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Abstract

This work concerns the estimation of multidimensional nonlinear re-
gression models using multilayer perceptrons (MLPs). The main problem
with such models is that we need to know the covariance matrix of the
noise to get an optimal estimator. However, we show in this paper that
if we choose as the cost function the logarithm of the determinant of the
empirical error covariance matrix, then we get an asymptotically optimal
estimator. Moreover, under suitable assumptions, we show that this cost
function leads to a very simple asymptotic law for testing the number of
parameters of an identifiable MLP. Numerical experiments confirm the
theoretical results.

keywords non-linear regression, multivariate regression, multilayer Percep-
trons, asymptotic normality

1 Introduction

Let us consider a sequence (Yt, Zt)t∈N
of i.i.d. (i.e. independent, identically dis-

tributed) random vectors, with Yt a d-dimensional vector. Each couple (Yt, Zt)
has the same law as a generic variable (Y, Z), but it is not hard to generalize
all that we show in this paper for stationary mixing variables and therefore for
time series. We assume that the model can be written as

Yt = FW 0(Zt) + εt

where

• FW 0 is a function represented by an MLP with parameters or weights W 0.

• (εt) is an i.i.d.-centered noise with unknown invertible covariance matrix
Γ0.
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This corresponds to multivariate non-linear least square model, as in chap-
ters 3.1 and 5.1 of Gallant [5]. Indeed, an MLP function can be seen as a
parametric non-linear function, for example an one hidden layer MLP using
hyperbolic tangent as transfert functions (tanh) can be written FW 0(Zt) =
(

F 1
W 0(Zt), · · · , F d

W 0(Zt)
)T

, where T denotes the transposition of the matrix,
with :

F i
W 0 (z)

H
∑

j=1

aij tanh

(

L
∑

k=1

wjkzk + wj0

)

+ ai0

where H is the number of hidden units and L is the dimension of the input z,
then the parameter vector is

(a10, · · · , adH , w10, · · · , wHL) ∈ R
(H+1)×d+(L+1)×H

There are some obvious transformations that can be applied to an MLP
without changing its input-output map. For instance, suppose we pick an hidden
node j and we change the sign of all the weights wij for i = 0, · · · , H , and
also the sign of all aij for i = 0, · · · , d. Since tanh is odd, this will not alter
the contribution of this node to the total net output. Another possibility is
to interchange two hidden nodes, that is, to take two hidden nodes j1 and j2
and relabel j1 as j2 and j2 as j1, taking care to also relabel the corresponding
weights. These transformations form a finite group (see Sussmann [10]).

We will consider equivalence classes of one hidden layer MLPs: two MLPs are
in the same class if the first one is the image by such transformation of the second
one, the considered set of parameters is then the quotient space of parameters by
this finite group. In this space, we assume that the model is identifiable it means
that the true model belongs to the considered family of models and that we
consider MLPs without redundant units. This is a very strong assumption but
it is known that estimated weights of an MLPs with redundant units can have
a very strange asymptotic behavior (see Kukumizu [4]), because the Hessian
matrix is singular. The consequence of the identifiability of the model is that the
Hessian matrix computed in the sequel will be definite positive (see Fukumizu
[3]). In the sequel we will always assume that we are under the assumptions
making the Hessian matrix definite positive.

1.1 Efficient estimation

A popular choice for the associated cost function is the mean square error:

1

n

n
∑

t=1

‖Yt − FW (Zt)‖2 (1)

where ‖.‖ denotes the Euclidean norm on R
d. Although this function is widely

used, it is easy to show that we then get a suboptimal estimator, with a larger
asymptotic variance that the estimator minimizing the generalized mean square
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error :
1

n

n
∑

t=1

(Yt − FW (Zt))
T Γ−1

0 (Yt − FW (Zt)) (2)

But, we need to know the true covariance matrix of the noise to use this cost
function. A possible solution is to use an approximation Γ of the covariance
error matrix Γ0 to compute the generalized least squares estimator :

1

n

n
∑

t=1

(Yt − FW (Zt))
T Γ−1 (Yt − FW (Zt)) (3)

A way to construct a sequence of (Γk)k∈N∗ yielding a good approximation of

Γ0 is the following: using the ordinary least squares estimator Ŵ 1
n , the noise

covariance can be approximated by

Γ1 := Γ
(

Ŵ 1
n

)

:=
1

n

n
∑

t=1

(Yt − F
Ŵ 1

n
(Zt))(Yt − F

Ŵ 1
n
(Zt))

T . (4)

then, we can use this new covariance matrix to find a generalized least squares
estimator Ŵ 2

n :

Ŵ 2
n = argmin

W

1

n

n
∑

t=1

(Yt − FW (Zt))
T (Γ1)

−1 (Yt − FW (Zt)) (5)

and calculate again a new covariance matrix

Γ2 := Γ
(

Ŵ 2
n

)

=
1

n

n
∑

t=1

(Yt − F
Ŵ 2

n
(Zt))(Yt − F

Ŵ 2
n
(Zt))

T .

It can be shown that this procedure gives a sequence of parameters

Ŵn → Γ1 → Ŵ 2
n → Γ2 → · · ·

minimizing the logarithm of the determinant of the empirical covariance matrix
(see chapter 5 in Gallant[5]) :

Un (W ) := log det

(

1

n

n
∑

t=1

(Yt − FW (Zt))(Yt − FW (Zt))
T

)

(6)

The use of this cost function for neural networks has been introduced byWilliams
in 1996 [12], however its theoretical and practical properties have not yet been
studied. Here, the calculation of the asymptotic properties of Un (W ) will show
that this cost function leads to an asymptotically optimal estimator, with the
same asymptotic variance that the estimator minimizing (2), we say then that
the estimator is “efficient”.
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1.2 testing the number of parameters

Let q be an integer less than s, we want to test “H0 : W ∈ Θq ⊂ R
q” against

“H1 : W ∈ Θs ⊂ R
s”, where the sets Θq and Θs are compact and Θq ⊂ Θs.

H0 expresses the fact that W belongs to a subset Θq of Θs with a parametric
dimension lesser than s or, equivalently, that s − q weights of the MLP in Θs

are null. If we consider the classical mean square error cost function: Vn(W ) =
∑n

t=1 ‖Yt − FW (Zt)‖2, we get the following test statistic:

Sn = n×
(

min
W∈Θq

Vn(W )− min
W∈Θs

Vn(W )

)

Under the null hypothesis H0, it is shown in Yao [13] that Sn converges in law
to a weighted sum of χ2

1

Sn
D→

s−q
∑

i=1

λiχ
2
i,1

where the χ2
i,1 are s−q i.i.d. χ2

1 variables and λi are strictly positives eigenvalues
of the asymptotic covariance matrix of the estimated weights, different from 1
if the true covariance matrix of the noise is not the identity matrix. So, in the
general case, where the true covariance matrix of the noise is not the identity
matrix, the asymptotic distribution is not known, because the λis are not known
and it is difficult to compute the asymptotic level of the test.

However, if we use the cost function Un (W ) then, under H0, the test statis-
tic:

Tn = n×
(

min
W∈Θq

Un(W )− min
W∈Θs

Un(W )

)

(7)

will converge to a classical χ2
s−q so the asymptotic level of the test will be very

easy to compute. This is another advantage of using the cost function in Eq.
(6). Note that this result is true even if the noise is not Gaussian (it is more
general that the maximum likelihood estimator) and without knowing the true
covariance of the noise Γ0, so without using the cost function (2) or even an
approximation of it.

In order to prove these properties, the paper is organized as follows. First we
compute the first and second derivatives of Un(W ) with respect to the weights
of the MLP, then we deduce the announced properties with classical statistical
arguments. Finally, we confirm the theoretical results with numerical experi-
ments.

2 The first and second derivatives of W 7−→ Un (W )

First, we introduce a notation: if FW (X) is a d-dimensional parametric func-

tion depending on a parameter vector W , let us write ∂FW (X)
∂Wk

(resp. ∂2FW (X)
∂Wk∂Wl

)

for the d-dimensional vector of partial derivatives (resp. second order partial

4



derivatives) of each component of FW (X). Moreover, if Γ(W ) is a matrix de-
pending on W , let us write ∂

∂Wk
Γ(W ) the matrix of partial derivatives of each

component of Γ(W ).

2.1 First derivatives

Now, if Γn(W ) is a matrix depending on the parameter vector W , we get (see
Magnus and Neudecker [8])

∂

∂Wk

log det (Γn(W )) = tr

(

Γ−1
n (W )

∂

∂Wk

Γn(W )

)

.

Here

Γn(W ) =
1

n

n
∑

t=1

(yt − FW (zt))(yt − FW (zt))
T .

Note that this matrix Γn(W ) and it inverse are symmetric. Now, if we note
that

An(Wk) =
1

n

n
∑

t=1

(

−∂FW (zt)

∂Wk

(yt − FW (zt))
T

)

,

then, using the fact

tr
(

Γ−1
n (W )An(Wk)

)

= tr
(

AT
n (Wk)Γ

−1
n (W )

)

= tr
(

Γ−1
n (W )AT

n (Wk)
)

,

we get
∂

∂Wk

log det (Γn(W )) = 2tr
(

Γ−1
n (W )An(Wk)

)

. (8)

2.2 Calculus of the derivative of W 7−→ U
n
(W ) for an MLP

Let us note (Γn (W ))ij (resp.
(

Γ−1
n (W )

)

ij
) the element of the ith line and jth

column of the matrix Γn (W ) (resp. Γ−1
n (W )). We note also FW (zt)(i) the ith

component of a multidimensional function and for a matrix A = (Aij), we note
that (Aij)1≤i,j≤d

is the vector obtained by concatenation of the columns of A.

Following the previous results, we can write for the derivative of log(det(Γn (W )))
with respect to the weight Wk:

∂

∂Wk

(log(det(Γn (W )))) =
(

(

Γ−1
n (W )

)

ij

)T

1≤i,j≤d

(

(Γn (W ))ij
∂Wk

)

1≤i,j≤d

with
∂Γij

∂Wk

=

1

n

n
∑

t=1

[

−∂FW (zt)(i)

∂Wk

× (yt − FW (zt)) (j)−
∂FW (zt)(j)

∂Wk

(yt − FW (zt)) (i)

]

(9)
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so
∂

∂Wk

(log(det(Γn (W )))) =
1

n

(

Γ−1
ij

)T

1≤i,j≤d
×

(

n
∑

t=1

−∂FW (zt)(i)

∂Wk

× (yt − FW (zt)) (j)−
∂FW (zt)(j)

∂Wk

(yt − FW (zt)) (i)

)

1≤i,j≤d

.

(10)

The quantity ∂FW (zt)(i)
∂Wk

is computed by back propagating the constant 1
for the MLP restricted to the output i. Figure 1 gives an example of an MLP
restricted to the output 2.

Figure 1: MLP restricted to the output 2 : the plain lines

1 1

F(y)(2)

F(y)(1)

y(1)

y(2)

Hence, the calculus of the gradient of Un (W ) with respect to the parameters
of the MLP is straightforward. We have to compute the derivative with respect
to the weights of each single output MLP extracted from the original MLP by
back propagating the constant value 1, then according to the formula (9), we can
compute easily the derivative of each term of the empirical covariance matrix
of the noise. Finally the gradient is obtained by the sum of all the derivative
terms of the empirical covariance matrix multiplied by the terms of its inverse
as in formula (10).
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2.3 Second derivatives

We write now

Bn(Wk,Wl) :=
1

n

n
∑

t=1

(

∂FW (zt)

∂Wk

∂FW (zt)

∂Wl

T
)

and

Cn(Wk,Wl) :=
1

n

n
∑

t=1

(

−(yt − FW (zt))
∂2FW (zt)

∂Wk∂Wl

T
)

We get

∂2Un(W )
∂Wk∂Wl

= ∂
∂Wl

2tr
(

Γ−1
n (W )An(Wk)

)

=

2tr
(

∂Γ−1

n (W )
∂Wl

A(Wk)
)

+ 2tr
(

Γ−1
n (W )Bn(Wk,Wl)

)

+ 2tr
(

Γn(W )−1Cn(Wk,Wl)
)

Now, Magnus and Neudecker [8] give an analytic form of the derivative of an
inverse matrix, from which we get

∂2Un(W )
∂Wk∂Wl

= 2tr
(

Γ−1
n (W )

(

An(Wk) +AT
n (Wk)

)

Γ−1
n (W )An(Wk)

)

+

2tr
(

Γ−1
n (W )Bn(Wk,Wl)

)

+ 2tr
(

Γ−1
n (W )Cn(Wk,Wl)

)

and
∂2Un(W )
∂Wk∂Wl

= 4tr
(

Γ−1
n (W )An(Wk)Γ

−1
n (W )An(Wk)

)

+2tr
(

Γ−1
n (W )Bn(Wk,Wl)

)

+ 2tr
(

Γ−1
n (W )Cn(Wk,Wl)

) (11)

3 Asymptotic properties

In the sequel, we will assume that the square of the noise ε is integrable and
that the cube of the variable Z is integrable too. Moreover, it is easy to show
that, for an MLP function, there exists a constant C such that we have the
following inequalities :

‖∂FW (Z)
∂Wk

‖ ≤ C(1 + ‖Z‖)
‖∂2FW (Z)

∂Wk∂Wl
‖ ≤ C(1 + ‖Z‖2)

‖∂2F
W1 (Z)

∂Wk∂Wl
− ∂2F

W2 (Z)

∂Wk∂Wl
‖ ≤ C‖W 1 −W 2‖(1 + ‖Z‖3)

These inequalities will be important to get the local asymptotic normality prop-
erty implying the asymptotic normality of the parameter minimizing Un(W ).

3.1 Consistency and asymptotic normality of Ŵ
n

First we have to identify the contrast function associated with Un(W )

Lemma 1

Un(W )− Un(W
0)

a.s.→ K(W,W 0)

with K(W,W 0) ≥ 0 and K(W,W 0) = 0 if and only if W = W 0.
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Proof: Let us note

Γ(W ) = E
(

(Y − FW (Z))(Y − FW (Z))T
)

the expectation of the covariance matrix of the noise for model parameter W .
By the strong law of large numbers we have

Un(W )− Un(W
0)

a.s.→ log det(Γ(W ))− log det(Γ(W 0)) = log det(Γ(W ))
det(Γ(W 0)) =

log det
(

Γ−1(W 0)
(

Γ(W )− Γ(W 0)
)

+ Id
)

where Id denotes the identity matrix of Rd. So, the lemma is true if Γ(W ) −
Γ(W 0) is a positive matrix, null only if W = W 0. But this property is true
since

Γ(W ) = E
(

(Y − FW (Z))(Y − FW (Z))T
)

=
E
(

(Y − FW 0(Z) + FW 0(Z)− FW (Z))(Y − FW 0(Z) + FW 0(Z)− FW (Z))T
)

=
E
(

(Y − FW 0(Z))(Y − FW 0(Z))T
)

+
E
(

(FW 0 (Z)− FW (Z))(FW 0 (Z)− FW (Z))T
)

=
Γ(W 0) + E

(

(FW 0(Z)− FW (Z))(FW 0 (Z)− FW (Z))T
)

and the lemma follows from the identifiability assumption �

We deduce the theorem of consistency:

Theorem 1 We have

Ŵn
a.s.→ W 0

Proof Remark that a constant B exists such that

supW∈Θs
‖Y − FW (Z)‖2 < ‖Y ‖2 +B (12)

because Θs is compact, so FW (Z) is bounded. Let us define the function

Φ(Γ) := max(log det(Γ), d log(δ))

where d is the dimension of the observations Y and δ > 0 strictly smaller than
the smallest eigenvalue of Γ0, since Γ0 is definite positive we have for all W :

lim
n→∞

Φ(Γn(W ))
a.s.
= lim

n→∞
log det(Γn(W )) = K(W,W 0) + log det(Γ0) > d log(δ)

Now, for all W , thanks to the inequality (12) there exists constants α and β
such that

∣

∣Φ
(

(Y − FW (Z))(Y − FW (Z))T
)∣

∣

a.s.
< α‖Y ‖2 + β

but the right hand of this inequality is integrable, so the function Φ as an
integrable envelope function and by example 19.8 of van der Vaart [11] the set
of functions

{

Φ
(

(Y − FW (Z))(Y − FW (Z))T
)

, W ∈ Θs

}

is Glivenko-Cantelli.

Now, the theorem 5.7 of van der Vaart [11], shows that Ŵn converges in
probability to W 0, but it is easy to show that this convergence is almost sure.
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First, by lemma 1, we remark that for all neighborhood N of W 0 their exists a
number η(N ) > 0 such that for all W /∈ N we have

log det (Γ(W )) > log det
(

Γ(W 0)
)

+ η(N )

Now to show the strong consistency property we have to prove that for all

neighborhood N of W 0 we have limn→∞ Ŵn

a.s.⊂ N or, equivalently,

lim
n→∞

log det
(

Γ(Ŵn)
)

− log det
(

Γ(W 0)
)

< η(N )

By definition, we have

log det
(

Γn(Ŵn)
)

≤ log det
(

Γn(W
0)
)

and the Glivenko-Cantelli property assures that

lim
n→∞

log det
(

Γn(W
0)
)

−log det
(

Γ(W 0)
) a.s.
= lim

n→∞
Φ(Γn(W ))−log det

(

Γ(W 0)
) a.s.
= 0

therefore

lim
n→∞

log det
(

Γn(Ŵn)
)

< log det
(

Γ(W 0)
)

+
η(N )

2

We have also

lim
n→∞

log det
(

Γn(Ŵn)
)

−log det
(

Γ(Ŵn)
)

a.s.
= lim

n→∞
Φ(Γn(W ))−log det

(

Γ(Ŵn)
)

a.s.
= 0

and finally

lim
n→∞

log det
(

Γ(Ŵn)
)

− η(N )

2
< log det

(

Γn(Ŵn)
)

< log det
(

Γ(W 0)
)

+
η(N )

2

�

Now, we can establish the asymptotic normality for the estimator.

Lemma 2 Let ∆Un(W
0) be the gradient vector of Un(W ) at W 0, ∆U(W 0) be

the gradient vector of U(W ) := log det (Γ(W )) at W 0 and HUn(W
0) be the

Hessian matrix of Un(W ) at W 0.

We define finally

B(Wk,Wl) :=
∂FW (Z)

∂Wk

∂FW (Z)

∂Wl

T

Then we get

1. HUn(W
0)

a.s.→ 2I0

2.
√
n∆Un(W

0)
Law→ N (0, 4I0)

where, the component (k, l) of the matrix I0 is :

tr
(

Γ−1
0 E

(

B(W 0
k ,W

0
l )
))

9



proof First we note

A(Wk) =

(

−∂FW (Z)

∂Wk

(Y − FW (Z))T
)

To prove the lemma, we remark first that the component (k, l) of the matrix
4I0 is :

E

(

∂U(W 0)

∂Wk

∂U(W 0)

∂W 0
l

)

= E
(

2tr
(

Γ−1
0 AT (W 0

k )
)

× 2tr
(

Γ−1
0 A(W 0

l )
))

and, since the trace of the product is invariant by circular permutation,

E
(

∂U(W 0)
∂Wk

∂U(W 0)
∂W 0

l

)

=

4E
(

−∂F
W0 (Z)T

∂Wk
Γ−1
0 (Y − FW 0 (Z))(Y − FW 0(Z))TΓ−1

0

(

−∂F
W0 (Z))

∂Wl

))

= 4E
(

∂F
W0 (Z)T

∂Wk
Γ−1
0

∂F
W0 (Z)

∂Wl

)

= 4tr
(

Γ−1
0 E

(

∂F
W0(Z)

∂Wk

∂F
W0(Z)T

∂Wl

))

= 4tr
(

Γ−1
0 E

(

B(W 0
k ,W

0
l )
))

Now, for the component (k, l) of the expectation of the Hessian matrix, we
remark that

lim
n→∞

tr
(

Γ−1
n (W 0)An(W

0
k )Γ

−1
n (W 0)An(W

0
k )
)

= 0

and
lim
n→∞

trΓ−1
n Cn(W

0
k ,W

0
l ) = 0

so

limn→∞ Hn(W
0) = limn→∞ 4tr

(

Γ−1
n (W 0)An(W

0
k )Γ

−1
n (W 0)An(W

0
k )
)

+
2trΓ−1

n (W 0)Bn(W
0
k ,W

0
l ) + 2trΓ−1

n Cn(W
0
k ,W

0
l ) =

= 2tr
(

Γ−1
0 E

(

B(W 0
k ,W

0
l )
))

�

Now, from a classical argument of local asymptotic normality (see for exam-
ple Yao [13]), we deduce the following property for the estimator Ŵn:

Proposition 1 We have

lim
n→∞

√
n(Ŵn −W 0) = N (0, I−1

0 )

However, if W ∗
n is the estimator of the generalized least squares :

W ∗
n := argmin

1

n

n
∑

t=1

(Yt − FW (Zt))
T
Γ−1
0 (Yt − FW (Zt))

then we have also
lim
n→∞

√
n(W ∗

n −W 0) = N (0, I−1
0 )

10



so Ŵn has the same asymptotic behavior as the generalized least squares es-
timator with the true covariance matrix Γ−1

0 which is asymptotically optimal
(see for example Ljung [7]). Therefore, the proposed estimator is asymptotically
optimal too.

3.2 Asymptotic distribution of the test statistic T
n

Let us assume that the null hypothesis H0 is true, we write
Ŵn = argminW∈Θs

Un(W ) and Ŵ 0
n = argminW∈Θq

Un(W ), where Θq is viewed
as a subset of Θs. The asymptotic distribution of Tn is then a consequence of
the previous section. Namely, if we replace nUn(W ) by its Taylor expansion
around Ŵn and Ŵ 0

n , following van der Vaart [11] chapter 16 we have :

Tn =
√
n
(

Ŵn − Ŵ 0
n

)T

I0
√
n
(

Ŵn − Ŵ 0
n

)

+ oP (1)
D→ χ2

s−q

4 Experimental results

4.1 Simulated example

Although the estimator associated with the cost function Un (W ), is theoreti-
cally better than the ordinary mean least squares estimator, it is of some interest
to quantify this fact by simulation. Moreover, there are some pitfalls in practical
situations with MLPs.

The first point is that we have no guaranty to reach the global minimum
of the cost function, we can only hope to find a good local minimum if we are
using many estimations with different initial weights.

The second point, is the fact that MLP are black box, it means that it is
difficult to give an interpretation of their parameters and it is almost impossible
to compare MLP by comparing their parameters even if we try to take into
account the possible permutations of the weights, because the difference between
the weights may reflect only the differences of local minima reached by weights
during the learning.

All these reasons explain why we choose, for simplicity, to compare the
estimated covariance matrices of the noise instead of comparing directly the
estimated parameters of MLPs.

4.1.1 The model

To simulate our data, we use an MLP with 2 inputs, 3 hidden units, and 2 out-
puts. We choose to simulate an auto-regressive time series, where the outputs
at time t are the inputs for time t + 1. Moreover, with MLPs, the statistical
properties of such a model are the same as with independent identically dis-
tributed (i.i.d.) data, because the time series constitutes a mixing process (see
Yao [13]).

11



The equation of the model is the following

Yt+1 = FW0
(Yt) + εt+1

where

• Y0 = (0, 0).

• (Yt)1≤t≤1000, Yt ∈ R
2, is the bidimensional simulated random process

• FW0
is an MLP function with weights W0 chosen randomly between −2

and 2.

• (εt) is an i.i.d. centered noise with covariance matrix Γ0 =

(

5 4
4 5

)

.

In order to study empirically the statistical properties of our estimator we make
400 independent simulations of the bidimensional time series of length 1000.

4.1.2 The results

Our goal is to compare the estimator minizing Un (W ) or equation (6) and the
weights minimizing the mean square error (MSE), equation (1). For each time
series we estimate the weights of the MLP using the cost function Un (W ) and
the MSE. The estimations have been done using the second order algorithm
BFGS, and for each estimation we choose the best result obtained after 100
random initializations of the weights. Thus, we avoid plaguing our learning
with poor local minima.

We show here the mean of estimated covariance matrices of the noise for
Un(W ) and the mean square error (MSE) cost function:

Un (W ) :

(

4.960 3.969
3.969 4.962

)

and MSE :

(

4.938 3.932
3.932 4.941

)

The estimated standard deviation of the terms of the matrices are all equal
to 0.01, so the differences observed between the two matrices are statistically
significant. We can see that the estimated covariance of the noise is on average
better with the estimator associated to the cost function Un (W ), in particular
it seems that there is slightly less overfitting with this estimator, and the non
diagonal terms are greater than with the least squares estimator. As expected,
the determinant of the mean matrix associated with Un(W ) is 8.86 instead of
8.93 for the matrix associated with the MSE.

4.2 Application to real time series: Pollution of ozone

Ozone is a reactive oxidant, which is formed both in the stratosphere and tropo-
sphere. Near the ground’s surface, ozone is directly harmful to human health,
plant life and damages physical materials. The population, especially in large
cities and in suburban zones which suffer from summer smog, wants to be warned
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of high pollutant concentrations in advance. The statistical ozone modelling and
more particularly regression models have been widely studied [1], [6]. Gener-
ally, linear models do not seem to capture all the complexity of the phenomena.
Thus, the use of nonlinear techniques is recommended to deal with ozone pre-
diction. Here we want to predict ozone pollution in two sites at the same time.
The sites are the pollution levels in the south of Paris (13th district) and on the
top of the Eiffel Tower. As these sites are very near each other we can expect
that the two components of the noise are very correlated.

4.2.1 The model

The neural model used in this study is autoregressive and includes exogenous
parameters (called NARX model), where X stands for exogeneous variables.
Our aim is to predict the maximum level of ozone pollution of the next day
knowing the today’s maximum level of pollution and the maximal temperature
of the next day. If we note Y 1 the level of pollution for Paris 13, Y 2 the level
of pollution for the Eiffel Tower and Temp the temperature, the model can be
written as follows:

(Y 1
t+1, Y

2
t+1) = FW (Y 1

t , Y
2
t , T empt+1) + εt+1 (13)

We will assume that the variables are mixing as previously. As usual with real
time series, overtraining is a crucial problem. MLPs are very overparametrized
models. This occurs when the model learns the details of the noise of the
training data. Overtrained models have very poor performance on fresh data. To
avoid overtraining we use in this study the SSM pruning technique, a statistical
stepwise method using a BIC-like criterion (Cottrell et al [2]). The MLP with
the minimal dimension is found by the elimination of the irrelevant weights.
Here, we will compare behavior of this method for both cost function: The
mean square error (MSE) and the logarithm of the determinant of the empirical
covariance matrix of the noise (Un(W )).

4.2.2 The dataset

This study presents the ozone concentration of the Air Quality Network of the
Ile de France Region (AIRPARIF, Paris, France). The data used in this work
are from 1994 to 1997, we use only the months from April to September inclusive
because there is no peak during the winter period. According to the model, we
have the following parameters:

• The maximum temperature of the day

• Persistence is used by introducing the previous day’s peak ozone.

Before their use in the neural network, all these data have been centered and
normalized. The data used to train the MLPs are chosen randomly in the whole
period and we leave 100 observations to form a fresh data set (test set), which
will be used for models evaluation. In order to evaluate the models we repeat
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400 times this random sampling to get 400 covariance matrices on each set for
the two cost functions. Figure 2 is a plot of the centered and normalized original
data.

Figure 2: Ozone time series
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4.2.3 The results

For the learning set, we get the following results for the averaged covariance
matrix (the estimated standard deviation for the coefficients is about 0.0005):

Un(W ) :

(

0.27 0.20
0.20 0.34

)

and MSE :

(

0.27 0.18
0.18 0.34

)

for the test set, we get the following results for the averaged covariance matrix
(the estimated standard deviation for the coefficients is about 0.002) :

Un(W ) :

(

0.29 0.22
0.22 0.36

)

and MSE :

(

0.33 0.20
0.20 0.39

)

The two matrices are almost the same for the learning set, however the non-
diagonal terms are greater for the Un(W ) cost function. Moreover, looking at
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the averaged matrix on the test set, we see that the generalization capabilities
are better for Un(W ) and the differences are statistically significant. Generally,
the best MLP for Un(W ) has less weights than the best MLP for the MSE cost
function. Hence, the proposed cost function leads to a somewhat more parsimo-
nious model, because the pruning technique is very sensitive to the variance of
estimated parameters. This gain is valuable regarding the generalization capac-
ity of the model, because the difference is almost null for the learning data set
but is greater on the test data. Figure 3 is a plot of the centered and normalized
original test data and its prediction.

Figure 3: Predicted time series
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Plot of the predictions of ozone test series

5 Conclusion

In the linear multidimensional regression model the optimal estimator has an
analytic solution (see Magnus and Neudecker [8]), so it does not make sense to
consider minimization of a cost function. However, for the non-linear multidi-
mensional regression model, the ordinary least squares estimator is sub-optimal,
if the covariance matrix of the noise is not the identity matrix. We can over-
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come this difficulty by using the cost function Un(W ) = log det(Γn(W )). In this
paper, we have provided a proof of the optimality of the estimator associated
with Un(W ). Statistical thought tells us that it is always better for the neural
networks practitionners to use a more efficient estimator because such estimator
are better on average, even if the difference seems to be small. This estimator is
especially important if the pratitionners are using pruning techniques. Indeed
pruning technique are based on Wald test or approximated Wald test as for the
optimal brain damage or optimal brain surgeon method (see Cottrell et al. [2])
and these tests are very sensitive to the variance of the estimated parameters.
Moreover, we have shown that this cost function leads to a simpler χ2 test to
determine the number of weights if the model is identifiable. These theoretical
results have been confirmed by a simulated example, and we have see for a real
time series that we can expect slight improvement especially in model selection,
this confirms the fact that such techniques are very sensitive to the variance of
the estimated weights.
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