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Abstract 

We describe the design and implementation of an integrated neural architecture, modelled 

on human executive attention, which is used to control both automatic (reactive) and 

willed action selection in a simulated robot. The model, based upon Norman and 

Shallice’s supervisory attention system, incorporates important features of human 

attentional control: selection of an intended task over a more salient automatic task; 

priming of future tasks that are anticipated; and appropriate levels of persistence of focus 

of attention. Recognising that attention-based learning, mediated by the limbic system, 

and the hippocampus in particular, plays an important role in adaptive learning, we 

extend the Norman and Shallice model, introducing an intrinsic, attention-based learning 

mechanism that enhances the automaticity of willed actions and reduces future need for 

attentional effort. These enhanced features support a new level of attentional autonomy in 

the operation of the simulated robot. Some properties of the model are explored using 

lesion studies, leading to the identification of a correspondence between the behavioural 

pathologies of the simulated robot and those seen in human patients suffering dysfunction 

of executive attention. We discuss briefly the question of how executive attention may 

have arisen due to selective pressure. 

 

Keywords: Attention, Action Selection, Autonomous Robotics, Cognitive Robotics, 

Adaptive Learning 

 

1 Introduction 

When performing high-level behaviours that require the appropriate sequencing of lower-

level tasks, performing the right action at the right time is important. In designing 

autonomous robots, the challenge in solving this problem is to sustain successful task 

performance in dynamic environments where relatively unfamiliar or even entirely novel 

circumstances arise unexpectedly. In such situations, many robots exhibit one or more 

pathologies of action selection; examples include excessively frequent changes of 
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behaviour, appearing either as distractedness or as indecision so that tasks are not 

completed in sensible timescales, if at all; inappropriate persistence of a behaviour, 

behaviour, in which the robot appears to lack awareness of its failure to make progress 

towards completion of some goal [38]. Many of these errors leave an observer with a 

sense that the robot is simply inattentive to important cues in the world [27]. Our strategy 

for developing robot control systems is born of a recognition that analogous, if not 

identical, pathologies of task performance are observed in humans who are diagnosed as 

suffering disorders of executive attention [46][47]. Thus we are led to adopt and explore 

a model of human attentional control as the basis for robot development.  

 

In humans, successful action selection is believed to have two manifestations: automatic 

(also non-voluntary or routine) action selection and willed (also voluntary or deliberate) 

action selection [42] [47]. Automatic action selection ranges from wholly reflex actions 

(e.g., recoiling from something uncomfortably hot) through to actions that have become 

very well-learned (e.g., driving in familiar and unproblematic conditions). Automatic 

actions are the actions we perform naturally, without any apparent awareness. In contrast, 

willed behaviour involves deliberate, conscious, control of action (e.g., playing an 

unfamiliar piece of music).  

 

Baars describes how the consciousness associated with willed action involves a selective 

attention system under dual control of frontal executive cortex and automatic interrupt 

control involving the brain stem, pain systems, and emotional centres [5]. This distinction 

between the dual attention systems is of significance here; the interrupt system invites a 

deliberative response from the executive system. Executive attention is associated with a 

variety of categories of response [47]: temporary suppression of an otherwise reflex 

action (e.g. intentionally clasping something uncomfortably hot in the time it takes to 

quench it under a tap); dealing with minor distraction (e.g. listening intently to another 

person in a noisy environment); dealing with novel situations requiring unfamiliar 

courses of action (pulling off a busy road safely when a tyre bursts). Willed attention to 

action selection may be transient (Attentional effort is exerted momentarily), intermittent 

(attention is exerted periodically) or sustained (attention is constantly applied) and to 
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accommodate this, Baars suggests that once expressed, a willed response is 

unconsciously monitored [3].  

 

LaBerge identifies three characteristics traditionally associated with executive attention 

and considers that they should be evident in any model [36]. Grounding these three 

properties in the domain of action selection, we have:  

 

1. selection of a willed action over a more salient, automatically selected, action. Here, 

the notion of salience is intimately connected to environmentally derived stimuli in 

the degree to which they accord with the relevance of contending actions. However, it 

may also derive from internal/innate drives. For example, the salience of feeding 

behaviour is determined both by the availability of food in the environment and by a 

sense of hunger/satiation. Willed action selection involves the application of an 

internally derived attentional signal which results in the (more likely) performance of 

a less salient act in preference to a more salient act. The attentional effort needed to 

will one familiar action in place of another is usually intermittent, or even 

momentary. The willing of wholly unfamiliar actions may require more persistent 

attention.     

2. priming of an anticipated future action. Priming, too, is associated with an internally 

derived attentional signal. On this occasion, the potentiation does not result in the 

immediate expression of the behaviour, rather it enhances the salience of the 

behaviour so that, when the appropriate anticipated circumstances arise, there is a 

greater likelihood that the anticipated task will be selected. Priming is associated with 

enhanced speed of task switching.  

3. use of memory for sustained task focus. Memory is particularly important when 

resumption of a suspended task requires recall of some past state or stimulus that 

cannot itself be inferred from observing the current state of the environment.   

 

This view of executive attention features a possibly false dichotomy between automatic 

and attended behaviour. In humans (and some animals), tasks which are initially novel 

and demanding of executive attention, if encountered and attended to frequently, or 
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addressed with sufficient sustained attentive effort, become learnt to the point where they 

become automatic, needing an expression of will on rare occasions [3]. Thus, to the three 

characteristics of executive attention listed above we may add a fourth:  

 

4. Attentional effort leads to increased automaticity in task performance. A task which 

initially needs sustained attention comes to need intermittent, and then momentary or 

transient effort, until it is ‘automatic’ (e.g., learning a piece of music, through 

practice, to performance standard).   

 

In respect of the perceived features of attention, LaBerge seeks an account of why 

executive attention, as a phenomenon, seems to have emerged, suggesting that selective 

advantage might be assumed to underpin the emergence of executive attention. 

Aleksander and Dunmall suggest that attention is necessary when the building and 

maintaining of an internal representation of the perceivable world cannot be done in 

parallel, specifically, when there is a restriction on the degree of parallelism available at 

the input of a system [1]. A resolution of these issues is not the focus of this paper, 

nonetheless, we will return to the topic in discussion.  

 

The remainder of this paper gives an account of the design and implementation of a 

neuro-computational architecture, possessing each of the above features, as part of a 

project to develop a control system for a simulated robot capable of autonomous 

cognitive development in respect of task performance. It is an appreciably extended 

version of an earlier paper presented at Brain Inspired Cognitive Systems (BICS) 2004 

[29]. Papers at BICS addressed one of a number of themes, one of which was biologically 

inspired computation, another, consciousness. The focus of this paper is mechanisms for 

executive attention in autonomous robots; we touch upon consciousness only in so far as 

it helps to delineate executive attention and consciousness, two intimately related 

phenomena. The remainder of the paper is organised as follows. Section 2 gives an 

account of relevant neuropsychological models of attention at a functional level. Section 

3 briefly motivates our view of attention-based learning. Section 4 discusses neural 

models of automatic and executive action selection. Section 5 describes our architecture 
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for attention-driven learning, and elaborates an innate learning mechanism that leads to 

autonomous cognitive development expressed as behavioural adaptation to novel events 

and problems. Section 6 describes the implementation of this architecture. Section 7 

illustrates its use in a simulation used to validate and investigate the model and Section 8 

contains a discussion and an account of related work. 

 

2 Neuropsychological Models of Executive Attention 

In considering willed behaviour, we confine ourselves to top-down, as opposed to 

bottom-up or inline, mechanisms. The former is associated with conscious, deliberate 

attention, and, in humans, is associated with the pre-frontal cortex (PFC) in an area which 

is functionally labelled the ‘executive’ [6] [4]. The latter are associated with regions of 

the cortex, especially sensory cortex, which are responsible for information processing, 

e.g. feature extraction. We also focus upon motor task selection.  

 

Several accounts of the executive and attention exist, most notably those of Baddeley 

[10], Baars [3], and Norman and Shallice [42]. Both the Baddeley and the Norman & 

Shallice models contain a functional system assigned a 'supervisory' role, initiating, 

monitoring and modulating higher-level behaviours. Baars’ model of control is more 

distributed in character. Baddeley's executive was postulated in the context of his theory 

of working memory [6], an important function of which is to maintain a representation of 

goals and intentions; it may also hold representations of currently active behaviours.  

Whilst most attentional models of the time dealt with perceptual selection or filtering of 

sensory stimulus [11], Baddeley assumed the central executive to be an attentional 

controller concerned with integration of information and action selection.  

 

In articulating a theory of conscious perception, Baars’ Global Workspace Theory 

(GWT) assigns a central role to executive attention. Following the 19th Century 

psychologist William James, Baars sees attention as “taking possession of the mind” 

through “focalisation” and “concentration”, selecting one experience over another [4]. A 

definitive feature of GWT is the proposition that multiple specialist processors, operating 

in parallel, compete for access to a limited-capacity global workspace which selects a 
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winning coalition of such processors and then broadcasts associated information back to 

the set of all processors. This cyclical flow of information produces an experiential 

sequence in which there is a conscious decision to attend followed by unconscious 

attentional activity, which produces targeted conscious contents [3].  

 

The Norman and Shallice model features a Supervisory Attention System (SAS) which 

detects the expression of unwanted action (an interrupt mechanism) and attempts to assert 

willed action. Elaborated as a functional architecture, the Norman and Shallice model 

integrates both automatic and executive action selection and comprises several functional 

subcomponents (Figure 1).  

 

FIGURE 1 

 

In the model, a perceptual subsystem receives input from the world and its state is 

mapped, via an associative memory (trigger database), to a range of behaviour schemas, 

which may be triggered for possible expression. For each behaviour scheme, the strength 

of the triggering depends upon the applicability of that behaviour to the perceived state of 

the environment. The associative mapping takes account of the internal state of the agent 

and any goals that it has. When two or more selected behaviours are incompatible, a 

contention scheduling mechanism is invoked. This compares contending behaviours and 

selects between them, depending upon the situation. A ‘willed’ action component is 

applied by a Supervisory Attention System (SAS) which modulates behaviour selection 

to correct errors and invoke actions to deal with novelty in the environment.  

 

In order to correct errors and determine non-routine courses of action the SAS is assigned 

a number of distinct sub-functions: Shallice distinguishes some of them as follows: 

 

Monitor: the SAS must be able to compare the currently expressed action with an 

intended action (as formulated by the SAS or other ‘planning’ units). The monitor may be 

thought of as an arousal mechanism that induces the activation of the other, deliberative, 

attentional subunits.   
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Modulate: when so triggered, the SAS must provide a modulatory signal that attenuates 

the salience of inappropriate tasks and potentiates the salience of appropriate tasks. (It is 

important to recognise that the modulation is a biasing mechanism, not a deterministic 

mechanism.) Shallice suggests three possible modulatory responses: 

 

• attenuate the currently expressed behaviour for a given time and potentiate an 

intended behaviour; 

• attenuate the active behaviour for a given time and potentiate a ‘default’ or ‘if 

all else fails’ response; 

• attenuate all intended behaviours for a given time, allowing the contention 

scheduler to express a behaviour governed by perception of the environment 

alone. 

 

Generate: the SAS must create new strategies for solving novel problems.  

 

The issue of learning is left open in this model though there is an acknowledgement that 

there must be a means by which behaviour that is initially novel becomes more 

automatic. Similarly, the role of affect in attention is not addressed in the original model. 

 

A somewhat different view of the attentional mechanism is taken by O’Regan and Noë 

[41] [43].  In their account, the effects of attention are brought about not by top-down 

modulation of a mental representation of the world, but by control, both willed and 

automatic, of exploratory activity in relation to the world itself. The activity involves 

application of the perceiver’s (acquired) knowledge of the sensory changes that are 

produced by motor actions, so-called sensorimotor contingencies. For example, the 

sensorimotor contingencies governing vision involve movements of the eye, altering the 

point of view; those of audition involve movement of the head, etc. Subsets of 

sensorimotor contingencies are associated with specific sensory effects, revealing specific 

sensory information about the object or scene being produced, e.g. shape, colour, 

orientation, location in relation to other objects, etc. O’Regan and Noë share the view of 
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attention as bringing to awareness, in their case, by an integration of a mastery of 

sensorimotor contingencies for the purposes of thought or planning action. Shifting 

attention involves switching between one subset of sensorimotor contingencies and 

another. Mastery of sensorimotor contingencies implies a high level of automaticity in 

their expression (i.e., we are largely unaware of them), but we may anticipate too, novel 

contexts in which there must be a sustained, willed effort to secure the desired sensory 

information. A distinctive feature of this model is that there is no explicit mental 

representation of the world that is subject to processing, manipulation, or reasoning; it 

captures the notion that the world is its own representation.  

 

In looking to select one model of executive attention as the basis for subsequent 

implementation and experimentation, we note that Gathercole has suggested that Norman 

and Shallice's SAS meets the needs of Baddeley's executive, at least at a functional level 

[30] (cited in [16]) and that Baddeley, when relating models of attentional control to his 

model of working memory, concluded that only the Norman & Shallice model matched 

the properties of information integration and control of action [7]. Further, in comparison 

to the GWT model, the Norman and Shallice model features a clearer architectural 

separation between the mechanisms for automatic and willed action selection that 

corresponds well with the evolutionary morphology of the vertebrate brain [45]. In 

respect of O’Regan and Noë we consider that their model of willed and automatic action 

serves to highlight the sensorimotor contingencies as a subset of the motor actions over 

which there is executive attentional control. These considerations led us to take the 

Norman and Shallice model as our preferred functional architecture. 

 

 

3 Attention-based learning 

Executive attention as described above is concerned with problem solving. It is invoked 

when there is a need to respond to a novel or relatively unfamiliar situation. The degree 

of novelty may be large or small. An adaptive agent can combine a repertoire of 

behaviours in novel ways when attempting to solve new or unfamiliar problems. But, in 

the absence of learning, and with limited attentional capacity (humans have difficulty 
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maintaining attentive focus on more than just a few tasks or issues at any one time - 

typically, seven plus or minus two), the agent is destined to repeatedly devote attentional 

resources and effort each time the same problem arises.   

 

The architecture for attention-driven cognitive development outlined in this paper extends 

Shallice's original model, bringing into scope an intrinsic mechanism by which willed 

actions become progressively more automatic (see Section 5.4). The significance of the 

use of an intrinsic signal is that it bestows autonomy of learning on the robot; no teacher 

is needed. 

 

Shastri reviews the evidence suggesting that episodic learning may be mediated by the 

hippocampus [49]. Whilst there is widespread agreement about the role of the 

hippocampus in episodic learning, there is currently no consensus as to the neural 

mechanisms at work. Normal functioning of the hippocampus depends upon attention and 

interactions with other elements of the limbic system, a group of brain structures 

(hippocampus, amygdala, fornicate gyrus, archicortex, hypothalamus) associated with 

emotions and the endocrine system.     

 

4 Neural Models of Automatic and Attentional Action Selection 

For researchers exploring task selection within the connectionist/PDP paradigm, the 

overwhelming majority of the work undertaken has focussed upon automatic or reactive 

behaviour; by comparison, less work has been undertaken on willed behaviour. (Given 

the focus of this paper, when reviewing work in automatic action selection we confine 

ourselves to considering that which has informed our implementation of the automatic 

action selection pathway in the Norman and Shallice model.)   

 

4.1 Automatic Action Selection 

The recent emphasis on reactive behaviour in robots appears to have been initiated by the 

coincidence of the renewed focus on reactive robotics occurring in the mid 1980s [12], 

[13] and the renewed interest in neural computation that emerged at about the same time; 

the latter stimulated by the development of efficient training algorithms for multilayered 
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networks that extended the computational capabilities of single layer networks. Reactive 

robotics, characterised as it was by a desire to achieve a tight coupling of perception and 

action, did not seek to address higher level cognitive functions associated with 'reasoning' 

and willed behaviour; indeed, almost by definition, it sought to avoid such mechanisms.   

 

One aspect of the literature on unattended action selection that illustrates the above point, 

and is of relevance to the work described in this paper, concerns selection between 

contending actions (contention scheduling). The need to select between contending tasks 

arises because in any complex environment more than one action will have a high level 

of salience, and in a dynamic environment the salience of contending actions may vary 

rapidly such that no expressed action persists long enough to be completed. This problem 

can be overcome by using an internal positive reinforcement to bias positively the 

apparent salience of the currently expressed behaviour so that it persists longer than 

would be the case if environmental stimuli alone determined expression [50].  Further, 

many actions are not mutually exclusive. Some tasks require access to wholly different 

effectors than others (walking and talking), some tasks require complementary use of 

different effectors (playing the piano); yet other tasks demand the same effectors 

(walking and sitting). Some tasks are partially complementary (if two objects are more or 

less adjacent, one can progress towards picking either up by extending the arm, without 

having committed to either task).   

 

Traditionally, the problem of contention scheduling was addressed by incorporating high 

level reasoning mechanisms which resolved the conflict and imposed an outcome. 

However, more recently, unattended reactive mechanisms have been developed. Shallice 

[47] observed that in humans and many other animals the basal ganglia appeared to be 

associated with contention scheduling. Guided and constrained by knowledge of basal 

ganglia neuroanatomical architecture, neural models for contention scheduling have been 

developed successfully [32], [45].  

 

The primary function of the contention scheduling mechanism of the basal ganglia is to 

select which behaviours are given access to effectors, and hence expression in observable 
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behaviour. The basal ganglia contention scheduling is realised by a layered network in 

which the layering reflects ‘adjacency’ of effector systems. (Such somatotrophism is seen 

in other areas of the brain, including parts of the sensory, motor, and pre-motor cortex). 

Localised lateral inhibition serves to prevent contradictory behavioural requests being 

made on a single effector system. This architecture allows the basal ganglia to resolve 

conflicting behavioural requests in ways that support the expression of wholly and 

partially complementary behaviours but prevents expression of contradictory behaviours, 

all without recourse to deliberation or executive attention.  

 

4.2 Attentional (Willed) Action Selection 

Within the connectionist/PDP paradigm, it is possible to discern a sequence of studies of 

attention driven task switching that can be traced back to an early experiment by Cohen, 

Dunbar and McClelland [15]. More recently, there has been renewed interest in 

attentional action selection, due, in part to the shortcomings of robots with close-coupled 

reactive control systems. Such machines often exhibited 'distractibility' in the face of 

powerful environmental stimuli (c.f. utilisation behaviour and capture errors in humans) 

and reveal the existence of attractors that 'lock' the system into fixed behaviours (c.f. 

human stereotypy/perseverance) [38].  

In their early paper on attentional control of task selection, Cohen et al. [15] developed an 

architecture which allowed them to examine the so-called Stroop effect. When humans 

switch between cognitively distinct tasks there is a perceptible delay in task execution. 

The classic Stroop experiment presents a subject with words representing colours (red, 

blue, green, etc.) written in different coloured inks; the word and the ink in which it is 

written may or may not be the same (e.g. the word red, may be appear in red, green or 

blue inks). The subject is instructed to utter either the word or the ink colour when 

presented with a subsequent stimulus. Whilst the task remains unchanged over a 

sequence of stimuli, responses to each new stimulus are relatively fast; however, 

whenever the subject is required to switch between tasks, there is a very marked delay in 

responding until they settle to the new task. 
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The network developed by Cohen et al [15] to perform this task dealt with two word-

colour alternatives (red, green), featured a winner-takes-all response layer, and the 

attentional or willed input was provided by a "context layer" providing a sustained 

exogenous control signal. The context layer encoded which of the two tasks was to be 

performed at any time. Switching the pattern of activation in the context layer caused the 

network to change task. This system was later modified to incorporate continuous as 

opposed to discrete processing and was adapted to perform other task switching exercises 

[16]. 

 

Gilbert and Shallice developed a related model of attentional control [31]. This model 

dealt with three word-colour alternatives, and modified the architecture so that there were 

two separate networks, each trained to perform one of the two tasks, integrated with a 

task demand layer, serving a similar function to the context layer of Cohen et al. The task 

demand layer was controlled by a top-down exogenous control input.  

 

We can consider these related models in relation to the three features of attentional 

systems sought by LaBerge (described earlier). The issue of whether the networks 

considered so far exhibit willed selection of a less salient task over a more salient task is 

not entirely straightforward. In this experimental paradigm, task salience cannot be 

derived from the stimulus itself - when presented with the word red written in green ink, 

there is nothing that indicates whether the response should be utterance of the word ‘red’ 

or the word ‘green’. Task salience is governed entirely by an (exogenously derived) 

attentional signal encoded in a task specification layer. If one takes the view that salience 

derives from the stimuli embedded in the environment, then these models do not exhibit 

this feature. However, if one accepts that salience is simply the current level of task 

activity, however derived, then the fact that in these networks task salience is determined 

wholly by the bias provided by the task specification layer is of no account and the 

desired feature is present.  

 

In all cases, the maintenance of the current task is governed by a persistent attentional 

signal. Gilbert and Shallice [31], acknowledge that this represents a departure from 
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standard attentional theory, which holds that attentional effort in task switching is 

selective and intermittent. The property of preparation (or priming) requires that 

expression of one task readies the subject to express a different but related task. None of 

the networks considered featured such a property. None of the models use memory to 

sustain task focus, unless one includes the persistent expression of current intention by 

the task specification as memory.  

 

In respect of the functionality required of a SAS, these networks demonstrably apply 

modulation of information flow to focus and sustain attention to task. However, by virtue 

of the experimental paradigm, there was no need for an autonomous monitoring function 

(it is only needed when attention is not persistent), nor for a capacity to generate and 

learn responses to novel problems, and so these features are understandably absent. 

      

Cooper [17] has augmented an earlier system for managing routine action selection [18], 

[19] to include rudimentary supervisory processes, including some monitoring and error 

recovery. The system is capable of generating sequences of basic actions associated with 

the high-level task (packing a lunch box). In the model, each task is realised as a 

hierarchy of subtasks. Each task in the hierarchy is assigned pre- and post-conditions 

whose truth values will depend on the current state of the environment. Having 

introduced pre- and post-conditions for tasks and subtasks, Cooper is able to implement a 

monitoring and error correction system. Once each selected subtask of a higher task has 

been attempted, its post-condition is evaluated. If false, the task is deemed incomplete 

and failed subtasks continue to receive selective excitation from their parent task schema. 

 

As before we can consider this model in terms of the features sought by LaBerge [36]. 

The model does select between subtasks of differing salience, where the use of task 

preconditions allows salience to be driven by the state of the environment.  There does 

not appear to be an explicit preparation of priming mechanism in which a currently active 

subtask raises the excitation of the next task in sequence. However, the fact that the 

existence of noise in the signals passing between task nodes appears to lead to task 

skipping, in which an ensuing task is invoked prematurely, suggests that priming may be 
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implicit in the implementation. Attentional persistence is realised through the error 

detection system which maintains the activity of a task whose post-condition has not been 

satisfied. Cooper describes two conceptual approaches to ordering of subtask expression 

(p52). The first approach (which appears to have been implemented) involves a task 

selectively exciting some of its own subtasks. The second approach (which may have 

been adopted, though this is not clear from the paper) would involve external inhibition 

of tasks whose pre-conditions are false or whose post-condition is true. As Cooper 

observes, the former approach constitutes automatic control; the latter approach would 

constitute attentional task selection.  

 

Taylor has articulated the CODAM model of attentional control, based upon engineering 

control theory [51]. The illustrative domain involves control of motor function in 

response to a visual stimulus. The model features an inverse model control (IMC), which 

modulates activity in analogues of early sensory and motor cortices. The IMC receives 

inputs from a goal module, which encodes the action to be performed and provides a 

biasing attentional signal as well as processing; and from a monitor which calculates any 

error between the goal and either the actual or the predicted sensory input (considered as 

distinct working memory buffers). The monitor gives rise to an attention-based signal 

that is used by the IMC to learn less error-prone motor responses. Taylor [51] presents 

the results of three simulation experiments which lend weight to aspects of the CODAM 

model. First, he demonstrates at least qualitative agreement of temporal information flow 

(understood as relative timing of attention-related potentials) between actual EEG signals 

and information flow in the simulation. Secondly, he reproduces a well known lesion 

study (simultaneous extinction) to illustrate that attentional control of the sensory and 

motor cortices is distributed (right and left hemispheres respectively). Finally, he 

demonstrates that the model reproduces the attentional blink in which the ability to 

respond to distinct visual targets which require an attentional shift of focus is diminished 

as the delay between occurrence of the related stimuli approaches the time needed to 

process the first image and prepare for the onset of the second. 
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Fragopangos and Taylor [21] describe an application of a closely related control model, 

investigating the behaviour of the model in relation to two further standard explorations 

of human attention. The control model is similar to the CODAM model described above, 

except that the monitor compares the motor output with the visual input and does not 

draw upon a predicted sensory input state. In the first simulation, the controller, 

responding to an error signal from the monitor, learns which of two motor responses 

(analogous to finger movements) to make in response to visual stimuli. In the second 

simulation, the IMC controllers of visual and motor cortices respectively are lesioned. 

The results of both simulations accord well with results from human subjects; the second 

simulation serving again to suggest distribution of the controllers for vision and motor 

function.  

 

Kasderidis and Taylor [37] use an extended attentional architecture to control a simulated 

robot. In this instance, the monitor compares the expected sensory state of the robot with 

the actual sensory state, producing an attentional arousal signal (called the attentional 

index) which is proportional to the error detected. The arousal signal is used both as a 

learning signal to the controller so that it learns motor responses and as input to a process 

that evaluates competing actions. The elaboration of the earlier control model relates to 

the representation of goals as goal trees, with high level goals being decomposed to lower 

level goals. At any level, the goals compete for expression through mutual inhibition. The 

simulated robot has three sensors (power, proximity of other objects, and position/speed) 

and one effector capable of moving the robot one step at a time in a discrete Cartesian 

grid. The robot has a high level goal: ‘transport an object from A to B whilst avoiding 

collision’. This goal decomposes to a ‘transport’ sub-goal and an ‘avoid collision’ sub-

goal. In turn, ‘transport’ decomposes to four sub-goals: ‘goto A’, ‘pick item up’, ‘goto 

B’, ‘drop item’. At the next level of decomposition, ‘Goto x’ reduces to the goals ‘plan 

route’ and ‘move’, respectively. The ‘plan route’ action determines the next move based 

upon predictive assessment of the movements of other objects in the environment. If 

these predictions are in error, an attentional signal (collision avoidance index) is 

generated, the signal being inversely proportional to the proximity of the potential 

obstacle. An action index, which incorporates the attentional and collision avoidance 
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indices, is calculated and if a decision threshold is exceeded the collision avoidance 

behaviour is selected preferentially over the transport behaviour. The collision avoidance 

index is used as a (back-propagation) learning signal for a neural network that predicts 

the movement of the threatening obstacle. The model is used in a simulation that 

compares the relative performance of the robot as described, compared to two lesioned 

robots: the first lesioned to remove learning; and the second lesioned to remove both 

learning and prediction. 

 

Taylor and Fragopanagos [52] [53] have extended the CODAM control model to 

incorporate the effect of emotion on attention. In humans, the attentional blink (described 

above) is attenuated by the emotional content of the second stimulus (e.g. the effect is 

diminished if one’s own name or a familiar face is the stimulus to be recognized). In 

patients with a lesion to the amygdala, there is no attenuation. By incorporating an 

emotional signal comparable to that generated by the amygdala (part of the limbic 

system) into a simulation, and using lesion studies, they are able to reproduce this 

phenomenon.  

 

Taken collectively, the applications of Taylor’s CODAM model described above exhibit 

the properties associated with executive attention, along with the requirement for learning 

of automatic responses. The goal module serves as a memory to maintain task focus. It 

receives directly a representation of the input from which CODAM determines which of 

a number of attentional goals apply at any instant. Thus task salience is derived entirely 

from the environment. In this sense the term ‘goal’ is synonymous with ‘currently 

specified task’. The concept of goal is more clearly present in [37] where willed control is 

exercised over more than one possible task (e.g., suppression of the transport task in 

order to avoid collisions). There is task-related priming of anticipated actions in [37] and 

there is error-driven learning to reduce the occurrence of errors. It is not clear whether the 

input from the goal module to the IMC is intermittent or sustained, it appears to be the 

latter.   
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A distinctive treatment of attention occurs in Franklin’s IDA model [22]. IDA can be 

viewed as an implementation of Baddeley’s working memory using Baars’ concept of 

Global Workspace Theory (GWT) [5]. IDA is a multi-agent system [23], an early 

implementation of which was able to billet US Navy personnel, responding to 

(electronic) notices of vacancies and requests for postings by assigning staff 

appropriately. IDA can communicate in natural language via email, and the application 

solves a nontrivial instance of constraint satisfaction. Although Franklin’s 

implementation of GWT in IDA contains no neural networks, it does incorporate some 

connectionist elements, (e.g. software agents exhibit ‘levels of activity’ which are used in 

computation by other agents and thus determining the flow of information within the 

agent network [24]) justifying its inclusion here.  In the most recent elaboration of the 

IDA model, which extends the working implementation described above to include some 

features which are not yet implemented, Franklin, Baars, Ramamuthy and Ventura [22] 

present a nine-step cycle of computation that makes concrete the cycle of computation 

implicit in GWT. Sensory stimuli are ‘chunked’ to form current percepts. These are 

combined with representations of recent percepts from transient episodic memory and 

from long term memory. Event specific attention codelets seek to build a coalition of 

associated information codelets on the basis of the amount of relevant information 

content found in the current internal representation of the environment. A winning 

coalition is selected and its contents broadcast. Behaviour codelets respond depending 

upon their relevance to the information broadcast. Some behaviour codelets initiate a 

behaviour stream, if one is not in place. Competition between behaviours is resolved by 

selection of a single behaviour for execution. Execution of the behaviour codelet results 

in the creation of an expectation codelet (a type of attention codelet), which competes for 

attention in the ensuing cycle(s) if the anticipated results of the behaviour are not 

manifest in the perceived environment.  

 

Clearly, IDA selects less salient over more salient tasks through a number of biasing 

mechanisms, e.g., agents representing affective states, timekeeping agents, etc. In IDA, 

the affective content of external and internal representations is recognised during 

perception (early stages of the cycle) and thus informs the unfolding of the information 
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flow in later stages and cycles [24]. Priming is also implemented, as described above. 

The operation of attention, in respect of any one task, is intermittent. And the frequency 

with which a task is revisited is governed by the dynamics of the competition between 

attention codelets (with their coalition of information agents) and the rates at which the 

activity levels of the codelets decays in episodic memory. From the perspective of SAS 

functionality, IDA has a monitoring mechanism (e.g., expectation codelets). The model 

stipulates a role for a planning mechanism to tackle non-routine problems but the 

mechanism for this is unpublished [22]. One form of learning in IDA uses internal 

reinforcement mechanisms, the details of which depend upon the target memory 

subsystem. The reinforcement signal is derived from selection of an attention or 

behaviour codelet so that frequently attended perceptual or behavioural associations are 

sustained whilst others are allowed to decay. The model specifies a mechanism to 

enhance the automaticity of unfamiliar skills. (Publication of an account of the processes 

by which this may be achieved is anticipated [22]) 

 

Shanahan [48] has developed a neural implementation of Baars’ GW model in which 

attention (as ‘bringing to consciousness’) is implicit in information flow through the 

architecture. In the context of robot action selection, Shanahan’s action selection 

architecture features a first order, purely reactive, system, modulated by a higher order 

system. The first order system evaluates (assigns salience to) sensory input to determine, 

in parallel, alternative courses of action.  In response to the same sensory input and the 

currently selected action, the higher order system predicts, off-line and in parallel, a 

number of trajectories through the robots sensory motor space.  The outcomes of these 

parallel rehearsals inform an affective assessment of the currently selected action based 

upon the extent to which it leads to a rewarding or punishing outcome. This affective 

assessment provides a signal which modulates the salience of the selected action, either 

reinforcing its expression or causing it to be suppressed in favour of a more rewarding 

alternative.  

Shanahan’s model and its implementation exhibit a mechanism by which action salience 

is modulated in accordance with the outcome of higher-order processing, and the 

architecture closely reflects Norman and Shallice’s separation of the pathways for 
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automatic and higher-order action. There is no explicit representation of will or intention 

to form the basis of willed action selection. Rather, in so far as there is a will, it is 

implicit in the architecture and is introduced through the affective biasing of action 

selection: ‘prefer actions which are relatively the most rewarding’. A distinctive element 

of the model is its ability to use imagined future outcomes to evaluate courses of action. 

Shanahan uses forward association from the current input, as opposed to backward 

association, which would demand the representation of some goal state [26].  

  

5 Functional Neural Architecture 

Having described the functional architecture of Norman and Shallice's original 

production system (Figure 1), and having examined models of attention-based task 

selection developed within the neural/PDP paradigm, this section gives a corresponding 

functional account of our neural architecture for unattended and attended action selection. 

This architecture extends the models described above, and our own previous models [28] 

[29], both in terms of scale of integration and by introducing a degree of autonomous 

operation and an attention-based learning mechanism that leads to increased task 

automaticity and reduced attentional burden.  

 

The architecture, which provides for executive attention and action selection, has three 

integrated subsystems (Figure 2): 

 

• Reactive System, containing episodic and procedural memory that together with the 

contention scheduler, provide for automatic (instinctive or already learnt) behavioural 

output. 

• Supervisory Attentional System, including working memory, providing executive 

functions for autonomously detecting circumstances in which attentional effort is 

appropriate and adapting and modulating attended to behaviours to express willed 

behaviour.  

• Affective System, which provides elements of an affective (emotion-based) 

mechanism which mediates acquisition of initially willed behaviours by the reactive 

systems. 
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FIGURE 2 

 

At a functional level (as opposed to implementation level), the reactive and supervisory 

attentional systems described in this paper are largely faithful to Norman & Shallice's 

architecture for executive control of behaviour. We have reinterpreted their production 

system architecture as a large scale, modular, neural network in which we have sought to 

maintain neuropsychological and neuroanatomical plausibility at the functional-structural 

level. In doing so, we have elaborated and incorporated additional subsystems, especially, 

episodic memory, procedural memory and working memory. We introduce a simple 

model of working memory based on [6] and then extend the model to include elements of 

the limbic system associated with some forms of emotion-based learning. We consider 

the major components of the model in turn. 

 

5.1 The Reactive System 

The world is directly perceived through the Perception Layer, which encodes sensory 

information and maps this into episodic memory [8]. Episodic memory encodes 

previously encountered situations, narrative structures and routinised plans or behaviour 

schemas. At an unattended level, episodic memory expresses the salience of episodic 

associations and maps this into procedural memory and working memory.  

Procedural memory, which includes central and motor pattern generators, is heavily 

interconnected with episodic memory and encodes procedural motor skills. This coupling 

between the episodic and procedural memory provides the tight coupling of perception 

and action characteristic of automatic task selection and reactive robot control.  

In respect of automatic action selection, the Contention Scheduler allows all salient 

behaviours to be expressed as long as there is no contradictory demand placed upon any 

effector. It also provides modulatory feedback to episodic and procedural memory [35] to 

reinforce the ‘persistence’ [40], or ‘perseverance’ [50], of the current behaviour(s) so that 

minor fluctuations in perception do not result in rapid behaviour switching.  

Behaviours selected for expression by the effector contention scheduler are routed 

through Output Gates (in the thalamus) to effector systems. By default, the gating system 



Executive Attention and Action Selection in a Neurally Controlled Simulated Robot 

inhibits the expression of salient behaviours (directly from procedural memory). The 

contention scheduler actively disinhibits those behaviours selected for expression. (It is 

interesting to note that this mechanism enables an organism to always do something; 

evolution seems to have selected for organisms for which doing anything is better than 

doing nothing). (Although present, local reflex ganglia, through which the sensory and 

motor signals are routed - a 'spinal cord' - are not shown in the figure 2.)  

 

5.2 Working Memory 

Working Memory provides the Supervisory Attentional System with representations of 

current goals and intentions, salient biographical episodes from episodic memory, and 

salient actions from procedural memory.  The connections from both episodic and 

procedural memory converging in pre-frontal cortex [25] are governed by contention 

scheduling. (Achieved by circuits of the basal ganglia, not explicitly represented in 

Figure 2, that are distinct from those controlling action expression, above). Thus, all 

salient non-contradictory episodes and possible actions are 'observable', in parallel, by the 

SAS at once. Having episodic and procedural memory connected through working 

memory may provide the attentional system with a means to combine episodes and 

representations of motor functions that can be 'ranged through' or even 'played forward', 

in the absence of behavioural expression, thus providing a means to predict, or look 

ahead (c.f. Shanahan, above).  

 

5.3 The Supervisory Attentional System 

The SAS has three subsystems, corresponding to the three functions as specified by 

Shallice [47] and described above. The SAS Monitor can be thought of as a system for 

detecting novel circumstances defined as departure from expectation. By monitoring 

working memory, the SAS Monitor is able to observe the unfolding pattern that derives 

from observation of the perceived world (from episodic memory), currently intended 

actions, expressed actions (from procedural memory and effector contention scheduler), 

and the outcome of expressed action perceived through the changed state of the world 

(made apparent, once again, in a subsequent state of episodic memory). If the SAS 

monitor detects departure from expectation, it generates an arousal signal to the SAS 
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Modulator. This is the point at which deliberative (conscious) attentional effort is 

invoked.  

 

The SAS Modulator expresses willed intention by attenuating the salience of 

inappropriate (unplanned) actions and potentiating the salience of intended tasks. Note 

that this limited mechanism (modulation) deals only with minor levels of variation of 

action selection; it only allows expression of actions that are related to current intentions 

and are relatively salient.) If the intervention of the SAS modulator proves inadequate to 

the novelty of a situation, the SAS Generator must be able to produce novel approaches 

to problem solving. Strategies might include creating entire novel sequences of intended 

actions (new plans). 

 

5.4 Learning  

Episodic memory and procedural memory appear to have different learning mechanisms. 

The limbic system and especially the hippocampus are known to be involved in episodic 

learning [14] [49]. The mechanism for procedural learning is less certain, but may 

integrate attentional effort and self-priming positive feedback derived from selection for 

expression by the contention scheduler. 

 
5.4.1 Episodic Learning and the Limbic (Emotion) System 

The limbic system is intimately associated with the sensation of emotion, indirectly 

inducing release of hormones which trigger physiological changes (e.g., in heart rate, 

respiratory rate, distribution of blood flow, etc.) associated with emotional sensations. 

However, it is important to be clear that our model does not seek to encode 

representations of emotions themselves as system states. Rather, it is concerned with the 

role that neuromodulatory chemicals released by the limbic system, and especially the 

hippocampus, are known to play in promoting episodic learning. The hippocampus (part 

of the limbic system) is extensively connected to the prefrontal cortex, providing a 

material basis for the hypothesis that it promotes learning related to attentional activity. 

Activity in the limbic system is expressed in a number of ways, including the release of 

neurotransmitters and neuromodulatory chemicals such as noradrenalin, 5-
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hydroxytryptamine, dopamine, acetylcholine, etc. In contrast to neurotransmitters, 

neuromodulators are slow acting, diffuse, and non-specific in information content [16]. 

Within the limbic system, the hippocampus is known to take input from episodic 

memory, procedural memory and the SAS, and provides connections back into episodic 

memory. In our model, this system allows for episodic learning by using the level of 

attentional activity in the SAS as the basis for a hippocampal signal that reinforces the 

association between the currently willed action and the currently active episode. Over 

time, the attention-based reinforcement of this association means that a diminishing level 

of attentional effort is needed to enhance its likelihood of expression.  

 

5.4.2 Procedural Learning 

In contrast to episodic learning, the learning of new procedural skills does not seem to 

depend directly upon the hippocampus. Thus we need a second mechanism to support 

this form of learning. We have already seen that the SAS modulates the expression of 

behaviour by potentiating and/or attenuating the salience of behaviours contending for 

expression by the contention scheduler. This, in itself does not appear to constitute a 

learning signal. However, once the contention scheduler expresses a procedural 

behaviour, reinforcing (thalamo-cortical) feedback to procedural memory seeks to 

promote the persistence of the expression of this behaviour. This self-priming mechanism 

serves to avoid constant switching of behaviour arising from very minor change in the 

perceived environment [50]. This feedback mechanism is a plausible basis for a 

reinforcement signal to procedural memory that results in the learning of the attended 

response. 

 

6 Implementation 

In this section, we give an account of the implementation of the architecture described 

above as a large-scale, modular neural network linked via a defined interface to a 

simulated robot which allows us to illustrate the operation of the architecture and explore 

its properties through simulation and lesion studies.  

The Java Programming Language is used to implement all the simulation code, including 

the neural controller, which has approximately 103 neurons in the design represented 
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here. (Scalability tests done with a 1Ghz Pentium III PC indicate the current software, 

without modification, can support about 104 neurons operating in real-time (together with 

the simulated environment, machine and trace monitors) within one composite network.)  

The 'network of networks' is specified in a model description file (XML) which 'builds' 

the network, relating individual neurons to clusters (or nodes), clusters to functional 

modules and functional modules to the composite network that controls the simulated 

robot. A functional module, cluster or individual neuron can be declared as sensitive to 

the concentration of one or more chemical modulators associated with learning. All 

neurons and connections between neurons are typed (input, output, excitatory, 

inhibitory).  

A graphical interface to the network description file is incorporated into the simulation 

tool to facilitate network modifications, e.g., altering connection weights, suppressing 

input or output, adding neurons/connections or altering their transfer functions, etc. 

 

6.1 The Simulated Robot 

The robot has two, forward facing sonar sensors and eight olfactory sensors that allow it 

to sense the presence of obstacles or objects of interest such as food, nesting materials 

and other robots. Its effectors are two independent drive wheels and a gripper for picking 

up and transporting objects of interest. Other sensors, such as a simple vision system, 

infrared sensors and micro-switch based whiskers are available but they are not 

connected in the implementation of the robot used here. The coding of the simulated 

robot uses the techniques and algorithms prescribed in [20]. The neural controller 

implementing the extended Norman and Shallice architecture interfaces with the 

simulated robot using a defined interface. 

 

6.2 The Controller 

The fifty-one neural clusters that make up the current controller are organised into 

functional modules (episodic memory, contention scheduler, hippocampus, etc.) 

corresponding to the architecture of figure 2. A neural cluster comprises a collection of 

highly interconnected neurons; most are four or eight input, recurrent (Elman or Jordan) 

networks with up to three hidden layers. Each cluster is individually trained to a 
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specification defined by the functional model. Every cluster is independently tested and, 

if necessary, hand tuned using the simulation environment. The full model is system 

tested in a variety of environments featuring mazes, obstacles and other robots. 

 

Initially, the control network is in an undefined state, but it can be driven to a known state 

to facilitate controlled experiments. Similarly, the systems that interface to, but are not 

part of the controller per se (executive planning module, individual sensors and effectors, 

etc.) have to be enabled for the model to operate.  

 

The Perception Layer 

The perception layer processes and fuses sensor signals and presents a representation of 

the environment to episodic memory. 

 

Episodic Memory and Procedural Memory 

Episodic and procedural memory are organised to achieve the reactive coupling between 

perception and action (Figure 3). Accordingly, the salience of any single behaviour has a 

distributed representation across episodic and procedural memory.   

 

FIGURE 3 

 

Episodic memory (EM) is composed of clusters of neurons organised in layers. Nodes at 

the bottom of the tree interface to the perception layer and represent 'atomic' episodes 

(e.g. food is present); nodes further up the tree represent increasingly compound episodes 

(e.g. food is present + there are no obstacles between me and the food = Orient to Food).  

 

Procedural memory (PM) clusters are layered in a similar fashion; nodes at the bottom of 

the tree represent primitive motor actions (e.g., close gripper), with nodes further up the 

tree representing compound motor actions. Activation is propagated from higher to lower 

levels. 
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Nodes in EM and PM are connected to adjacent nodes in the same layer by both 

inhibitory and excitatory connections. Higher-level nodes represent compound episodes 

(in EM) or a compound behaviours (in PM). As such, they can be thought of a plan 

expression nodes as they encode collections of behaviours. Such nodes excite (prime) 

their sub-nodes, causing them to respond more readily when the conditions for their 

activation arise. In this way, EM exhibits priming in respect of anticipated perceptual 

input and PM exhibits priming of the relevant sub-behaviour. In order to facilitate the 

sequencing of sub-behaviours, plan expression nodes behave as neural finite state 

machines; changes in inputs trigger a state dependent transition to a next state and it 

associated output. The sequencing of behaviours is not deterministic as the exact state of 

the network is a function of the current state of the environment, the history of the 

machine and any executive attentional activity.  

 

In our implementation, the combination of episodic and procedural memory realises a 

small number of reactive basis behaviours (c.f. Mataric [39]). Basis behaviours are low-

level behaviours that may be combined to provide higher-level compound behaviours. 

The basis behaviours, and higher-level behaviours arising from them, serve the same role 

as “schemata” in the Norman & Shallice model. (An analogous decomopositional 

treatment, but using different representations, is given by [17] and [37].) 

 

Every memory cluster (episodic and procedural) has inputs from other memory clusters 

and feedback from the contention scheduler (see below) where it competes for access to 

resources (working memory or effectors). The output of each memory cluster to the 

contention scheduler represents strength of a request for expression of the memory (its 

net salience). 

 

All inter-nodal connections in EM and PM are subject to a constant base rate of Hebbian 

learning. This learning is potentiated by emotion- mediated attentional activity. 

 

Contention Scheduler 
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Within the model, the contention scheduler is based on the computational properties of 

the basal ganglia [6], [34] and is an independent implementation of the contention 

scheduler described by Prescott et al. [45]. The properties of the contention scheduler 

were described above. 

 

Working Memory 

Working memory encodes salience of high-level nodes in episodic and procedural 

memory, providing the executive with a representation of how perception is currently 

related to action at a reactive level (Figure 4). It also encodes the currently intended task 

so that the SAS monitor (below) can detect any disjuncture between intention and 

reactive action. 

FIGURE 4 

 

The Supervisory Attentional System 

As already outlined, the SAS has several functions; currently two functions are 

implemented: Monitor and Modulate, described above (see Figure 5). The full SAS has a 

Generate function to create novel plans but this function has not yet been implemented; 

instead we simulate the output of the SAS Generator as an encoding of sequences of 

intended tasks (i.e. plans) competing for access to working memory. Thus, human 

intervention in the normal operation of the controller is confined to specifying at the 

outset the intended goal of the robot, expressed as a sequence of behaviours.  

 

FIGURE 5 

 

The SAS Monitor nodes receive input from three sources: the salience levels of the 

perceptually driven associations from EM, which express the reactive intention of the 

system; the salience of behaviours which are allowed expression by the contention 

scheduler, i.e. the reactive response of the system; and the salience of intended 

behaviours from working memory. The SAS monitor raises an arousal stimulus to the 

SAS modulator if a behaviour is expressed which has not been planned. Once triggered, 

the arousal signal continues to be generated until the conflict is resolved by changes in 
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the relative salience levels of the input behaviours, which can, of course, arise in a 

number of ways. 

 

SAS Modulation clusters generate output patterns that modulate the signals from memory 

clusters into the working memory contention scheduler so that intended behaviour is 

potentiated and other behaviours (competing for access to working memory) are 

attenuated. It is important to recognise that this does not guarantee the selection of the 

intended behaviour, as this risks overriding behaviours strongly and appropriately 

triggered by the environment, e.g., those designed to prevent harm to the machine or its 

surroundings. 

 

Emotion (Limbic) System - Hippocampus 

The overall level of activity of the SAS modulator provides the basis for a signal to the 

Emotion Centre. Low levels of activity in the SAS Modulator are associated with routine 

(minimally-attended) responses to familiar circumstances; high levels of activity reflect 

attentional effort in the face of unfamiliar circumstances. As described above, each 

episodic memory cluster has inhibitory and excitatory connections from neighbouring 

clusters. The clusters are sensitive to neuromodulatory chemicals (released by the limbic 

system), which have different effects based on the neurons’ activities and connection 

types. When the emotion system becomes active due to raised attentional activity, a 

modulatory chemical signal is propagated through the entire neural network, reinforcing 

inhibitory links from active nodes in episodic memory that are not suppressed by the SAS 

to active nodes which are suppressed by the SAS (Figure 6). Over time, this results in a 

reinforcement of the association between the attended to episode and expressed action so 

that, in future, reduced, or zero attentional effort will be required for the appropriate 

action to occur automatically. 

 

FIGURE 6 

 

7 Normal Operation and Lesion Studies 
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An important tool for studying attention in humans is the use of lesion studies. The nature 

of human lesions may be inferred using one of a number of scanning technologies or by 

post mortem examination. Lesion studies are also used to interpret the nature of lesions in 

artificial neural systems [33] and to validate networks by looking for concordance with 

human lesions [51] [21] [52] [53]. Using the interface to the software simulation of our 

controller we are able to introduce lesions at will and observe the effects on the behaviour 

of the simulated robot allowing us to validate the architecture of the model against 

behavioural pathologies associated with dysfunction of executive attention in humans. 

Before describing the lesion studies, we first demonstrate normal functioning of the 

model in a given task. 

 

7.1 Normal Behaviour in an Inexperienced Machine 
We use the simulation to a monitor a robot that has the goal of foraging for food. To 

achieve this task, the robot must undertake a series of subtasks: make its way to the food, 

collect it and take it to a specified location (home). These subtasks are broken down 

further until a subtask is realised by a specific effector response, such as 'rotate left wheel 

forward', or 'open gripper'. The simulation environment allows us to observe the activity 

on connections between components of the model, be they single neurons, clusters of 

neurons, or major architectural elements of the model.   

 

The normal functioning of the relatively inexperienced robot as it learns to deal with 

unfamiliar distraction is illustrated in Figures 7-10. In figure 7, the foraging robot 

(Penny) has started without food at point A, collected food at point B and is taking it 

home. When the robot is at point C, additional food (distraction) is introduced, inducing a 

momentary orientation (barely visible in the figure) towards the food, before continuing 

with the task.  

 

FIGURE 7 

 

In Figure 8, we observe some of the relevant activity in the control network as this 

experiment unfolds. Recording of each of the seven traces in Figure 8 commences shortly 
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after the robot has picked up the food at B but before the distracting food is introduced at 

C.  

FIGURE 8 

 

Trace 1 shows the salience of the Orient to Food behaviour in PM; as the robot has 

already collected some food, salience of this behaviour is initially low. 

When a distracting food source is introduced and is detected, salience of the Orient to 

Food behaviour increases, initially in EM (rising edge trace 2), and consequently in PM 

(rising edge trace 1).  Thus, the action seeks expression via the contention scheduler. As 

the robot is currently attempting to Orient to Home, Orient to Food is not the intended 

action (trace 3 is low). However, for this relatively inexperienced robot, the strength of 

the Orient to Food response leads the contention scheduler to select the Orient to Food 

behaviour, albeit inappropriately (the rising spike of trace 5). The SAS monitor detects 

this unexpected action (rising edge trace 4) and induces the SAS modulator to attenuate 

this behaviour at the input to the contention scheduler (trace 6). This attenuation is 

successful (falling edges of trace 1 and consequently of trace 5) and so it is no longer 

expressed. Meanwhile, the limbic system has been excited by the modulatory SAS 

activity (trace 6), inducing release of a diffuse neuromodulatory signal (trace 7). 

Accordingly, the weight of the inhibitory connection from the intended Orient to Home 

behaviour cluster to the active but unintended Orient to Food behaviour cluster in EM is 

increased (over two to three seconds), the effects of which can be seen in the gradually 

falling activities of traces 2, 4. Once the inhibitory response from Orient to Home to 

Orient to Food becomes strong enough, the SAS no longer needs to continue the 

suppression (falling edge of trace 6). Cessation of SAS activity ends the hippocampal 

activity (falling edge of trace 7). At this stage, the robot has learnt to avoid the nature and 

the level of distraction encountered and no longer needs attentional resources to act 

appropriately in the presence of a similar level of distraction.  

 

At this point, we extend the experiment described so far to expose the robot to a more 

potent distraction by bringing the food source progressively nearer (Figure 9). (Note: in 

figures 9-16, the labelling of the individual traces is consistent with that given in the 
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legend of Figure 8.) Trace 2 shows that as potency of the distraction increases, the EM 

salience of the Orient to Food behaviour increases.  

 

FIGURE 9 

 

However, the previous learning means the salience of the behaviour in EM, and 

consequently PM (trace 1) remains low (imperceptible in the robot's movements). As the 

potency of the distraction increases (food brought nearer) the salience of the 

(inappropriate) behaviour reaches a level at which the SAS momentarily applies an 

inhibitory signal (rising spike of trace 6). This induces another short burst of limbic 

activity (trace 7) and associated learning, which is results in further inhibition of Orient to 

Food by Orient to Home and the robot resumes its intended behaviour without further 

attentional effort. Eventually, the robot is able to avoid this particular distraction in a 

wholly unattended way (Figure 10).  

 

FIGURE 10 

 

 
7.2 Lesion Studies 
We now conduct a sequence of five simulated lesion studies to explore the induced 

behavioural pathology of the control network. The locations of the experimental lesions 

to the attentional architecture (A-E) are shown in Figure 11. In this section, we describe 

the lesions introduced along with the resulting behavioural pathology. The relation of 

these pathologies to human pathologies of executive attention is considered and discussed 

later. 

 

The five lesion experiments (A-E respectively) are: 

 

• Lesion A involves removing the arousal link between the SAS modulator and the 

emotion center, effectively preventing attention based learning. 

• Lesion B removes the modulatory link between the SAS modulator and the 

contention scheduler. 
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• Lesion C prevents the SAS monitors being aware of the salience of episodic 

memories trying to gain access to working memory. 

• Lesion D prevents the SAS monitors being aware of planned or ‘supported’ 

behaviours. 

• Lesion E removes the contention scheduler input to the SAS monitors, removing any 

awareness of active behaviours. 

 

FIGURE 11 

 

7.2 Lesion Study A 

In this first experiment on a relatively inexperienced robot, the executive attentional 

control network was lesioned by blocking the excitatory signal from the SAS to the 

limbic system (Figure 11, marked A). Comparing the activity traces (Figure 12) with 

those of the normal, similarly inexperienced, robot (Figure 8) we see that, outwardly, the 

robot behaves normally (compare trace 1) because the SAS applies the appropriate 

suppression of the unwanted behaviour. However, hippocampal learning (trace 7) is 

never induced and so this machine will never acquire the ability to exhibit the desired 

behaviour without attentional effort.  

 

FIGURE 12 

 

7.3 Lesion Study B 

Removing the modulatory pathway from the SAS to the Contention Scheduler (figure 11, 

marked B) results in the traces shown in figure 13.  

 

FIGURE 13 

 

The traces start as in lesion study A, however, when the distraction is introduced, 

although the SAS generates the modulatory signal in an attempt to suppress Orient to 

Food (trace 6), in keeping with the lesion, it is no longer able to modulate input to the 

contention scheduler. As Orient to Food becomes active the machine moves directly 
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towards the source of the distraction. As the SAS has generated a modulatory signal, it 

has also generated an arousal signal to the learning subsystem. However, in the absence 

of the modulatory signal from the SAS, the contention scheduler has inappropriately 

selected Orient to Food; Orient to Home is no longer active so the inhibitory link between 

Orient to Home and Orient to Food is inappropriately adjusted and, as can be seen from 

the traces, the machine never learns to escapes from the distraction, indeed its error 

behaviour is reinforced by the learning. It is possible that in an expanded model other 

active clusters with inhibitory links to Orient to Food would eventually suppress it. 

 

7.4 Lesion Study C 

In this third experiment, the executive attentional control network of an experienced 

robot is lesioned by preventing the SAS from monitoring the salience of a behaviour prior 

to its expression by the contention scheduler (Figure 11, marked C). Thus, in this case, 

the SAS only detects expression of an inappropriate behaviour after it is expressed at the 

contention scheduler. The traces of Figure 14 illustrate this failure.  

 

FIGURE 14 

 

As in the previous experiments, new food is introduced to the inexperienced robot as a 

distraction whilst it is taking home food it already holds. The distraction results in the 

salience of Orient to Food increasing (trace 2). Again, this isn’t the currently intended 

behaviour in the foraging plan (trace 3). As in normal operation (Figure 6) the salience of 

the unfamiliar distraction causes the contention scheduler to expresses the behaviour 

(first rising spike of trace 5) and the SAS monitor detects that a modulatory signal is 

required to attenuate this (first rising slope in trace 6). This suppresses the inappropriate 

behaviour, which is then no longer selected by the contention scheduler (the first falling 

slope in trace 4). However, the lesion introduced to the network prevents the SAS from 

recognising that the inappropriate cluster is still strongly salient; accordingly, when 

Orient to Food is no longer enabled by the contention scheduler. The SAS ceases its 

modulation of the signal, resulting in Orient to Food again achieving expression via the 

contention scheduler and the oscillatory cycle of expression and modulation is 
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established (traces 5 and 6). The resulting observed behaviour of the robot is that it 

repeatedly switches between moving towards home and moving towards the distraction 

(Orient to Food and Orient to Home) moving very slowly in fits and starts in what is 

characterised as dithering. 

 

Whilst the machine oscillates between Orient to Food and Orient to Home, the SAS is 

generating an oscillating arousal signal to the learning subsystem.  This eventually 

manages to increase the inhibitory connection between Orient to Home and Orient to 

Food so that the appropriate behaviour is eventually learnt (falling edge of trace 2), 

though the time taken to do this is over eight seconds compared with the two to three 

seconds of the unlesioned model. 

 

 

7.5 Lesion Study D 

Lesioning the working memory of an inexperienced robot such that the SAS cannot see 

the currently intended behaviour renders any and all behaviour which is expressed by the 

contention scheduler inappropriate, as any and all actions appear to the SAS monitor as 

unplanned. The resulting traces can be seen in figure 15. 

 

FIGURE 15 

 

For the inexperienced robot, the introduction of the distraction induces the inappropriate 

response of Orient to Food. The SAS correctly attenuates its expression (trace 6). 

However, whilst suppressing Orient to Food, the SAS is generating an arousal signal to 

the learning subsystem (trace 7), the effect of which is to reinforce inhibition of all other 

behaviours when Orient to Food is inactive.  

 

7.6 Lesion Study E 

In this final experiment the SAS is lesioned so that it does not see which behaviours are 

selected for expression by the contention scheduler (figure 11, labelled E). The traces 

from this experiment can be seen in figure 16. 
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FIGURE 16 

 

Traces 1 to 4 accord with the normal case in which the distraction is introduced. 

However, on this occasion, no rising edge is seen on trace 5 (as the contention scheduler 

output to the SAS is lesioned). Accordingly, the SAS view of the currently intended 

action and the (lesioned) output of the contention scheduler input (trace 5) are the same. 

Accordingly, no suppression of the inappropriate Orient to Food behaviour is generated. 

The small spike in the suppression output seen a second into the trace is from the priming 

induced by the behaviour input (trace 4), which causes SAS suppression to persist for 

clusters which seek to remain active even when they are suppressed. The resulting 

behaviour of the machine is simply to move towards the distraction, though unlike lesions 

B to D, since the SAS monitor does not detect anything is wrong, the arousal signal for 

the learning subsystem is not invoked. 

 

8 Discussion and Conclusions 

The goal of this work was to develop an integrated neural architecture modelled on 

human executive attention which was capable of supporting autonomous control and 

developmental learning in a simulated robot. In particular, we sought to make progress in 

respect of a model displaying features commonly associated with executive attention as 

set out at the beginning of the paper [36]: selection of a less salient intended task over a 

more salient automatically selected task; priming of tasks that are anticipated; use of 

memory to maintain task focus along with appropriate persistence of willed attention to 

action, requiring that attentional effort should be invoked only when needed. We also 

recognised that attention-based learning played an important role in allowing willed 

selection of appropriate tasks to become increasingly automatic, reducing the need for 

attentional effort. Our approach to the problem was to adopt a functional model of 

executive attention [42] [47], extending it to incorporate an innate learning mechanism 

based upon emotion-mediated attentional burden. An integrated modular neural control 

system for a simulated autonomous robot was developed which exhibits the behavioural 

and mental attributes sought.  
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Although the task used for the illustration is comparatively simple, it serves as an 

example of a task requiring a sequence of subtasks to be carried out - in that sense, the 

length of the sequence is relatively immaterial. The choice of distraction (a powerful, 

prepotent stimulus for another highly relevant task that was within the scope of the 

intended goal) ensured it was maximally distracting. In operation, the simulated robot, as 

documented in figures 8-10, exhibits the desired attentional attributes.  

• There is attentionally-driven selection of a less salient but intended task over an 

alternative response associated with a highly salient, pre-potent, source of 

distraction. The intention is not derived, either directly or indirectly from the 

environment, rather it is derived from an intended plan. Further, the plan is a set 

of tasks and exactly which task is to be performed at any given time is determined 

autonomously as opposed to be specified or explicitly cued in the environment.  

• The model provides priming of future actions. In EM, high-level nodes (encoding 

remembered episodes) primes lower-level nodes so that they are more likely to be 

activated when the anticipated environmental stimuli relevant to a new task in the 

intended plan become evident. At the same time, in PM, high-level nodes 

encoding behaviours prime the associated lower-level behaviours so that they are 

more likely to be expressed as the associated EM nodes become activated.  

• Memory is used to maintain task focus, but, importantly, this does not involve 

persistent attentional effort – the goal is remembered without awareness, serving 

to provoke an attentional arousal signal when expressed action departs from 

intended action.  

• Attentional effort is used to induce learning of the intended goal-related responses 

so that performance of intended tasks becomes increasingly automatic, freeing 

attentional resources to deal with new levels or types of distraction.  

 

In observing robot behaviour and the internal activity of the network, it is possible to 

identify phenomena that may be considered analogous to effects seen in humans.  
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In normal operation, the robot progressively learnt to suppress unintended reactive motor 

activity. As the learning progressed, the expression of unwanted motor action became 

imperceptible to the observer of the machine itself without the use of the network activity 

monitor (Figure 7 and trace 1 of Figures 8 and 9). This effect may be associated with the 

Chevreul Pendulum phenomenon (described in [3]) in which a subject is given two 

contradictory intentions to sustain. Initially, that are asked to hold still a pendulum 

suspended from their supported hand. This can be done successfully. When asked to will 

it to oscillate on one or another specified axis, whilst simultaneously maintaining it in a 

steady state, the pendulum is (usually) induced to oscillate against the will. The small 

motor actions seen in trace1 of Figures 8 and 9 may be consistent with a comparable 

phenomenon in the robot as the imperceptible motor actions might be expected to drive 

the pendulum. 

 

The results of the lesion studies may also be related to recognised behavioural 

pathologies in human patients suffering lesions to areas of the brain associated with 

executive function and attention. Examples of such pathologies include the following 

[47]: 

 

• utilisation behaviour is an inability to suppress a (strongly) triggered, but 

inappropriate behaviour, as demonstrated by a patient who reaches for a cup when 

presented with it even though it has been explicitly agreed by the patient that they 

will not do so; 

• capture errors in which the task focus is not maintained (the classic example being 

that of the psychologist William James realising he was dressing for bed instead of 

dressing for dinner); 

• akinesia is the inability to act, attributable to impairment of the ability to resolve 

selection between competing behaviours;  

• stereotypy or perseveration is inappropriate persistence of a behaviour a failure to 

notice significant cues (e.g., those associated with successful completion of a task or 

subtask) that should result in the expression of a different behaviour.  
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All of these behaviours are explained as a failure in error correction, i.e. failure to 

interrupt one behaviour and subsequently will the initiation of another. The first two are 

sometimes considered as different forms or degrees of distractedness; in the first case, the 

subject wills the avoidance of the response, but the stimulus is so strong it is not 

suppressed, in the second case, the subject is initially unaware of the lapse, either because 

they are paying attention to something else or because they are not paying attention to 

anything in particular. 

 

In lesion A, the observed behaviour of the robot, in the short term, is apparently normal 

(compare trace 1 of figures 8 and 12). However, consideration of the network activity 

demonstrates that the robot fails to adapt to the presence of the distraction. A normal 

robot learns to ignore the distraction - eventually proceeding without conscious 

awareness associated with SAS activity. The lesioned robot, by contrast, is continuously 

aware of the distraction (enduring attentional activity of traces 4 and 6 in figure 12). The 

normal robot is in a position to devote attentional effort to subsequent distractions, but 

the lesioned robot will not respond to any distraction less salient than the current one. 

Lesion B would seem to correspond to one form of utilisation behaviour. The robot 

maintains and responds to an intention to resist the distraction (traces 4 and 6 of figure 

13), but cannot do so successfully (trace 1). Lesion C corresponds to a patient who 

experiences a different form of utilisation behaviour; here there is no awareness of 

committing an act until the act is executed and then noticed. In some cases the faltering 

movements made during a significantly prolonged learning period may be interpretable 

as another form of akinesia. Lesion D corresponds to akinesia with awareness. The SAS 

activity (traces 4 and 6 of figure 15) indicates that robot would experience a sense that it 

should make a response, but, unaware of its intention, it would have no sense of what it 

might do. Lesion E corresponds to the human experience of a capture error in which there 

is no (initial) awareness of the error being made.  

 

The ability to reproduce these seemingly analogous pathologies supports the validity of 

the elaborations we have made to the basic functional model as we developed it towards 

its current implementation. An obvious extension to the programme of lesion studies is to 
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interpret the effects of combinations of the lesions A-E and to interpret the outcomes in 

terms of the known behavioural pathologies mentioned above. The studies do so that in 

diagnosing problems of behaviour in robots controlled by complex neural architectures it 

is not sufficient to rely upon phenomenological behaviour alone, as with human patients, 

it is necessary to apply sensing technology and interpret the results in the light of known 

or inferred (modular) function.   

 

We turn briefly to the question posed by LaBerge [36]; why might executive attention, as 

a phenomenon, have emerged. As stated earlier, Aleksander and Dunmall [1] suggest that 

attention is necessary when the building and maintaining of an internal representation of 

the perceivable world cannot be done in parallel. It is possible to accept this proposition, 

whilst, at the same time, seeking to relate it to the operation of selective advantage, i.e. 

what might be the nature of the selective advantage of non-parallelism. Our partial 

answer to this relates to the model of executive attention we have developed and 

implemented. We have illustrated how the integrated architecture for automatic and 

willed attention induces learning in episodic memory and procedural memory so that 

initially novel perceptual patterns become more familiar, and the associated actions 

become capable of automatic expression. The learning arises from an innate mechanism 

(there is no 'teacher') and the mechanism assumes only a set of initial (basic) capabilities 

‘at birth’. We suggest that in a dynamic and highly unfamiliar world, there is a fairly 

obvious selective advantage for any agent capable of distinguishing between the familiar 

and the unfamiliar; relegating behaviour which deal with the familiar to the level of the 

automatic and freeing executive attention to address issues of novelty.   

 

Finally, we outline future developments of the work. An extension to the emotion 

(limbic) system in the model to include explicit elements of the endocrine system 

(intimately associated with limbic structures) would seem to offer a link between learning 

for enhanced automaticity with a potentially pleasurable, even addictive, underpinning to 

learning and problem solving. An organism possessing such a mechanism would be 

driven by the search for novelty and new problems to solve. Thus may evolution have 

selected in favour of organisms with limited attentional resources in the first place. 
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At this stage in the elaboration of our model and implementation, as presented, human 

intervention is required only to specify the robots overall goal in the form of plan 

representing its intended actions; this is stored in working memory. The machine itself 

has no significant planning function. In seeking to address unfamiliar problems, it can 

engage simple heuristics relating to its current plan, e.g. progressing or reverting to 

previous actions or engaging a default action. Integration of a basic planning mechanism 

such as that offered by Shanahan [48] and/or Garagnani, Shastri and Wendelken [26] 

offers further functional development in this respect. We have also indicated that 

extending the model to incorporate elements of the endocrine system might serve to 

allow exploration of how feedback from stressful and pleasant sensations might enhance 

performance and learning, adding a new dimension to awareness. This would provide a 

treatment of these effects that did not require a mental process of evaluation (c.f. [48]). 

 

Another significant developmental test for the system requires the scaling up of the 

complexity of the task (number of valid paths, rather than length of sequence) and 

increasing the diversity of associated sources of distraction. The scalability of this 

architecture, yet to be tested in practice, is related to the degree of correspondence 

between the detailed neural architecture of many of the functional subsystems and 

elements of the architecture of human brain. In particular, the somatotrophism of the 

human sensory, motor, and pre-motor cortex is reflected in the structure of the sub-units 

for perceptual mapping to episodic memory and of procedural memory. Thus, increasing 

the number of sensors or effectors can be compared to increasing the number of sensory 

or effector organs of a human - this would be reflected in changes to the somatotrophic 

map associated with sensory motor cortex. Scaling of the contention scheduler is 

essentially the same; it maps behaviours onto effectors, and episodic memory into 

working memory. Thus it is the number of distinct effector systems and the structure of 

working memory that governs the rate at which the architecture scales up. 
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Figure 1. Norman & Shallice architecture for executive control of routine and non-routine 

behaviour (after Shallice [47]). Information from sensory pathways is mapped by a 

trigger database into a repertoire of behaviours (schemata); competing (contradictory) 

behaviours are subject to selection by contention scheduling; the output of psychological 

processing systems is mapped onto effector systems. Persistence is reinforced by effector 

feedback to the trigger database. The Supervisory Attentional System (SAS) modulates 

the triggering signals (solid arrow indicates potentiation, broken arrow indicated 

attenuation). The SAS monitors the selected behaviours, producing an ‘interrupt’ signal if 

there is a separation between intended and expressed action and subsequently applying a 

modulatory signal to contending behaviours.   
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FIGURE 2 
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Figure 2. Architecture for neural control of action selection (the arrows represent 

information pathways and are not the output axons of single neurons).Unattended action 

selection is achieved by the elements below the dashed line. The dense connections 

between EM and PM, other than those via WM, are not explicitly represented. 

Attentional action selection is achieved through modulation of unattended behaviour by 

the executive above the dashed line. The diffuse neuromodulatory signal output by the 

Emotion Centre is not illustrated as it pervades the whole network. 
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FIGURE 3. 
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Figure 3. Structure of episodic and procedural memory and their interconnection. 

Activity in the perception layer induces a pattern of excitation in episodic memory. In 

turn, these nodes excite nodes at corresponding levels in procedural memory, which then 

propagate activation to nodes representing 'atomic' actions which then compete for 

expression at the effectors through the contention scheduler. (Note: mutually inhibitory 

links between layered nodes in EM and PM respectively are not shown). 
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Figure 4. Illustration of how episodic, working and procedural memories interact. 

(Interaction between EM and PM through WM is complementary to the automatic 

activation illustrated in figure 3.) Node A is priming node C (as part of a plan expression 

sequence). However nodes B and C are competing via the working memory contention 

scheduler (dashed line) for access to working memory node D, resulting in node B being 

inhibited. Working memory has access to high level procedural memory nodes.
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Figure 5. Interactions between episodic, working memory and the Supervisory 

Attentional System. Node A (representing the sequence of planned behaviours) has 

activated node C (as in figure 4). Both node A and node C have gained access to working 

memory (nodes E and D, respectively) and are thus subject to monitoring by the SAS 

monitor. However if activity of node B is significantly increased (e.g., through a strongly 

triggered habitual response) and gains expression at the contention scheduler and in 

working memory, the SAS monitor (node F) senses the difference between intended and 

activated behaviour. An arousal signal is generated which induces the SAS modulator 

(node G) to suppress the error behaviour. It does so potentiating both node C’s excitatory 

inputs and node B’s inhibitory inputs and via the contention scheduler (nodes H and I, 

respectively), increasing the likelihood that node B is inhibited relative to node C. Nodes 

H and I being adjacent in the contention scheduler architecture have mutually inhibitory 

links so that excitation in one node suppresses the other.
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Figure 6. Learning to suppress an incorrect behaviour. This figure extends the scenario in 

figure 5. As the SAS attenuates activity of B and potentiates C, it also induces release of 

a diffuse neuromodulatory chemical signal from the limbic system. The presence of this 

substance reinforces the inhibitory connection between node C and node B in EM.  
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Figure 7. Simulation environment (normal operation of the SAS).  
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Figure 8. Normal Trace of an inexperienced machine. Trace 1 is salience in PM of the 

behaviour ‘Orient to Food’. Trace 2 is the salience in EM ‘Orient to Food’. Trace 3 

shows the input into the SAS monitor from the working memory representation of the 

current plan. Trace 4 is the input to the SAS monitor from the EM representation of 

‘Orient to Food’. Trace 5 shows the input to the SAS monitor from the PM representation 

‘Orient to Food’. Trace 6 is the modulatory signal produced by the SAS which suppresses 

the PM representation of the unwanted behaviour, ‘Orient to Food’. Trace 7 shows the 

activity of the limbic system associated with release of the neuromodulators that induce 

episodic learning. The narrative associated with the figure is given in the body of the 

paper. (Note: the sample rate of the traces has been increased at the beginning of the 
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recording to better capture the input spikes, hence the second interval ‘ticks’, ending 8 

seconds into the trace, are not uniformly placed.) 
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Figure 9. Traces from a second run of the experiment with an experienced machine (the 

network definition file was saved and the experiment was restarted). Extra food was 

introduced whilst the machine was returning home (shown by the activation of trace 2) 

and after a few moments it manages to cause the machine a momentary distraction 

(shown by the small disturbance in trace 5), which is rapidly suppressed by the SAS 

(trace 6), though a learning signal is generated (trace 7). 
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Figure 10. Traces from the fourth run of the experiment with an experienced machine 

(the network definition file was saved after each run and the experiment was restarted). 

No discernable SAS activity (trace 6) is observed when the distraction is introduced a few 

seconds into the trace. 
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Figure 11. Lesions to the SAS (A-E). 
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Figure 12. Lesion A 
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Figure 13. Lesion B 
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Figure 14. Lesion C 
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Figure 15. Lesion D 
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Figure 16. Lesion E 

  

 


	Episodic memory and procedural memory appear to have differe

