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Abstract: In this paper we present a complete neuromorphic image processing system and we 
report the development of an integrated CMOS low-power circuit to test the feasibility of its 
different stages. The image system consists of different parallel-processing stages: 
phototransduction, non-linear filtering, oscillatory segmentation network and post-processing to 
extract fundamental characteristics. The circuit presented emulates parts of the behaviour of 
biological neural networks as found in the retina and the visual cortex of living beings, adopting 
the neuromorphic approach that takes advantage of analogue VLSI electronics. The final objective 
is to develop a small and low-power system embedded in a single focal-plane integrated circuit to 
be used in portable applications. Each stage is briefly described. Simulations and experimental 
results of some basic blocks are also reported. 

 
1. Introduction 

The commonly used digital approach to solving 
electronic problems has some important advantages as 
flexibility, precision and moderate design complexity 
compared to other alternatives as analogue ones. 
However, the latter have some advantages that should 
be considered for small and low-power electronic 
systems which are required for the increasing market of 
portable applications. The main advantage is the 
possibility of reducing power consumption and area 
overhead, which are improved when used in large scale 
of integration technologies. 

On the other hand, living beings seem to have 
already solved the problem of building successful tiny 
and energy-efficient systems. A simple fly is more 
capable of finding food and escaping from danger in a 

smallest and less power eager system than the most 
complex artificial computer that can be built. 

em of living beings 
using the latest VLSI technology. 

Taking advantage of both worlds, the increasing 
microelectronics developments and the better 
knowledge of the nervous system of animals, in the late 
eighties, C. Mead [1] proposed a new approach to 
solving the problem of small and low-power systems. 
The so-called neuromorphic approach consists in 
emulating the complex neural syst

The neuromorphic approach has been widely 
applied to vision problems, especially to  first stages or 
low-level vision. These processes are commonly 
performed at the retina of living beings and consist in 
spatially and temporally filtering images, reducing noise 
or extracting basic visual characteristics. Several 

Figure 1: VLSI neuromorphic Image Segmentation System 
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realizations at this low-level stage are reported in the 
literature [2] [3]. However, higher level processing 
stages that take place in the visual cortex as attention or 
segmentation of images have not drawn such attention 
under the neuromorphic perspective [4] [5] [6]. 

al images successfully when simulated 
on computers. 

ed in the retina and the 
visual cortex of living beings: 

ork 
4.- Post processing and results extraction 

utput large quantities of 
information as bitmap images. 

2. S

 segmentation and/or scene attention 
guidance. 

ribution is not a big issue 
as could be in other models. 

istance mesh (7) 
allows object centroid computation.  

The oscillatory nature of visual cortex neurons has 
been largely studied by biologists and computer 
scientists [7] [8] and synchronization phenomena has 
been observed. This studies have been used to create 
models of brain-like computing systems [9] [10] that 
can segment re

Few implementations of electronic oscillatory 
systems exist [5] [6] and they mainly consist in the 
segmentation stage. In this paper we propose a complete 
system consisting of different stages using analogue 
electronics to reduce power consumption and overhead 
area bearing in mind autonomous electronic 
applications. The system we propose consists of 
different stages that are locat

1.- Light sensing 
2.- Pre-processing using non-linear filters 
3.- Segmentation using an oscillatory netw

All these stages are fully parallel and the only 
output is the result after information is fully processed, 
thus there is no need of large communication bandwidth 
with associated bottlenecks to o

ystem architecture 
In Figure 1, the global system architecture is shown. 

The input image is projected onto a photodetector array 
by means of a lens. Transduced light is then pre-
processed by two stages that first filter noise and small 
luminance differences and after enhance neighbour 
pixels with equal or similar luminance. The pre-
processing stage output determines neighbour coupling 
degree of a coupled-oscillator array that performs the  
segmentation stage. At this stage scene objects are 
segregated by means of phase-encoding. The output 
stage generates several informations about the image 
besides of the detected segments. In particular the 
associated centroids and size and number of objects are 
obtained. An external microprocessor reads network 
results and controls each stage parameters for an 
appropriate

All the processing stages, except microprocessor, 
perform in focal-plane. Since models use mostly local 
computation, interconnect dist

In Figure 2, a simplified, three-element view of the 

integrated circuit is represented. For the sake of 
simplicity, only three pixels in a one-dimension 
configuration are depicted, but extension to more pixels 
in two dimensions is straightforward. An array of 
photodiodes (1) performs a light transducer stage. A 
logarithmic amplifier stage (2) extends the system 
dynamic range. Non-linear spatial filtering is done by 
means of a resistance and a resistive fuse mesh (3). 
Then data are applied to peak-shaped functions (4) that 
detect similarity of neighbours. An array of coupled 
oscillators (5) together with a Global Oscillator (GO) 
inhibitory cell (6) perform a modified LEGION [10] 
algorithm that was adapted for a simple VLSI 
implementation [5]. Finally, a res

log
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Figure 2: Simplified structure of a 1D, three-
ircuit. 

3. P

element, integrated c

reprocessing stage 
After light transducing and logarithmic amplifying, 

non-linear spatial filtering is performed. The filter 
employs resistive fuse circuits [11] that perform spatial 
smoothing of noise and low-contrast features while 
preventing object boundaries to blur. Figure 3 displays 
the current-voltage (I-V) characteristic of the fuse and 
the PMOS-transistor version of a circuit that 
implements it [11], since a CMOS n-well technology is 
used. Below a given Voff threshold between adjacent 
pixels luminance, the device behaves as a resistor, but 
above Voff it changes its behaviour and remains open 
(flowing current becomes null). This is achieved by the 
circuit as follows. Transistor M7 operates as a resistor 
connected to input voltages Va and Vb. These voltages 
are also compared by a differential amplifier structure, 
formed by M1, M2, M3, M10 and M11. Each output 
branch of the amplifier controls transistors M8 and M9, 
that switch off the M7 resistor connection between Va 
and Vb when the differential input voltage is not small 
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enough. To become independent to the brightness level, 
the circuit also has common-mode compensation 
(formed by M4-M6) that keeps a similar resistance 
characteristic for a given differential input voltage 
regardless to its common level. 
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istive fuse 
and a PMOS circuit implementation. 
Figure 3: I-V characteristic of the res

 

Figure 4: Simulations of the non-linear filter 
applied to an artificial image. 

ons have been reported for 
simple real images [12]. 

 developed. Simulation shows 
the desired peak shape.  

Figure 4 shows global simulation results of 
applying resistive fuse filtering to an artificial image 

containing objects with different levels of contrast. By 
changing parameter B, which is inversely proportional 
to Voff parameter, several degrees of filtering can be 
obtained. Also, simulati

In addition to resistive fuse filtering, a local-
response function is required since excitation of 
synapses that connect neighbour oscillators  has to 
become maximum when brightness of the associated 
adjacent pixels is the same. Local functions reported in 
the literature such as Delbrück’s bump function [13] 
could be used; however flat form of the function around 
the maximum value does not provide a good 
discrimination of similar pixels, so a peak-shaped 
function is more appropriate for our application. 
Therefore, a specific cell whose circuit implementation 
is shown in Figure 5 was

 

Figure 5: Peak-shaped circuit. 

First stage (left hand side) is a differential amplifier 
that transduces input voltage into current. Output 
current of first stage is either positive or negative 
depending on the differential input voltage sign and zero 
when input voltages are equal (V1=V2). The second 
stage is simply a current rectifier and current-level 
shifter. This way, the circuit output current is maximum 
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when V1=V2 and it decreases with a peak shape as the 
input differential voltage absolute value increases. 

4. S

ed with one pixel of the previous pre-processing 
stage.  

egmentation stage 
A scheme of segmentation stage formed by a 2-

dimensional array of coupled non-linear oscillators and 
an inhibitory cell is shown in Figure 6. Each oscillator is 
associat
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Figure 6: LEGION network: Segmentation 
oscillator array, and drawing of three ideal cells 

se 
separation due to the global inhibitory oscillator cell. 

 spatially connected 
pixels, leading to their synchrony. 

d also 
prevents random synchronization between them. 

.e., oscillator 1 is 
not in phase with oscillators 2 and 3.  

is comparator and an integrator, as 
shown in Figure 8.  

and global inhibitor behaviour. 

Object segmentation [5][10] is achieved by two 
opposed mechanisms: a phase synchronizing effect due 
to local excitatory coupling of oscillators controlled by 
adjacent similar pixels and an opposed effect of pha

If two oscillators are associated with two adjacent 
pixels, an excitatory connection is established 
depending of luminance similarity. When an oscillator 
goes active, that is to say, its output voltage is high, it 
shifts the orbits of adjacent cells that are connected to it 
and synchronization appears. This is a local mechanism 

because coupling is only established between adjacent 
cells and few connections are implemented. By means 
of these local connections, synchronization is spread to 
groups of similar luminance and

Figure 7: Schematic of the basic oscillator of the segmentation stage 

On the other hand, the global inhibitory cell is 
responsible of desynchronising pixels. This cell goes 
active when any oscillator in the network is active. 
Then, inhibitor shifts orbits of all oscillators in the 
network so the silent ones –oscillators whose output is 
low– desynchronise with active oscillators. This 
mechanism desynchronise groups of oscillators an

In Figure 6, oscillators 2 and 3 become 
synchronised because there exists an excitatory path 
among them, by means of the local synapses chain. On 
the other hand, the global inhibitory cell prevents phase 
synchronization of separate objects, i

Commonly used oscillators in software 
implementations [10] are described by two differential 
equations that can not be easily replicated on a 
microelectronic design, thus, we have modified these 
oscillators to be VLSI friendly [5] to occupy less area 
and consume less power. These oscillators consist of a 
closed-loop hysteres

Implementation of this oscillator is depicted in 
Figure 7 and it is based in Linares et al. [14] current-
mode oscillator. Output voltage (Vout) is the result of 
integrating currents on the parasitic capacitance of the 
output node. Transistor M2 drives the threshold current 
and transistor M1 the input current of the comparator.  
Hysteresis thresholds are determined by currents Ipos and 
Ipos+Iwid which are mirrored to transistor M2. The 
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integrator is made up of a large capacitor (Cint) that 
integrates a constant current Idis and a variable current 
that shifts from 0 to Ichr depending on the comparator 
output. Thus, when it is high, the integrator output 
voltage increases and when it is low, integrator output 
voltage decreases. Then, this voltage (Vint) is converted 
to a current by transistor M1, that closes the loop. 

 

Figure 8: Oscillator model. 

Coupling can be easily implemented by shifting 
hysteresis thresholds with transistors M3 and M4a..M4d 
–one M4 transistor for each adjacent cell–. They charge 
(M4 transistors) or discharge (M3) when adjacent 
coupled cells or the global inhibitor are active 
respectively. 

 

Figure 9: 0.8 micron CMOS 16 x16 oscillators 

s when a four-object input image is used, are 
shown.  

 

segmentation test-chip. 

To verify this network functionality, a test-chip 
containing a 16x16 oscillator array segmentation stage 
in a 0.8 micron CMOS technology was designed and 
manufactured (Figure 9) [5]. The chip was fully 
functional and demonstrated the segmentation ability of 
the array for binary images. A sample input image and 
experimental results are shown in Figure 10 and Figure 
11. In the latter, single oscillator and global inhibitor 
waveform

 

Figure 10: Segmentation experimental results – 
4-object binary input image. 

 
Figure 11: Segmentation experimental results – 
Waveform of an oscillator of the array (upper 

ed and results agree satisfactorily with 
simulations. 

 

graph) and global inhibitor (lower graph). 

A test-chip layout for the pre-processing and 
segmentation basic blocks in a more advanced 0.35 
micron CMOS technology has also been designed and 
manufactured to test the oscillator behaviour with this 
more compact technology (Figure 12). Measurements 
were perform

 
Figure 12: 0.35 micron CMOS pre-processing 
and segmentation basic blocks test-chip layout. 

 

BICS 2004 Aug 29 - Sept 1 2004

BIS2.1 5 of 6



5. Output stage 
 

umber of objects and centroid and size of each 
object. 

o obtain the different objects, that are 
phase-encoded. 

 of Figure 10 and Figure 11, the 
number of objects is 4. 

 centroid position of each object can be 
determined.  

6. R

ations of vision in 
portable, low-power applications. 
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This stage generates results that can be read by a 
microprocessor or other kinds of processing blocks. The 
most relevant information that can be obtained from the 
segmentation system is: image of each segmented 
object, n

a) Segmentation. The global oscillator high state 
indicates that all the network oscillators active at that 
moment  belong to the same object. This way, using the 
global oscillator output as a strobe signal, it is 
straightforward t

b) Object counting. Since the global oscillator 
becomes active (high voltage level) whenever at least a 
single oscillator of the array is active (high), a simple 
way to obtain the number of segmented objects in a 
given image is to count the number of pulses of the 
global inhibitor during an oscillation period. For 
instance, in the example

c) Object centroid and size. When a single object 
is active, information about its size (number of pixels) 
and position (centroid) is easily obtained with simple 
post-processing. Arithmetic addition of currents enabled 
by active oscillators gives an indication of object size. 
By means of a resistive diffusion network (stage 7 in 
Figure 2) the

esults, conclusions and ongoing work 
A complete neuromorphic system for simple vision 

tasks that require fast and low-power segmentation has 
been reported. It is based on focal-plane processing 
using oscillators and analogue circuits. Partial 
experimental results of the segmentation array and pre-
processing basic blocks demonstrate the feasibility of 
the system. Currently, a functional chip including all the 
reported stages is in the design process. We expect that 
in a few months it will be available for experiments. In 
parallel, a complete system that includes the specific 
chip and a microprocessor performing digital control of 
the scene segmentation  processor is being specified. 
This will enable simple applic
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