justified
as in the following theorem.

Theorem 2. The operator Hv

1: ek ! Fv

k, which represents the

training process of the output layer (see Fig. 2), satisfies the

condition (a) and (b) of Theorem 1, i.e. ek;F
v

k 2 L2.

Proof. As an easy starting point, we establish the conic
sector condition between the estimate error ek and the
output Fv

k first and then extend to the tracking error sk

later. Using the learning law, we have

k~vkk
2
� k~vk�1k

2

¼ �2fav
kðM

v

kÞ
�1

eT
k Hðŵk�1; xk�1ÞD

v

krvT
k
~vk�1gðrv

kÞ
�1

þ ðav
kðM

v

kÞ
�1

eT
k Hðŵk�1;xk�1ÞD

v

krvT
k ðr

v
kÞ
�1
Þ
2

¼ 2fav
kðM

v

kÞ
�1
gj � eT

k Hðŵk�1;xk�1Þ~vk�1j

�j~vT
k�1ð~vk�1 ~v

T
k�1Þ

�1Dv

krvT
k
~vk�1jðrv

kÞ
�1

þ ðav
kðM

v

kÞ
�1

eT
k Hðŵk�1;xk�1ÞD

v

krvT
k ðr

v
kÞ
�1
Þ
2. ð37Þ

Consider the property of the gradient of the square error
signal around attractor basin [25]

�
qðeT

k ekÞ

qðv̂k�1Þ
T
~vk�1 ¼ �eT

k Hðŵk�1;xk�1Þ~vk�1 ¼ eT
kF

T
kX0 (38)

and the trace property

j~vT
k�1ð~vk�1 ~v

T
k�1Þ

�1Dv

krvT
k
~vk�1j

¼ jtrf~vT
k�1ð~vk�1 ~v

T
k�1Þ

�1Dv

krvT
k
~vk�1gj,

jtrf~vk�1 ~v
T
k�1ð~vk�1 ~v

T
k�1Þ

�1Dv

krvT
k gj ¼ jtrfD

v

krvT
k gjDqpv. (39)
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Eq. (48) can be rewritten as

k~vkk
2
� k~vk�1k

2p2akðM
v

kÞ
�1pvfe

T
kF

v

kgðr
v
kÞ
�1

þ kðav
kðM

v

kÞ
�1eT

k Hðŵk�1; xk�1ÞD
v

krvT
k ðr

v
kÞ
�1
Þk

2.

Summing the above equation upon to N steps, we are able
to establish the conic condition with a constant �sv for the
estimate error ek as the input in Theorem 1 and the output
Fv

k similar to Ref. [22]:XN

k¼1

eT
kF

v

k þ eT
k ek

�sv

2

� �
X� ð~v0Þ

2 Mv

k
�rv

k

2akpv

� �
(40)

by selecting a suitable normalized factor �rv

k to obtain the
constant number �sv such that

14 �sv
X

av
kðM

v

kÞ
�1

pv

kDv

kk
2
krv

kk
2
ð �rv

kÞ
�1. (41)

Note that the conic sector condition guarantees that the
estimate error ek and the output Fv

k ¼ �Hðŵk�1; xk�1Þ~vk are
bounded according to Theorem 1, and in turn, the
parameter estimate error ~vk.

The specified normalized factor rv
k plays two important

roles. Firstly, it guarantees svo1 to avoid the so-called
vanished cone problem [3]; secondly, it guarantees the
sector conditions of Theorem 1 to be simultaneously
satisfied by both the original feedback system and the
normalized equivalent feedback system. Therefore, both
conditions (a) and (b) of Theorem 1 for ek are fulfilled.

According to Theorem 1, Fv

k ¼ �Hðŵk�1;xk�1Þ~vk�1 2 L2

leads to the bounded parameter estimation error ~vk�1 for
the training process of the output layer. &

3.2. Conic sector condition for the pruning process in the

output layer

However, from the criterion of pruning, we know that
there is pruning once per step at most. So here a new term
ep

k is defined to denote the estimation error instead.

ep

k ¼ H2ðf k�1 � f̂ p

k�1 þ ekÞ,

where f̂ p

k�1 is the network output with pruning. And from
the definition of this perturbation based pruning, it is
obvious that

f̂
p

k�1 ¼ f̂ k�1ðv̂k�1 þ Dvk�1Þ, (42)

where the Dvk�1 is the added perturbation for pruning.
According to the pruning criteria and Eq. (20), we know

Dvk�1 ¼ �
vk�1;i

½H̄
v

Lk�1;i;i
�
�1

H̄
v

Lk�1
Ik�1;i,

H̄
v

Lk�1
¼
Xk�1

m¼k�L

ðĤ
v

mÞ=L

with i denoting the specific weight to be pruned, Ik�1;i is a
unit vector whose elements are all zero, except for the ith
element, which is equal to unity. Ĥ

v

k�1 is the per-iteration
estimation Hessian matrix for the output layer. From the
mean value theory, we have

f̂ k�1ðv̂k�1 þ Dvk�1Þ � f̂ k�1ðv̂k�1Þ ¼ Dvk�1 � f̂
0

k�1;v; ð43Þ

where f̂
0

k�1;v is the first derivative of the network output
with respect to the weights of the output layer. It is easy to
see that kf̂ 0k�1;vko1.
From above analysis, ep

k can be rewritten as

ep

k ¼ H2ðf k�1 � f̂
p

k�1 þ ekÞ

¼ H2ðf k�1 � ðf̂ k�1 þ Dvk�1f̂
0

k�1;vÞ þ ekÞ

¼ �H2ðFv

k � Dvk�1f̂
0

k�1;vÞ þ ~e
v
k. ð44Þ

From the basic concept of pruning, we know that some
weight is deleted during the pruning. For example, let
v̂

p

k�1 2 Rn denote the weight vector after pruning of v̂k�1,
and we assume that the nth weight v̂k;n is pruned, so
we have

v̂
p

k�1 ¼ Dvk�1 þ v̂k�1

Dvk�1 ¼ v̂
p

k�1 � v̂k�1

¼ ½v̂k�1;1; . . . ; 0� � ½v̂k�1;1; . . . ; v̂k�1;n�

¼ ½0; . . . ;�v̂k�1;n� ð45Þ

which shows that the Dvk�1 is related to the current weight
value, so from Theorem 2, kDvk�1k is a bounded term.
For the convenience of the analysis later, we can rewrite

the ep
k as a term so that it can describe the estimation error

with pruning

ep

k ¼ �H2F
vp

k þ ~e
v
k,

where

Fvp

k ¼ Fv

k � tv
k, (46)

where tv
k ¼ Dvk�1 f̂

0

k�1;v and kt
v
kkptv

max with tv
max is a positive

constant.
And similarly, we have the learning law for the output

layer after pruning:

v̂k ¼ v̂k�1 �
av

kðM
v

kÞ
�1

epT
k Hðŵk�1;xk�1Þ2D

v

k

rv
k

rv
k. (47)

After reconstruct a new feedback system by using the new
input epT

k and output term Fvp

k ¼ Fv

k � tv
k, we can justify the

conic sector condition for the learning law with pruning for
the output layer as in Fig. 3

k~vkk
2
� k~vk�1k

2

¼ �2fav
kðM

v

kÞ
�1epT

k Hðŵk�1; xk�1ÞD
pv

k rvT
k
~vk�1gðrv

kÞ
�1

þ ðav
kðM

v

kÞ
�1epT

k Hðŵk�1;xk�1ÞD
v

krvT
k ðr

v
kÞ
�1
Þ
2

¼ 2fav
kðM

v

kÞ
�1
gj � epT

k Hðŵk�1;xk�1Þ~vk�1j

�j~vT
k�1ð~vk�1 ~v

T
k�1Þ

�1Dv

krvT
k
~vk�1jðrv

kÞ
�1

þ ðav
kðM

v

kÞ
�1epT

k Hðŵk�1;xk�1ÞD
v

krvT
k ðr

v
kÞ
�1
Þ
2

¼ 2fav
kðM

v

kÞ
�1
gjepT

k ðF
vp

k þ tv
kÞj

�j~vT
k�1ð~vk�1 ~v

T
k�1Þ

�1Dv

krvT
k
~vk�1jðrv

kÞ
�1

þ ðav
kðM

v

kÞ
�1epT

k Hðŵk�1;xk�1ÞD
v

krvT
k ðr

v
kÞ
�1
Þ
2. ð48Þ



ARTICLE IN PRESS

ek
e

k
v∼

+ −
H

1

v

1

Φvp
k

p

Fig. 3. The equivalent error feedback systems using the conic sector

conditions for the estimate error epT
k and the output Fvp

k ¼ �Hðŵk�1;
xk�1Þ~vk � tv

k, where H2 ¼ 1.
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Consider the trace property

j ~vT
k�1ð~vk�1 ~v

T
k�1Þ

�1Dv

krvT
k
~vk�1j

¼ jtrf~vT
k�1ð~vk�1 ~v

T
k�1Þ

�1Dv

krvT
k
~vk�1gj,

jtrf~vk�1 ~v
T
k�1ð~vk�1 ~v

T
k�1Þ

�1Dv

krvT
k gj ¼ jtrfD

v

krvT
k gjDqpv. (49)

Eq. (48) can be rewritten as

k~vkk
2
� k~vk�1k

2

¼ 2akðM
v

kÞ
�1pvfe

pT
k Fvp

k gðr
v
kÞ
�1
þ 2akðM

v

kÞ
�1pve

pT
k tv

kðr
v
kÞ
�1

þ kðav
kðM

v

kÞ
�1eT

k Hðŵk�1; xk�1ÞD
v

krvT
k ðr

v
kÞ
�1
Þk

2.

And from 1
2
a2 þ 2b

2
X2ab, we have

k~vkk
2
� k~vk�1k

2

p2akðM
v

kÞ
�1

pvfe
pT
k Fvp

k gðr
v
kÞ
�1

þ akðM
v

kÞ
�1

pvð
1
2
kepT

k k
2
þ 2ktv

kk
2
Þðrv

kÞ
�1

þ kðav
kðM

v

kÞ
�1

epT
k Hðŵk�1;xk�1ÞD

v

krvT
k ðr

v
kÞ
�1
Þk

2

p2akðM
v

kÞ
�1

pvfe
pT
k Fvp

k gðr
v
kÞ
�1

þ akðM
v

kÞ
�1

pvð
1
2
kepT

k k
2
þ 2ktv

maxk
2
Þðrv

kÞ
�1

þ kðav
kðM

v

kÞ
�1

epT
k Hðŵk�1;xk�1ÞD

v

krvT
k ðr

v
kÞ
�1
Þk

2. ð50Þ

Summing the above equation upon to N steps, we are able
to establish the conic condition with a constant �sv for the
estimate error ep

k as the input in Fig. 3 and the output Fvp

k :XN

k¼1

epT
k Fvp

k þ epT
k ep

k

�sv

2

� �
X� ð~v0Þ

2 Mv

k rv
k

2akpv

� �
þNktv

maxk
2

� �
(51)

by selecting a suitable normalized factor rv
k to obtain the

constant number �sv such that

14 �sv4
1

4
þ

av
kðM

v

kÞ
�1

2pv

kDv

kk
2
krv

kk
2
ðrv

kÞ
�1. (52)

Note that the conic sector condition guarantees that the
estimate error ep

k and the output Fpv

k ¼ �Hðŵk�1;xk�1Þ~vk �

Zv
kt

v
k are bounded according to Theorem 1.
The specified normalized factor rv

k plays two important
roles. Firstly, it guarantees svo1 to avoid the so-called
vanished cone problem [3]; secondly, it guarantees the
sector conditions of Theorem 1 to be simultaneously
satisfied by both the original feedback system and the
normalized equivalent feedback system. Therefore, both
conditions (a) and (b) of Theorem 1 for ep

k are fulfilled.
This completes the proof. &

4. Conic sector condition for the robustness analysis of the

learning law in the hidden layer

As justified in Remark 1, the hidden layer parameter of
the network should be estimated separately. Therefore, a
conic sector condition will be established for the hidden
layer training in this section.

4.1. Conic sector condition for the training process in the

hidden layer

Similar to the error equation Eq. (24), one can rewrite it
as

ek ¼ H2ðf k�1 � f̂ k�1 þ ekÞ

¼ H2ðHðw
�;xk�1Þv

� �Hðŵk�1;xk�1Þv̂k�1 þ ekÞ

¼ H2ðHðw
�;xk�1Þv

� �Hðw�;xk�1Þv̂k�1 þHðŵ
�;xk�1Þv̂k�1

�Hðŵk�1; xk�1Þv̂k�1 þ ekÞ

¼ H2ð ~Hðŵk�1; xk�1Þv̂k�1 þHðw�;xk�1Þ~vk�1 þ ekÞ

¼ H2½ ~Hðŵk�1; xk�1Þv̂k�1 þHðw�;xk�1Þ~vk�1 þ ek�

¼ �H2Fw

k þ ~e
w
k ð53Þ

with ~ew
k ¼ H2ðHðw

�;xk�1Þ~vk�1 þ ekÞ and Fw

k ¼ �
~Ok�1 ~wk�1

where ~Hðŵk�1Þ ¼ Hðw�;xk�1Þ �Hðŵk�1;xk�1Þ; ~vk�1;i ¼ v�i�

v̂k�1;i; ~wk�1;i ¼ w�i � ŵk�1;i, and ~Ok�1 2 Rm�pw is the following
matrix:

eOk�1 ¼

~mk�1;1x
T
k�1;1v̂k�1;ð1;1Þ; . . . ; ~mk�1;1x

T
k�1;ni

v̂k�1;ð1;1Þ; . . . ; ~mk�1;nh
xT

k�1;ni
v̂k�1;ð1;nhÞ

..

.

~mk�1;1x
T
k�1;1v̂k�1;ðm;1Þ; . . . ~mk�1;1x

T
k�1;ni

v̂k�1;ðm;1Þ; . . . ~mk�1;nh
xT

k�1;ni
v̂k�1;ðm;nhÞ

26664
37775

2 Rm�pw with v̂k�1;i 2 Rnh , v̂k�1 ¼ ½v̂
T
k�1;1; . . . ; v̂

T
k�1;m�

T where nh

is the number of neurons in the hidden layer of the
network.
Note the above equation is derived from the mean value

theorem and the activation function is a non-decreasing
function, so there exist unique positive numbers ~mk�1;i

hk�1;iðw
�

i ;xk�1Þ � hk�1;iðŵk�1;i; xk�1Þ

¼ ~mk�1;ix
T
k�1ðw

�

i � ŵk�1;iÞ, ð54Þ

where ŵk�1;i;w�i 2 Rni are the estimation and ideal weight
vectors linked to the ith hidden layer neuron, respectively.
The maximum value of the derivative h0k�1;i is l, therefore

lX ~mk�1;iX0 ð1pipnhÞ. (55)

After we define

f̂
wþ

k�1 ¼ Hðŵk�1 þ cw
kD

w

k ;xk�1Þv̂k�1, (56)

f̂
w�

k�1 ¼ Hðŵk�1 � cw
kD

w

k ;xk�1Þv̂k�1. (57)
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The gradient approximation of the hidden layer can be
written as

ĝðv̂k�1; ŵk�1;D
w

k�1Þ

¼
Lðv̂k�1; ŵk�1 þ cw

kD
w

k Þ � Lðv̂k�1; ŵk�1 � cw
kD

w

k Þ þ ew
k

2cw
k

rw
k

¼
ðf k�1 � f̂ wþ

k�1Þ
2
� ðf k�1 � f̂ w�

k�1Þ
2
þ ew

k

2cw
k

rw
k

¼
ðf k�1 � f̂

wþ

k�1 þ f k�1 � f̂
w�

k�1Þðf̂
w�

k�1 � f̂
wþ

k�1Þ þ ew
k

2cw
k

rw
k

¼
½2ðf k�1 � f̂ k�1Þ þ ðf̂ k�1 � f̂

wþ

k�1Þ þ ðf̂ k�1 � f̂
w�

k�1Þ�
T
ðf̂

w�

k�1 � f̂
wþ

k�1Þ þ ew
k

2cw
k

rw
k

¼
eT

k ðf̂
w�

k�1 � f̂ wþ

k�1Þ

cw
k

rw
k ð58Þ

¼
eT

k cw
kD

w

k Ôk�1

cw
k

rw
k , ð59Þ

where Ôk�1 is defined similarly to ~Ok�1. And similarly, after
define

f̂ wþþ

k�1 ¼ Hðŵk�1 þ cw
kD

w

k þ ~ck
~Dk; xk�1Þv̂k�1, (60)

f̂
wþ�

k�1 ¼ Hðŵk�1 þ cw
kD

w

k � ~ck
~Dk; xk�1Þv̂k�1, (61)

f̂
w�þ

k�1 ¼ Hðŵk�1 � cw
kD

w

k þ ~ck
~Dk; xk�1Þv̂k�1, (62)

f̂
w��

k�1 ¼ Hðŵk�1 � cw
kD

w

k � ~ck
~Dk; xk�1Þv̂k�1 (63)

we can get

Gð1Þk ðŵk þ ckDkÞ

¼
Lðŵk þ ckDk þ ~ck

~DkÞ � Lðŵk þ ckDk � ~ck
~DkÞ

2~ck

~rk

¼
Lðŵwþ

k þ ~ck
~DkÞ � Lðŵwþ

k � ~ck
~DkÞ

2~ck

~rk

¼ gðŵwþ
k Þ, ð64Þ

where ŵwþ
k ¼ ŵk þ cw

kD
w

k . Then we can obtain dGw
ðkÞ as

follows:

dGw
ðkÞ ¼ ĝðŵwþ

k Þ � ĝðŵw�
k Þ. (65)

So we can get

dGw
ðkÞ ¼ eT

k ðwk þ cw
kD

w

k ÞÔ
þ

k�1 � eT
k ðwk � cw

kD
w

k ÞÔ
�

k�1

¼ ðf k�1 � f̂
wþ

k�1 þ ekÞÔ
þ

k�1 � ðf k�1 � f̂
w�

k�1 þ ekÞÔ
�

k�1,

where Ôþk�1 and Ô�k�1 are also similar to ~Ok�1.
And we can take it as a new nonlinear function like

RðŵkÞ ¼ ðf k�1 � f̂ k�1 þ ekÞÔk�1, so we can take the equation
above as Rðŵk þ cw

kD
w

k Þ � Rðŵk � cw
kD

w

k Þ. Using the mean
value theorem again, we can get

Rðŵk�1 þ cw
kD

w

k Þ � Rðŵk�1 � cw
kD

w

k Þ ¼ 2cw
kD

w

k Ōk�1 (66)

with Ōk�1 defined similarly to ~Ok�1.
Thus the per-iteration estimation of Hessian is calculated

as

Hw

k ¼
1

k þ 1

Xk

k¼0

ðŌkÞ. (67)
Let Mw

k denote Hw

k which is after the mapping of Hw

k , so we
can rewrite the learning algorithm after considering
pruning for hidden layer as

ŵk ¼ ŵk�1 �
akðM

w

k Þ
�1eT

k ðf̂
w�

k�1 � f̂ wþ

k�1Þ

cw
kr

w
k

rw
k . (68)

Theorem 3. The operator Hw

1 : ek ! Fw

k , which represents

the training algorithm of the hidden layer, and H2 satisfy the

condition (a) and (b) of Theorem 1.
Proof. Consider that the DTP is an approximation
algorithm, and using the property of local minimum
points of the gradient �ðq=qðwk�1;iÞ

T
Þ eT

k ek ~wk�1;iX0.
We have

0p�
q

qðŵk�1Þ
T

eT
k ek ~wk�1 ¼
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where v̂k�1;i 2 Rm; v̂k�1 ¼ ½v̂
T
k�1;1; . . . ; v̂

T
k�1;nh
�
T and ~wk�1;i ¼

w�k�1;i � ŵk�1;i 2 Rni are weight vector components of the
hidden and output layers linked to the ith hidden layer
neuron, lXh

0

k�1;i is the maximum value of the derivative
h
0

k�1;i of the activation function in Eq. (14), and lmina0 is
the minimum non-zero value of the parameter ~mk�1;i defined
in ~Ok�1.
Using the similar way to the proof of Theorem 2,

we have
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Summing the above equation upon to N steps, we are able
to establish the conic condition with a constant �sw for the
estimate error ek as the input in Theorem 1 and the output
Fw

k similar to last part:XN

k¼1
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(69)

by selecting a suitable normalized factor rw
k to obtain the

constant number �sw such that
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4.2. Conic section condition for the pruning process in the

hidden layer

Similar to the analysis of the output layer, we can rewrite
the estimation error after pruning as

ep

k ¼ �H2ðF
w

k þ Dwk�1 f̂
0

k�1;wÞ þ ~e
w
k (70)

with Dwk�1 ¼ �ððwk�1;iÞ=½
Pk�1

m¼k�L
ðŌm;i;iÞ�

�1
Þ½
Pk�1

m¼k�L
ðŌmÞ�

�1

Ik�1;i where I is defined similar to the one in last section
and Ōk�1 is the per-iteration estimation of the Hessian
matrix of the hidden layer, details of which is discussed
next.
Note f̂
0

k�1;w is the first derivative of the network output
with respect to the weight value of the hidden layer and we
have proven that the weight of the output layer is a
bounded term, so kf̂ 0k�1;wkpl � vmax, where kv̂kkpvmax. And
taken the similar analysis of the pruning for output layer,
we know that Dwk�1 is also a bounded term since it is
related to the current weight value of the hidden layer.
Thus we can rewrite the ep

k like
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where tw
k ¼ Dwk�1 � f̂

0

k�1;w, and kt
w
kkptw

max.
So we have the learning law after pruning as
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After reconstructing a new feedback system by using the
input ep

k and output Fpw

k , we can justify the conic sector
condition as follows:
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Summing the above equation upon to N steps, we are
able to establish the conic condition with a constant �sw for
the estimate error ek as the input in Theorem 1 and the
output Fw

k similar to the output layer:
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by selecting a suitable normalized factor rw
k to obtain the

constant number �sw such that
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Although the conic conditions for the learning and pruning
of both layers are obtained between the estimation error ep

k

and the output, the result can be easily extended to the
tracking error sk as following steps. Taking the output layer
as an example,
Theorem 4. If the discrete time signal ek and sk in the Fig. 1
satisfy

ðaÞ ek 2 L2

ðbÞ ek ¼ ð1� kvz
�1Þsk

with kkvkp1 then the above feedback system is stable with

sks 2 L2.

Proof. See Corollary 1 [25]. &

5. Simulation results

Consider a discrete-time single-link manipulator [25]

yðk þ 2Þ ¼ 2ð1� TÞyðk þ 1Þ þ ð2T � 1ÞyðkÞ

þ 10T 2 sin yðkÞ þ uðkÞ þ dðkÞ, ð74Þ

where y is the tracking position signal, u is the control
signal T ¼ 0:002 s is the sampling time, and d is the
disturbance generated from a normally distributed random
number with the bound kdðkÞkpdm ¼ 0:2.
And it can be converted to the form as follows:

x1ðk þ 1Þ ¼ x2ðkÞ,

x2ðk þ 1Þ ¼ f ðxðkÞÞ þ uðkÞ þ dðkÞ,

where xðkÞ ¼ ½x1ðkÞ;x2ðkÞ�
T

f ðxðkÞÞ ¼ ð2T � 1Þx1ðkÞ þ ð2� 2TÞx2ðkÞ þ 10T 2 sin x1ðkÞ

(75)

and x2ðkÞ represents the actual trajectory. The tracking
error is defined as

rðkÞ ¼ enðkÞ ¼ x2ðkÞ � x2dðkÞ, (76)

where x2d is the desired trajectory signal.
The control signal is defined as

uðkÞ ¼ x2dðkÞ � f̂ ðkÞ þ kvsðkÞ, (77)

where f̂ ðkÞ is the output of a three-layered NN, with three
input neurons, 100 hidden layer neurons initially and one
output neuron, to estimate f ðxðkÞÞ.
First, the feed-forward neural network with 100 hidden

neurons is initially used. By the definition of the perturba-
tion, Dk is generated as a vector with 100 components
satisfying some regularity conditions (e.g., Dk being a
vector of independent Bernoulli �1 random variables
satisfies these conditions). Once the perturbation is
decided, the gradient approximation of the output layer
can be obtained by Eq. (31), and in turn, the Hessian
matrix for the output layer using Eq. (34). Similarly, Eqs.
(59) and (67) can be applied to update the parameters in the
hidden layer through Eqs. (35) and (68).
Fig. 4 shows the output of the plant using the standard

ASP algorithm without pruning using the command signal
x2d ¼ sinðp=5ÞkT and Fig. 5 shows the result by using DTP
algorithm, in which the overfitting has been removed.
And the similar results can be obtained when the

command signal is switched to square signal. Fig. 6 shows
the system output by using the standard ASP algorithm
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Fig. 8. Output yk and reference signal using the standard BP based neural controller.
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without pruning, in which the overfitting may not be
avoided. And Fig. 7 shows the result by DTP algorithm,
where the overfitting has been removed.

When the criterion for pruning is not satisfied, which
means pruning is not necessary, the system with DTP
algorithm still performs better than the standard BP
algorithm. Fig. 9 shows the system output with DTP based
controller and Fig. 8 shows the result with standard BP
algorithm by using the same number neurons in the hidden
layer. And it can be explained by the reason of weight
drifting, which can be illustrated in Figs. 11 and 10.

6. Conclusion

The DTP based pruning method for neural controller
has been developed to obtain the guaranteed stability with
improved generalization ability. A complete stability
analysis is performed for this closed-loop control system.
Simulation results show that the proposed neural controller
performs better than a neural controller based on the
standard back-propagation algorithm or standard ASP
algorithm without pruning in case of overfitting.
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