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Abstract

In this paper we present denoising algorithms for enhancing noisy signals based on Local ICA (LICA), Delayed AMUSE (dAMUSE)
and Kernel PCA (KPCA). The algorithm LICA relies on applying ICA locally to clusters of signals embedded in a high-dimensional
feature space of delayed coordinates. The components resembling the signals can be detected by various criteria like estimators of
kurtosis or the variance of autocorrelations depending on the statistical nature of the signal. The algorithm proposed can be applied
favorably to the problem of denoising multi-dimensional data. Another projective subspace denoising method using delayed coordinates
has been proposed recently with the algorithm dAMUSE. It combines the solution of blind source separation problems with denoising
efforts in an elegant way and proofs to be very efficient and fast. Finally, KPCA represents a non-linear projective subspace method that
is well suited for denoising also. Besides illustrative applications to toy examples and images, we provide an application of all algorithms

considered to the analysis of protein NMR spectra.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The interpretation of recorded signals is often hampered
by the presence of noise. This is especially true with
biomedical signals which are buried in a large noise
background most often. Statistical analysis tools like
principal component analysis (PCA), singular spectral
analysis (SSA), independent component analysis (ICA)
etc. quickly degrade if the signals exhibit a low signal to
noise ratio (SNR). Furthermore due to their statistical
nature, the application of such analysis tools can also lead
to extracted signals with a larger SNR than the original
ones as we will discuss below in case of nuclear magnetic
resonance (NMR) spectra.

Hence in the signal processing community many denois-
ing algorithms have been proposed [5,12,18,39] including
algorithms based on local linear projective noise reduction.
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The idea is to project noisy signals in a high-dimensional
space of delayed coordinates, called feature space hence-
forth. A similar strategy is used in SSA [9,20] where a
matrix composed of the data and their delayed versions is
considered. Then, a singular value decomposition (SVD) of
the data matrix or a PCA of the related correlation matrix
is computed. Noise contributions to the signals are then
removed locally by projecting the data onto a subset of
principal directions of the eigenvectors of the SVD or PCA
analysis related with the deterministic signals.

Modern multi-dimensional NMR spectroscopy is a very
versatile tool for the determination of the native 3D
structure of biomolecules in their natural aqueous environ-
ment [7,10]. Proton NMR is an indispensable contribution
to this structure determination process but is hampered by
the presence of the very intense water (H,O) proton signal.
The latter causes severe baseline distortions and obscures
weak signals lying under its skirts. It has been shown
[26,29] that blind source separation (BSS) techniques like
ICA can contribute to the removal of the water artifact in
proton NMR spectra.
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ICA techniques extract a set of signals out of a set of
measured signals without knowing how the mixing process
is carried out [2,13]. Considering that the set of measured
spectra X is a linear combination of a set of independent
component (ICs) S, i.e. X = AS, the goal is to estimate the
inverse of the mixing matrix 4, using only the measured
spectra, and then compute the ICs. Then the spectra are
reconstructed using the mixing matrix 4 and those ICs
contained in § which are not related with the water artifact.
Unfortunately the statistical separation process in practice
introduces additional noise not present in the original
spectra. Hence denoising as a post-processing of the
artifact-free spectra is necessary to achieve the highest
possible SNR of the reconstructed spectra. It is important
that the denoising does not change the spectral character-
istics like integral peak intensities as the deduction of the
3D structure of the proteins heavily relies on the latter.

We propose two new approaches to this denoising
problem and compare the results to the established Kernel
PCA (KPCA) denoising [19,25].

The first approach Local ICA (LICA) concerns a local
projective denoising algorithm using ICA. Here it is
assumed that the noise can, at least locally, be represented
by a stationary Gaussian white noise. Signals usually come
from a deterministic or at least predictable source and can
be described as a smooth function evaluated at discrete
time steps small enough to capture the characteristics of the
function. That implies, using a dynamical model for the
data, that the signal embedded in delayed coordinates
resides within a sub-manifold of the feature space spanned
by these delayed coordinates. With local projective
denoising techniques, the task is to detect this signal
manifold. We will use LICA to detect the statistically most
interesting submanifold. In the following we call this
manifold the signal + noise subspace since it contains all of
the signal plus that part of the noise components which lie
in the same subspace. Parameter selection within LICA will
be effected with a minimum description length (MDL)
criterion [40,6] which selects optimal parameters based on
the data themselves.

For the second approach we combine the ideas of solving
BSS problems algebraically using a generalized eigenvector
decomposition (GEVD) [28] with local projective denoising
techniques. We propose, like in the algorithm for multiple
unknown signals extraction (AMUSE) [37], a GEVD of
two correlation matrices i.e, the simultaneous diagonaliza-
tion of a matrix pencil formed with a correlation matrix
and a matrix of delayed correlations. These algorithms are
exact and fast but sensitive to noise. There are several
proposals to improve efficiency and robustness of these
algorithms when noise is present [2,8]. They mostly rely on
an approximative joint diagonalization of a set of correla-
tion or cumulant matrices like the algorithm second order
blind identification (SOBI) [1]. The algorithm we propose,
called delayed AMUSE (dAMUSE) [36], computes a
GEVD of the congruent matrix pencil in a high-dimen-
sional feature space of delayed coordinates. We show that

the estimated signal components correspond to filtered
versions of the underlying uncorrelated source signals. We
also present an algorithm to compute the eigenvector
matrix of the pencil which involves a two step procedure
based on the standard eigenvector decomposition (EVD)
approach. The advantage of this two step procedure is
related with a dimension reduction between the two steps
according to a threshold criterion. Thereby estimated
signal components related with noise only can be neglected
thus performing a denoising of the reconstructed signals.

As a third denoising method we consider KPCA based
denoising techniques [19,25] which have been shown to be
very efficient outperforming linear PCA. KPCA actually
generalizes linear PCA which hitherto has been used for
denoising. PCA denoising follows the idea that retaining
only the principal components with highest variance to
reconstruct the decomposed signal, noise contributions
which should correspond to the low variance components
can deliberately be omitted hence reducing the noise
contribution to the observed signal. KPCA extends this
idea to non-linear signal decompositions. The idea is to
project observed data non-linearly into a high-dimensional
feature space and then to perform linear PCA in feature
space. The trick is that the whole formalism can be cast
into dot product form hence the latter can be replaced by
suitable kernel functions to be evaluated in the lower-
dimensional input space instead of the high-dimensional
feature space. Denoising then amounts to estimating
appropriate pre-images in input space of the non-linearly
transformed signals.

The paper is organized as follows: Section 1 presents an
introduction and discusses some related work. In Section 2
some general aspects about embedding and clustering are
discussed, before in Section 3 the new denoising algorithms
are discussed in detail. Section 4 presents some applications
to toy as well as to real world examples and Section 5
draws some conclusions.

2. Feature space embedding

In this section we introduce new denoising techniques
and propose algorithms using them. At first we present the
signal processing tools we will use later on.

2.1. Embedding using delayed coordinates

A common theme of all three algorithms presented is to
embed the data into a high-dimensional feature space and
try to solve the noise separation problem there. With the
LICA and the dAMUSE we embed signals in delayed
coordinates and do all computations directly in the space
of delayed coordinates. The KPCA algorithm considers a
non-linear projection of the signals to a feature space
but performs all calculations in input space using the
kernel trick. It uses the space of delayed coordinates
only implicitly as intermediate step in the non-linear
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transformation since for that transformation the signal at
different time steps is used.

Delayed coordinates are an ideal tool for representing
the signal information. For example in the context of
chaotic dynamical systems, embedding an observable in
delayed coordinates of sufficient dimension already cap-
tures the full dynamical system [30]. There also exists a
similar result in statistics for signals with a finite decaying
memory [24].

Given a group of N sensor signals, x[/]=
[xo[Z], ..., xy_1[/]]" sampled at time steps / =0,...,L — 1,
a very convenient representation of the signals embedded
in delayed coordinates is to arrange them componentwise
into component trajectory matrices X;,i=0,...,N —1
[20]. Hence embedding can be regarded as a mapping
that transforms a one-dimensional time series x; =
(x;[0], x;[1],...,x; L —1]) into a multi-dimensional se-
quence of lagged vectors. Let M be an integer (window
length) with M < L. The embedding procedure then forms
L — M + 1 lagged vectors which constitute the columns of
the component trajectory matrix. Hence given sensor
signals x[/], registered for a set of L samples, their related
component trajectory matrices are given by

X;=[x[M—1] x[M] xi[L —1]]
x[M—=1]  x[M] x[L—1]
XM —2] x[M-1] XL - 2]
- (1)
x[0] xi[1] x[L — M]

and encompass M delayed versions of each signal
component x;[/ —m],m=0,...,M — 1 collected at time
steps | = M —1,...,L — 1. Note that a trajectory matrix
has identical entries along each diagonal. The total
trajectory matrix of the set X will be a concatenation of
the component trajectory matrices X; computed for each
sensor, 1.

X =[X1,X2...,Xy]" 2

Note that the embedded sensor signal is also formed by a
concatenation of embedded component vectors, i.e.
x[[1=[xo[l],...,xy=1[/]]. Also note that with LICA we
deal with single column vectors of the trajectory matrix
only, while with dAMUSE we consider the total trajectory
matrix.

2.2. Clustering

In our context clustering of signals means rearranging
the signal vectors, sampled at different time steps, by
similarity. Hence for signals embedded in delayed coordi-
nates, the idea is to look for K disjoint sub-trajectory
matrices to group together similar column vectors of the
trajectory matrix X.

A clustering algorithm like k-means [15] is appropriate
for problems where the time structure of the signal is
irrelevant. If, however, time or spatial correlations matter,
clustering should be based on finding an appropriate
partitioning of {M —1,...,L—1} into K successive
segments, since this preserves the inherent correlation
structure of the signals. In any case the number of columns
in each sub-trajectory matrix X amounts to L; such that
the following completeness relation holds:

K
N Li=L-M+1. (3)
J=1

The mean vector m; in each cluster can be considered a
prototype vector and is given by

1 1
m; :f/XCj :ZJX(/)[L...,I]T, j=1,...,K, 4)
where ¢; is a vector with L; entries equal to one which
characterizes the clustering. Note that after the clustering
the set {k =0,...,L — M — 1} of indices of the columns
of X is split in K disjoint subsets K;. Each trajectory
sub-matrix X" is formed with those columns of the
matrix X, the indices of which belong to the subset K; of

indices.

2.3. Principal component analysis and independent
component analysis

PCA [23] is one of the most common multi-variate data
analysis tools. It tries to linearly transform given data into
uncorrelated data (feature space). Thus in PCA [4] a data
vector is represented in an orthogonal basis system such
that the projected data have maximal variance. PCA can be
performed by eigenvalue decomposition of the data
covariance matrix. The orthogonal transformation is
obtained by diagonalizing the centered covariance matrix
of the data set.

In ICA, given a random vector, the goal is to find its
statistically ICs. In contrast to correlation-based transfor-
mations like PCA, ICA renders the output signals as
statistically independent as possible by evaluating higher-
order statistics. The idea of ICA was first expressed by
Jutten and Hérault [11] while the term ICA was later
coined by Comon [3]. With LICA we will use the popular
FastICA algorithm by Hyvirinen and Oja [14], which
performs ICA by maximizing the non-Gaussianity of the
signal components.

3. Denoising algorithms
3.1. Local ICA denoising

The LICA algorithm we present is based on a local
projective denoising technique using an MDL criterion
for parameter selection. The idea is to achieve denoising
by locally projecting the embedded noisy signal into a
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lower-dimensional subspace which contains the character-
istics of the noise free signal. Finally the signal has to be
reconstructed using the various candidates generated by
the embedding.

Consider the situation, where we have a signal x[/] at

discrete time steps /=0,...,L —1 but only its noise
corrupted version x;[/] is measured
xi[1]= X1+ eill], (5)

where ¢[/] are samples of a random variable with Gaussian
distribution, i.e. x; equals x? up to additive stationary white
noise.

3.1.1. Embedding and clustering

First the noisy signal x;[/] is transformed into a high-
dimensional signal x;[/] in the M-dimensional space of
delayed coordinates according to

x{l1=[x{l1],....x{l — M + Imod L]|” (6)

which corresponds to a column of the trajectory matrix in
Eq. (1).

To simplify implementation, we want to ensure that the
delayed signal, like the original signal, (trajectory matrix) is
given at L time steps instead of L — M + 1. This can be
achieved by using the samples in round robin manner, i.e.
by closing the end and the begin of each delayed signal and
cutting out exactly L components in accord with the delay.
If the signal contains a trend or its statistical nature is
significantly different at the end compared to the begin-
ning, then this leads to compatibility problems of the
beginning and end of the signal. We can easily resolve this
misfit by replacing the signal with a version where we add
the signal in reverse order, hence avoiding any sudden
change in signal amplitude which would be smoothed out
by the algorithm.

The problem can now be localized by selecting K clusters
in the feature space of delayed coordinates of the signal
{x;[[]I1l=0,...,L—1}. Clustering can be achiecved by a
k-means cluster algorithm as explained in Section 2.2. But
k-means clustering is only appropriate if the variance or the
kurtosis of a signal do not depend on the inherent signal
structure. For other noise selection schemes like choosing
the noise components based on the variance of the
autocorrelation, it is usually better to find an appropriate
partitioning of the set of time steps {0,...,L — 1} into K
successive segments, since this preserves the inherent time
structure of the signals.

For other noise selection methods like choosing the noise
components based on the variance of the autocorrelation it
is usually better to find an appropriate partition of the set
of time steps {0,...,L — 1} into K successive segments,
since this preserves the inherent time structure of the signal.

Note that the clustering does not change the data but
only changes its time sequence, i.e. permutes and regroups
the columns of the trajectory matrix and separates it into K
sub-matrices.

3.1.2. Decomposition and denoising

After centering, i.e. removing the mean in each cluster,
we can analyze the M-dimensional signals in these K
clusters using PCA or ICA. The PCA case (Local PCA
(LPCA)) is studied in [38] so in the following we will
propose an ICA based denoising.

Using ICA, we extract M ICs from each delayed signal.
Like in all projection based denoising algorithms, noise
reduction is achieved by projecting the signal into a lower-
dimensional subspace. We used two different criteria to
estimate the number p of signal + noise components, i.e. the
dimension of the signal subspace onto which we project
after applying ICA.

e One criterion is a consistent MDL estimator of pyp
for the data model in Eq. (5) [38]

pvpL = argmin MDL(M, L,p, (%)), y
p=0,..M~1

™ ;L(l/(Mfzf))
X argmin {—((M—p)L)1n< Jj=p+17 - )
p=0,...M—1 (1/(M_p))Z/:p+l/1/

2
p- P 1
M=)+ +1 (1 2 o
— ) 21nL+ ]E:l InZ; —In jE:] i) ¢

()

where /; denote the variances of the signal components
in feature space, i.e. after applying the de-mixing
matrix which we estimate with the ICA algorithm. To
retain the relative strength of the components in the
mixture, we normalize the rows of the de-mixing matrix
to unit norm. The variances are ordered such that the
smallest eigenvalues /; correspond to directions in
feature space most likely to be associated with noise
components only.

The first term in the MDL estimator represents the
likelihood of the m — p Gaussian white noise compo-
nents. The third term stems from the estimation of the
description length of the signal part (first p compo-
nents) of the mixture based on their variances. The
second term acts as a penalty term to favor parsimo-
nious representations of the data for short time series,
and becomes insignificant in the limit L — oo since it
does not depend on L while the other two terms grow
without bounds. The parameter y controls this beha-
vior and is a parameter of the MDL estimator, hence of
the final denoising algorithm. By experience, good
values for y seem to be 32 or 64.

e Based on the observations reported by [17] and our
observations that, in some situations, the MDL
estimator tends to significantly underestimate the
number of noise components, we also used another
approach: We clustered the variances of the signal
components into two clusters using k-means clustering
and defined p as the number of elements in the cluster
which contains the largest eigenvalue. This yields a
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good estimate of the number of signal components, if
the noise variances are not clustered well enough
together but, nevertheless, are separated from the
signal by a large gap. More details and simula-
tions corroborating our observations can be found in
Section 4.1.1.

Depending on the statistical nature of the data, the
ordering of the components in the MDL estimator can be
achieved using different methods. For data with a non-
Gaussian distribution, we select the noise component as the
component with the smallest value of the kurtosis as
Gaussian noise corresponds to a vanishing kurtosis. For
non-stationary data with stationary noise, we identify the
noise by the smallest variance of its autocorrelation.

3.1.3. Reconstruction

In each cluster the centering is reversed by adding back
the cluster mean. To reconstruct the noise reduced signal,
we first have to reverse the clustering of the data to yield
the signal x{[/] € RM by concatenating the trajectory sub-
matrices and reversing the permutation done during
clustering. The resulting trajectory matrix does not possess
identical entries in each diagonal. Hence we average over
the candidates in the delayed data, i.e. over all entries in
each diagonal:

1 M—1
X[=; > xill +jmod L], ®)
j=0

where x{[/]; stands for the jth component of the enhanced
vector x§ at time step /. Note that the summation is done
over the diagonals of the trajectory matrix so it would yield

x; if performed on the original delayed signal x;.

3.1.4. Parameter estimation

We still have to find optimal values for the global
parameters M and K. Their selection again can be based on
a MDL criterion for the detected noise e=x — x..
Accordingly we apply the LICA algorithm for different
M and K and embed each of these error signals e(M, K) in
delayed coordinates of a fixed large enough dimension M
and choose the parameters M and K, such that the MDL
criterion estimating the noisiness of the error signal is
minimal. The MDL criterion is evaluated with respect to
the eigenvalues A(M,K) of the correlation matrix of
e(M, K) such that

(Mo, Ko) = argmin MDL(M, L, 0, (;(M, K)), ). 9)
M,K

3.2. Denoising using delayed AMUSE

Signals with an inherent correlation structure like time
series data can as well be analyzed using second-order BSS
techniques only [22,35]. GEVD of a matrix pencil [33,37]
or a joint approximative diagonalization of a set of

correlation matrices [1] is then usually considered. Recently
we proposed an algorithm based on a generalized
eigenvalue decomposition in a feature space of delayed
coordinates [35]. It provides means for BSS and denoising
simultaneously.

3.2.1. Embedding

Assuming that each sensor signal is a linear combination
X = AS of N underlying but unknown source signals s;, a
source signal trajectory matrix § can be written in analogy
to Egs. (1) and (2). Then the mixing matrix 4 is a block
matrix with a diagonal matrix in each block:

avdyxu  avdyxcm anI yxm
alyxm  anlyxy -

A= } . . ) . (10)
antIyxy a2 Iyrsm annI yrxm

The matrix Iy, represents the identity matrix, and in
accord with an instantaneous mixing model the mixing
coefficient a;; relates the sensor signal x; with the source
signal s;.

3.2.2. Generalized eigenvector decomposition

The delayed correlation matrices of the matrix pencil are
computed with one matrix X, obtained by eliminating the
first k; columns of X and another matrix, X;, obtained by
eliminating the last k; columns. Then, the delayed
correlation matrix R, (k;) = X,‘X,T will be an NM x NM
matrix. Each of these two matrices can be related with a
corresponding matrix in the source signal domain:

R (ki) = ARy(k)A" = AS,STA". (11)

Then the two pairs of matrices (R.(k;), R.(k;)) and
(Ry(ky), Ry(k»)) represent congruent pencils [34] with the
following properties:

e Their eigenvalues are the same, i.e., the ecigenvalue
matrices of both pencils are identical: D, = D;.

e If the ecigenvalues are non-degenerate (distinct values
in the diagonal of the matrix D, = Dy), the correspond-
ing eigenvectors are related by the transformation
E,=A"E,.

Assuming that all sources are uncorrelated, the matrices

R(k;) are block diagonal, having block matrices R,,,(k;) =

S,,»S; along the diagonal. The eigenvector matrix of the

GEVD of the pencil (Ry(k;), R,(k;)) again forms a block

diagonal matrix with block matrices E,,, forming M x M

eigenvector matrices of the GEVD of the pencils

(Rym(k1), Rym(k2)). The uncorrelated components can

then be estimated from linearly transformed sensor

signals via

Y=EX=E'AS=E'S (12)

hence turn out to be filtered versions of the underlying
source signals. As the eigenvector matrix E; is a block
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diagonal matrix, there are M signals in each column of ¥
which are a linear combination of one of the source signals
and its delayed versions. Then the columns of the matrix
E,,,, represent impulse responses of finite impulse response
(FIR) filters. Considering that all the columns of E,,, are
different, their frequency response might provide different
spectral densities of the source signal spectra. Then NM
output signals y encompass M filtered versions of each of
the N estimated source signals.

3.2.3. Implementation of the GEVD

There are several ways to compute the generalized
eigenvalue decomposition. We resume a procedure valid if
one of the matrices of the pencil is symmetric positive
definite. Thus, we consider the pencil (R(0), R(k>)) and
perform the following steps:

Step 1: Compute a standard eigenvalue decomposition of
R.(0)=VAVT, ie, compute the eigenvectors v, and
eigenvalues ;. As the matrix is symmetric positive definite,
the eigenvalues can be arranged in descending order
(A1 >722> -+ >2Ayy). This procedure corresponds to the
usual whitening step in many ICA algorithms. It can be
used to estimate the number of sources, but it can also be
considered a strategy to reduce noise much like with PCA
denoising. Dropping small eigenvalues amounts to a
projection from a high-dimensional feature space onto a
lower-dimensional manifold representing the signal + noise
subspace. Thereby it is tacitly assumed that small
eigenvalues are related with noise components only. Here
we consider a variance criterion to choose the most
significant eigenvalues, those related with the embedded
deterministic signal, according to

MAlo+ A4
M+d+-Avm

If we are interested in the eigenvectors corresponding to
directions of high variance of the signals, the threshold TH
should be chosen such that their maximum energy is
preserved. Similar to the whitening phase in many BSS
algorithms, the data matrix X can be transformed using

Q=A"12pT" (14)

to calculate a transformed matrix of delayed correlations
C(ky) to be used in the next step. The transformation
matrix can be computed using either the / most significant
eigenvalues, in which case denoising is achieved, or all
eigenvalues and respective eigenvectors. Also note, that Q
represents a / x NM matrix if denoising is considered.

Step 2: Use the transformed delayed correlation matrix
C(ky) = QRx(kz)QT and its standard eigenvalue decom-
position: the eigenvector matrix U and -eigenvalue
matrix D,.

The eigenvectors of the pencil (R,(0), R.(k,)), which are
not normalized, form the columns of the eigenvector
matrix E, = Q'U = VA~'2U. The ICs of the delayed
sensor signals can then be estimated via the transformation
given below, yielding / (or NM) signals, one signal per row

>TH. (13)

of Y:
Y=EX=U"Qox =U"A""?y"x. (15)

The first step of this algorithm is therefore equivalent to a
PCA in a high-dimensional feature space [9,39], where a
matrix similar to Q is used to project the data onto the
signal manifold.

3.3. Kernel PCA based denoising

Kernel PCA has been developed by [19], hence we give
here only a short summary for convenience. PCA only
extracts linear features though with suitable non-linear
features more information could be extracted. It has been
shown [19] that KPCA is well suited to extract interesting
non-linear features in the data. KPCA first maps the data
x; into some high-dimensional feature space Q through
a non-linear mapping @ : R" — R”,m>n and then per-
forms linear PCA on the mapped data in the feature
space Q. Assuming centered data in feature space, i.e.
Zf{:ﬁp(xk) =0, to perform PCA in space Q2 amounts to
finding the eigenvalues 2>0 and eigenvectors @ € Q2 of the
correlation matrix R = I/IZ;:1¢(xj)¢(xj)T.

Note that all @ with 170 lie in the subspace spanned by
the vectors @(x;),. .., P(x;). Hence the eigenvectors can be
represented via

/
o= wd(x). (16)
i=1

Multiplying the eigenequation with @(x;) from the left
the following modified eigenequation is obtained

Ka = o (17)

with A1>0. The eigenequation now is cast in the form of dot
products occurring in feature space through the /x/
matrix K with elements K; = (®(x;) - @(x))) = k(x;, x;)
which are represented by kernel functions k(x;,x;) to be
evaluated in the input space. For feature extraction any
suitable kernel can be used and knowledge of the non-
linear function @(x) is not needed. Note that the latter can
always be reconstructed from the principal components
obtained. The image of a data vector under the map @ can
be reconstructed from its projections f; via

Pud(x) =) Broye =Y (o - P(x))ooy (18)
k=1 k=1
which defines the projection operator P,. In denoising

applications, 7 is deliberately chosen such that the squared
reconstruction error

i
Croe = D I1Pa(x;) — D(x,)|)? (19)
i=1

is minimized. To find a corresponding approximate
representation of the data in input space, the so-called
pre-image, it is necessary to estimate a vector z € RV in
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input space such that

n 1
p(@) = |12, 0(x) — D) = k(z.2) =2 i > ot k(x:,2)
k=1 i=1
(20)

is minimized. Note that an analytic solution to the pre-
image problem has been given recently in case of invertible
kernels [16]. In denoising applications it is hoped that the
deliberately neglected dimensions of minor variance con-
tain noise mostly and z represents a denoised version of x.
Eq. (20) can be minimized via gradient descent techniques.

4. Applications and simulations

In this section we will first present results and
concomitant interpretation of some experiments with toy
data using different variations of the LICA denoising
algorithm. Next we also present some test simulations
using toy data of the algorithm dAMUSE. Finally we will
discuss the results of applying the three different denoising
algorithms presented above to a real world problem, i.e. to
enhance protein NMR spectra contaminated with a huge
water artifact.

4.1. Denoising with Local ICA applied to toy examples

We will present some sample experimental results using
artificially generated signals and random noise. As the
latter is characterized by a vanishing kurtosis, the LICA
based denoising algorithm uses the component kurtosis for
noise selection.

4.1.1. Discussion of an MDL based subspace selection

In the LICA denoising algorithm the MDL criterion is
also used to select the number of noise components in each
cluster. This works without prior knowledge of the noise
strength. Since the estimation is based solely on statistical
properties, it produces suboptimal results in some cases,
however. In Fig. 1 we compare, for an artificial signal with
a known additive white Gaussian noise, the denoising
achieved with the MDL based estimation of the subspace

Noisy Signal

Original Signal

05 1 152 253 35 4 051 152 253 35 4

05 115 2 253 35 4
x103 x103

o s
051 152 253 354

dimension versus the estimation based on the noise level.
The latter is done using a threshold on the variances of the
components in feature space such that only the signal part
is conserved. Fig. 1 shows that the threshold criterion
works slightly better in this case, though the MDL based
selection can obtain a comparable level of denoising.
However, the smaller SNR indicates that the MDL
criterion favors some over-modelling of the signal sub-
space, i.e. it tends to underestimate the number of noise
components in the registered signals.

In [17] the conditions, such as the noise not being
completely white, which lead to a strong over-modelling
are identified. Over-modelling also happens frequently, if
the eigenvalues of the covariance matrix related with noise
components, are not sufficiently close together and are not
separated from the signal components by a gap. In those
cases a clustering criterion for the eigenvalues seems to
yield better results, but it is not as generic as the MDL
criterion.

4.1.2. Comparisons between LICA and LPCA

Consider the artificial signal shown in Fig. 1 with varying
additive Gaussian white noise. We apply the LICA
denoising algorithm using either an MDL criterion or a
threshold criterion for parameter selection. The results are
depicted in Fig. 2.

The first and second diagram of Fig. 2 compare the
performance, here the enhancement of the SNR and
the mean square error, of LPCA and LICA depending
on the input SNR. Note that a source SNR of 0 describes a
case where signal and noise have the same strength,
while negative values indicate situations where the
signal is buried in the noise. The third graph shows
the difference in kurtosis of the original signal and the
source signal in dependence on the input SNR. All three
diagrams were generated with the same data set, i.e.
the same signal and, for a given input SNR, the same
additive noise.

These results suggest that a LICA approach is more
effective when the signal is infested with a large amount of
noise, whereas a LPCA seems better suited for signals with

MDL based local ICA Threshold based local ICA
05 1 152 253 354 05 1 152 253 354
W0 T 0 g T 38
6F {6
4t 14
2F 42
0 0
4 12
14
1-6
L L -8
051 152 253 354 051 152 253 354

x103 %103

Fig. 1. Comparison between MDL and threshold denoising of an artificial signal with known SNR = 0. The feature space dimension was M = 40 and the
number of clusters was K = 35. The (MDL achieved an SNR = 8.9dB and the Threshold criterion an SNR = 10.5dB).



1492

SNR enhancement

4

5

Mean square error

6

P. Gruber et al. | Neurocomputing 69 (2006) 1485-1501

Kurtosis

w
T

8]
T

SNR Enhancement [dB]

Error original/recovered [><103]

-5 0 5 10
Source SNR [dB]

Fig. 2. Comparison between LPCA and LICA based denoising. Here the mean square error of two signals x, y with L samples is (1/L)>";|x;
all noise levels a complete parameter estimation was done in the sets {10, 15,...

high SNRs. This might be due to the nature of our selection
of subspaces based on kurtosis or variance of the
autocorrelation as the comparison of higher statistical
moments of the restored data, like kurtosis, indicate that
noise reduction can be enhanced if we are using a LICA
approach.

4.1.3. LICA denoising with multi-dimensional data sets

A generalization of the LICA algorithm to multi-
dimensional data sets like images where pixel intensities
depend on two coordinates is desirable. A simple general-
ization would be to look at delayed coordinates of vectors
instead of scalars. However, this appears impractical due to
the prohibitive computational effort. More importantly,
this direct approach reduces the number of available
samples significantly. This leads to far less accurate
estimators of important aspects like the MDL estimation
of the dimension of the signal subspace or the estimation of
the kurtosis criterion in the LICA case.

Another approach could be to convert the data to a 1D
string by choosing some path through the data and
concatenating the pixel intensities accordingly. But this
can easily create unwanted artifacts along the chosen path.
Further, local correlations are broken up, hence not all the
available information is used.

But a more sophisticated and, depending on the nature
of the signal, very effective alternative approach can be
envisaged. Instead of converting the multi-dimensional
data into 1D data strings prior to applying the LICA
algorithm, we can use a modified delay transformation
using shifts along all available dimensions. This concept is
similar to the multi-dimensional auto-covariances used in
the multi-dimensional SOBI (mdSOBI) algorithm intro-
duced in [31].

In the 2D case, for example, consider an n x n image
represented by a matrix P = (a;);;;_,- Then the trans-
formed data set consists of copies of P which are shifted
either along columns or rows or both. For instance, a

Error original/noisy [x10°]

Kurtosis error lkurt(se) — kurt(s)l

Source SNR [dB]

- y|/*. For
,60} for M and {20, 30,...,80} for K.
translation a; — a1 j41, (i,j = 1,...,n) yields the follow-
ing transformed image:
ann An.n An,1
ayn aln ai,
P, = @)
an—12 p—1n dp—1,1

Then instead of choosing a single delay dimension, we
choose a delay radius M and use all P, with ||v]|<M as
delayed versions of the original signal. The remainder of
the LICA based denoising algorithm works exactly as in
the case of a 1D time series.

In Fig. 3 we show that this approach using the MDL
criterion to select the number of components compared
between LPCA and LICA. In addition we see that the
algorithm also works favorable if applied multiple times.

4.2. Denoising with dAAMUSE applied to toy examples

A group of three artificial source signals with different
frequency contents was chosen: one member of the group
represents a narrow-band signal, a sinusoid; the second
signal encompasses a wide frequency range; and the last
one represents a sawtooth wave whose spectral density is
concentrated in the low frequency band (see Fig. 4).

The simulations were designed to illustrate the method
and to study the influence of the threshold parameter TH
on the performance when noise is added at different levels.
In what concerns noise we also try to find out if there is any
advantage of using a GEVD instead of a PCA analysis.
Hence the signals at the output of the first step of the
algorithm (using the matrix Q to project the data) are also
compared with the output signals. Results are collected in
Table 1.

Random noise was added to the sensor signals yielding a
SNR in the range of [0,20]dB. The parameters M = 4 and



P. Gruber et al. | Neurocomputing 69 (2006) 1485-1501 1493

Local ICA

"L

Fig. 3. Comparison of LPCA and LICA based denoising upon an image
infested with Gaussian noise. Also note an improvement in denoising
power if both are applied consecutively (Local PCA SNR = 8.8dB, LICA
SNR = 10.6dB, LPCA and LICA consecutively SNR = 12.6dB). All
images where denoised using a fixed number of clusters K =20 and a
delay radius of M = 4, which results in a 49-dimensional feature space.

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100
(n)

TH = 0.95 were kept fixed. As the noise level increases, the
number of significant eigenvalues also increases. Hence at
the output of the first step more signals need to be
considered. Thus as the noise energy increases, the number
(1) of signals or the dimension of matrix C also increases
after the application of the first step (last column of
Table 1). As the noise increases, an increasing number of
ICs will be available at the output of the two steps.
Computing, in the frequency domain, the correlation
coefficients between the output signals of each step of the
algorithm and noise or source signals we confirm that some
are related with the sources and others with noise. Table 1
(columns 3-6) shows that the maximal correlation coeffi-
cients are distributed between noise and source signals to a

Table 1
Number of output signals correlated with noise or source signals after step
1 and step 2 of the algorithm dAMUSE

SNR (dB) NM Ist step 2nd step Total

Sources Noise Sources Noise

20 12
15 12
10 12

NN N
A WO O
[ BEN BEN o Nl
W == O
— 0 0 3

400

300

200

100

0

0 0.1 0.2 0.3 0.4 0.5

400

300

200
100 JL
0
0 0.1 0.2

600

i

0.3 . .5

400

200

0 J\J\llllklljtx

0 0.1 0.2 0.3 0.4 0.5
(m)

Fig. 4. Artificial signals (left column) and their frequency contents (right column).
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Fig. 5. Comparison of output signals resulting after the first step (second column) and the second step (last column) of dAMUSE.

Original NMR spectrum of the P11 protein
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Fig. 6. The graph shows a 1D slice of a proton 2D NOESY NMR spectrum of the polypeptide P11 before and after removing the water artifact with the
GEVD-MP algorithm. The 1D spectrum corresponds to the shortest evolution period ;.
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Fig. 7. The figure shows the corresponding artifact free P11 spectra after the denoising algorithms have been applied. The LICA algorithm was applied to
all water components with M, K chosen with the MDL estimator (y = 32) between 20 and 60 and 20 and 80, respectively. The second graph shows the
denoised spectrum with a KPCA based algorithm using a Gaussian kernel: (a) LICA denoised spectrum of P11 after the water artifact has been removed
with the algorithm GEVD-MP; (b) KPCA denoised spectrum of P11 after the water artifact has been removed with the algorithm GEVD-MP.

varying degree. We can see that the number of signals
correlated with noise is always higher in the first level.
Results show that for low noise levels the first step (which is
mainly a PCA in a space of dimension NM) achieves good
solutions already. However, we can also see (for narrow-
band signals and/or M low) that the time domain
characteristics of the signals resemble the original source
signals only after a GEVD, i.e. at the output of the second
step rather than with a PCA, i.e. at the output of first
step. Fig. 5 shows examples of signals that have been
obtained in the two steps of the algorithm for
SNR = 10dB. At the output of the first level the three
signals with highest frequency correlation were chosen
among the eight output signals. Using a similar criterion to
choose three signals at the output of the 2nd step (last
column of Fig. 5), we can see that their time course is more
similar to the source signals than after the first step (middle
column of Fig. 5).

4.3. Denoising of protein NMR spectra

In biophysics the determination of the 3D structure of
biomolecules like proteins is of utmost importance. NMR
techniques provide indispensable tools to reach this goal.
As hydrogen nuclei are the most abundant and most
sensitive nuclei in proteins, proton NMR spectra of
proteins dissolved in water are recorded mostly. Since the
concentration of the solvent is by magnitudes larger

than the protein concentration, there is always a large
proton signal of the water solvent contaminating the
protein spectrum. This water artifact cannot be suppressed
completely with technical means, hence it would be
interesting to remove it during the analysis of the
spectra.

BSS techniques have been shown to solve this separation
problem [27,28]. BSS algorithms are based on an ICA [2]
which extracts a set of underlying independent source
signals out of a set of measured signals without knowing
how the mixing process is carried out. We have used an
algebraic algorithm [32,33] based on second order statistics
using the time structure of the signals to separate this and
related artifacts from the remaining protein spectrum.
Unfortunately due to the statistical nature of the algorithm
unwanted noise is introduced into the reconstructed
spectrum as can be seen in Fig. 6. The water artifact
removal is effected by a decomposition of a series of NMR
spectra into their uncorrelated spectral components apply-
ing a generalized eigendecomposition of a congruent
matrix pencil [37]. The latter is formed with a correlation
matrix of the signals and a correlation matrix with delayed
or filtered signals [34]. Then we can detect and remove the
components which contain only a signal generated by the
water and reconstruct the remaining protein spectrum from
its ICs. But the latter now contains additional noise
introduced by the statistical analysis procedure, hence
denoising deemed necessary.
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Fig. 8. The graph uncovers the differences of the LICA and KPCA denoising algorithms. As a reference the corresponding 1D slice of the original P11
spectrum is displayed on top. From top to bottom the three curves show: The difference of the original and the spectrum with the GEVD-MP algorithm
applied, the difference between the original and the LICA denoised spectrum and the difference between the original and the KPCA denoised spectrum.
To compare the graphs in one diagram the three graphs are translated vertically by 2, 4 and 6, respectively.

The algorithms discussed above have been applied to an
experimental 2D nuclear overhauser effect spectroscopy
(NOESY) proton NMR spectrum of the polypeptide P11
dissolved in water. The synthetic peptide P11 consists of 24
amino acids only and represents the helix H11 of the
human glutathion reductase [21]. A simple pre-satura-
tion of the water resonance was applied to prevent
saturation of the dynamic range of the analog digital
converter (ADC). Every data set comprises 512 free
induction decays (FIDs) S(#1, %) = x,[[] or their corre-
sponding spectra S(11, ) = Xn[l], with L = 2048 samples
each, which correspond to N = 128 evolution periods
t; = [n]. To each evolution period belong four FIDs with
different phase modulations, hence only FIDs with equal
phase modulations have been considered for analysis. A
BSS analysis, using both the algorithm GEVD using matrix
pencil (GEVD-MP) [28] and the algorithm dAMUSE [36],
was applied to all data sets. Note that the matrix pencil
within GEVD-MP was conveniently computed in the
frequency domain, while in the algorithm dAMUSE in
spite of the filtering operation being performed in the
frequency domain, the matrix pencil was computed in the
time domain. The GEVD is performed in dAMUSE as
described above to achieve a dimension reduction and
concomitant denoising.

4.3.1. Local ICA denoising

For denoising we first used the LICA denoising
algorithm proposed above to enhance the reconstructed
protein signal without the water artifact. We applied
the denoising only to those components which were
identified as water components. Then we removed the
denoised versions of these water artifact components
from the total spectrum. As a result, the additional noise
is at least halved as can also be seen from Fig. 7. On the
part of the spectrum away from the center, i.e. not
containing any water artifacts, we could estimate the
increase of the SNR with the original spectrum as
reference. We calculated a SNR of 17.3dB of the noisy
spectrum and a SNR of 21.6dB with applying the
denoising algorithm.

We compare the result, i.e. the reconstructed artifact-free
protein spectrum of our denoising algorithm to the result
of a KPCA based denoising algorithm using a Gaussian
kernel in Fig. 8. The figure depicts the differences between
the denoised spectra and the original spectrum in the
regions where the water signal is not very dominating. As
can be seen, the LICA denoising algorithm reduces the
noise but does not change the content of the signal,
whereas the KPCA algorithm seems to influence the peak
amplitudes of the protein resonances as well. Further
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Fig. 9. 1D slice of a 2D NOESY spectrum of the polypeptide P11 in aqueous solution corresponding to the shortest evolution period #;. The chemical shift
ranges from —1 to 10 ppm roughly. The insert shows the region of the spectrum between 10 and 9 ppm roughly. The upper trace corresponds to the
denoised baseline and the lower trace shows the baseline of the original spectrum: (a) Original (noisy) spectrum; (b) Reconstructed spectrum with the water
artifact removed with the matrix pencil algorithm; (c) Result of the KPCA denoising of the reconstructed spectrum.

experiments are under way in our laboratory to investigate
these differences in more detail and to establish an
automatic artifact removal algorithm for multi-dimen-
sional NMR spectra.

4.3.2. Kernel PCA denoising

As the removal of the water artifact lead to additional
noise in the spectra (compare Fig. 9(a) and (b)) KPCA
based denoising was applied. First (almost) noise free
samples had to be created in order to determine the
principle axes in feature space. For that purpose, the first
400 data points of the real and the imaginary part of each
of the 512 original spectra were used to form a 400 x 1024
sample matrix X", Likewise five further sample matrices

X" m=2,...,6, were created, which now consisted of
the data points 401-800, 601-1000, 1101-1500, 12491648
and 1649-2048, respectively. Note that the region (1000—
1101) of data points comprising the main part of the water
resonance was nulled deliberately as it is of no use for the
KPCA. For each of the sample matrices X the
corresponding kernel matrix K was determined by

Kij = k(xi,x)), i,j=1,...,400, (22)

where x; denotes the ith column of X"”. For the kernel
function a Gaussian kernel

k(x;, x;) = exp <— M) s

552 (23)
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Fig. 10. Comparison of denoising of the P11 protein spectrum: (a) 1D slice of the NOESY spectrum of the protein P11 spectrum reconstructed with the
algorithm GEVD-MP; (b) Corresponding protein spectrum reconstructed with the algorithm dAMUSE.

where

1 400
= m llx; — xj||2 (24)
=t

12

267

is the width parameter o, was chosen.

Finally the kernel matrix K was expressed in terms of its
EVD (Eq. (17)) which lead to the expansion parameters o
necessary to determine the principal axes of the corre-
sponding feature space Q"

400

W= Z o; D(x;). (25)
i=1

Similar to the original data, the noisy data of the
reconstructed spectra were used to form six 400 x 1024
dimensional pattern matrices P, m = 1,...,6. Then the
principal components f;, of each column of P were
calculated in the corresponding feature space Q. In order
to denoise the patterns only projections onto the first n =

112 principal axes were considered. This lead to

400

Bo=> dk(xn,x), k=1,...,112, (26)
i=1

where x is a column of P".

After reconstructing the image 13n¢(x) of the sample
vector under the map & (Eq. (18)), its approximate
pre-image was determined by minimizing the cost function

112 400
p(z) = =23 B> abk(x:,z). 27)
k=1 i=1

Note that the method described above fails to denoise
the region where the water resonance appears (data points
1001-1101) because then the samples formed from the
original data differ too much from the noisy data. This is
not a major drawback as protein peaks totally hidden
under the water artifact cannot be uncovered by the
presented BSS method. Fig. 9(c) shows the resulting
denoised protein spectrum on an identical vertical scale
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Table 2

Parameter values for the embedding dimension of the feature space of
dAMUSE (Mgamuse), the number (K) of sampling intervals used per
delay in the trajectory matrix, the number N of principal components
retained after the first step of the GEVD and the half-width (o) of the
Gaussian filter used in the algorithms GEVD-MP and dAMUSE

Parameter Njc Maamuse  Npe Nw(GEVD)
P11 256 3 148 49
Parameter NW(dAMUSE) [ SNRGEVD—MP SNRdAMUSE
P11 46 0.3 18,6 dB 22,9dB

as Figs. 9(a) and (b). The insert compares the noise in a
region of the spectrum between 10 and 9ppm roughly
where no protein peaks are found. The upper trace shows
the baseline of the denoised reconstructed protein spectrum
and the lower trace the corresponding basecline of the
original experimental spectrum before the water artifact
has been separated out.

4.3.3. Denoising using delayed AMUSE

LICA denoising of reconstructed protein spectra neces-
sitate the solution of the BSS problem beforehand using
any ICA algorithm. A much more elegant solution is
provided by the recently proposed algorithm dAMUSE,
which achieves BSS and denoising simultaneously. To test
the performance of the algorithm, it was also applied to the
2D NOESY NMR spectra of the polypeptide P11.

A 1D slice of the 2D NOESY spectrum of Pll
corresponding to the shortest evolution period ¢ is
presented in Fig. 9(a) which shows a huge water artifact
despite some pre-saturation on the water resonance. Fig. 10
shows the reconstructed spectra obtained with the algo-
rithms GEVD-MP and dAMUSE, respectively. The algo-
rithm GEVD-MP yielded almost artifact-free spectra but
with clear changes in the peak intensities in some areas of
the spectra. On the contrary, the reconstructed spectra
obtained with the algorithm dAMUSE still contain some
remnants of the water artifact but the protein peak
intensities remained unchanged and all baseline distortions
have been cured. All parameters of the algorithms are
collected in Table 2.

5. Conclusions

We proposed two new denoising techniques and also
considered KPCA denoising which are all based on the
concept of embedding signals in delayed coordinates. We
presented a detailed discussion of their properties and also
discussed results obtained applying them to illustrative toy
examples. Furthermore we compared all three algorithms
by applying them to the real world problem of removing
the water artifact from NMR spectra and denoising the
resulting reconstructed spectra. Although all three algo-
rithms achieved good results concerning the final SNR, in
case of the NMR spectra it turned out that KPCA seems to

alter the spectral shapes while LICA and dAMUSE do not.
At least with protein NMR spectra it is crucial that
denoising algorithms do not alter integrated peak inten-
sities in the spectra as the latter form the bases for the
structure elucidation process.

In future we have to further investigate the dependence
of the proposed algorithms on the situation at hand.
Thereby it will be crucial to identify data models for which
each one of the proposed denoising techniques works best
and to find good measures of how such models suit the
given data.

Acknowledgements

This research has been supported by the BMBF (project
ModKog) and the DFG (GRK 638: Non-linearity and
Non-equilibrium in Condensed Matter). We are grateful to
W. Gronwald and H. R. Kalbitzer for providing the NMR
spectrum of P11 and helpful discussions.

References

[1] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, E. Moulines, A
blind source separation technique using second-order statistics, IEEE
Trans. Signal Process. 45 (2) (1997) 434-444.

[2] A. Cichocki, S.-I. Amari, Adaptive Blind Signal and Image
Processing, Wiley, New York, 2002.

[3] P. Comon, Independent component analysis—a new concept?, Signal
Process. 36 (1994) 287-314.

[4] K.I. Diamantaras, S.Y. Kung, Principal Component Neural Net-
works, Theory and Applications, Wiley, New York, 1996.

[5] A. Effern, K. Lehnertz, T. Schreiber, T. Grunwald, P. David, C.E.
Elger, Nonlinear denoising of transient signals with application to
event-related potentials, Physica D 140 (2000) 257-266.

[6] E. Fishler, H. Messer, On the use of order statistics for improved
detection of signals by the MDL criterion, IEEE Trans. Signal
Process. 48 (2000) 2242-2247.

[7] R. Freeman, Spin Choreography, Spektrum Academic Publishers,
Oxford, 1997.

[8] R.R. Gharieb, A. Cichocki, Second-order statistics based blind
source separation using a bank of subband filters, Digital Signal
Process. 13 (2003) 252-274.

[9] M. Ghil, M.R. Allen, M.D. Dettinger, K. Ide, Advanced spectral
methods for climatic time series, Rev. Geophys. 40 (1) (2002) 1-41.

[10] K.H. Hausser, H.-R. Kalbitzer, NMR in Medicine and Biology,
Berlin, 1991.

[11] J. Hérault, C. Jutten, Space or time adaptive signal processing by
neural network models, in: J.S. Denker (Ed.), Neural Networks for
Computing, Proceedings of the AIP Conference, American Institute
of Physics, New York, 1986, pp. 206-211.

[12] A. Hyvérinen, P. Hoyer, E. Oja, Intelligent Signal Processing, IEEE
Press, NY, 2001.

[13] A. Hyvérinen, J. Karhunen, E. Oja, Independent Component
Analysis, 2001.

[14] A. Hyvirinen, E. Oja, A fast fixed-point algorithm for independent
component analysis, Neural Comput. 9 (1997) 1483-1492.

[15] A.K. Jain, R.C. Dubes, Algorithms for Clustering Data, Prentice-
Hall, New Jersey, 1988.

[16] J.T. Kwok, I.W. Tsang, The pre-image problem in kernel methods,
in: Proceedings of the International Conference on Machine Learning
(ICMLO03), 2003.

[17] A.P. Liavas, P.A. Regalia, On the behavior of information theoretic
criteria for model order selection, IEEE Trans. Signal Process. 49
(2001) 1689-1695.



1500 P. Gruber et al. | Neurocomputing 69 (2006) 1485-1501

[18] C.T.Ma, Z. Ding, S.F. Yau, A two-stage algorithm for MIMO blind
deconvolution of nonstationary colored noise, IEEE Trans. Signal
Process. 48 (2000) 1187-1192.

[19] S. Mika, B. Scholkopf, A. Smola, K. Miiller, M. Scholz, G. Ritsch,
Kernel PCA and denoising in feature spaces, Adv. Neural Inf.
Process. Syst. NIPS11 11 (1999).

[20] V. Moskvina, K.M. Schmidt, Approximate projectors in singular
spectrum analysis, STAM J. Mat. Anal. Appl. 24 (4) (2003) 932-942.

[21] A. Nordhoff, Ch. Tziatzios, J.A.V. Broek, M. Schott, H.-R.
Kalbitzer, K. Becker, D. Schubert, R.H. Schirme, Denaturation
and reactivation of dimeric human glutathione reductase, Eur. J.
Biochem. (1997) 273-282.

[22] L. Parra, P. Sajda, Blind source separation vis generalized eigenvalue
decomposition, J. Mach. Learn. Res. 4 (2003) 1261-1269.

[23] K. Pearson, On lines and planes of closest fit to systems of points in
space, Philos. Mag. 2 (1901) 559-572.

[24] I.W. Sandberg, L. Xu, Uniform approximation of multidimensional
myoptic maps, Trans. Circuits Syst. 44 (1997) 477-485.

[25] B. Schoelkopf, A. Smola, K.-R. Mueller, Nonlinear component
analysis as a kernel eigenvalue problem, Neural Comput. 10 (1998)
1299-1319.

[26] K. Stadlthanner, E-W. Lang, AM. Tomé¢, A.R. Teixeira, C.G.
Puntonet, Kernel-PCA denoising of artifact-free protein NMR spectra,
in: Proceedings of the IICNN’2004, Budapest, Hungaria, 2004.

[27] K. Stadlthanner, F.J. Theis, E.-W. Lang, A.M. Tomé¢, W. Gronwald,

H.-R. Kalbitzer, A matrix pencil approach to the blind source

separation of artifacts in 2D NMR spectra, Neural Inf. Process.—

Lett. Rev. 1 (2003) 103-110.

K. Stadlthanner, A.M. Tomé, F. Theis, E.-W. Lang, W. Gronwald,

H.R. Kalbitzer, Separation of water artifacts in 2D NOESY protein

spectra using congruent matrix pencils, Neurocomputing, 69 (2006)

497-522.

[29] K. Stadlthanner, A.M. Tomé¢, F.J. Theis, W. Gronwald, H.-R.
Kalbitzer, E.W. Lang, Blind source separation of water artifacts in
NMR spectra using a matrix pencil, in: Proceedings of the Fourth
International Symposium on Independent Component Analysis and
Blind Source Separation, ICA’2003, Nara, Japan, 2003, pp. 167-172.

[30] F. Takens, On the numerical determination of the dimension of an
attractor, Dynamical Systems Turbulence Ann. Notes Math. 898
(1981) 366-381.

[31] F.J. Theis, A. Meyer-Bise, E.W. Lang, Second-order blind source
separation based on multi-dimensional autocovariances, in: Proceed-
ings of the ICA 2004, Lecture Notes on Computer Science, vol. 3195,
Granada, Spain, 2004, pp. 726-733.

[32] AM. Tome, Blind source separation using a matrix pencil, in:
Proceedings of the International Joint Conference on Neural
Networks, [JICNN’2000, Como, Italy, 2000.

[33] AM. Tomé, An iterative eigendecomposition approach to blind
source separation, in: Proceedings of the Third International
Conference on Independent Component Analysis and Signal
Separation, ICA’2003, San Diego, USA, 2001, pp. 424-428.

[34] AM. Tomé, N. Ferreira, On-line source separation of temporally
correlated signals, in: Proceedings of the European Signal Processing
Conference, EUSIPCO2002, Toulouse, France, 2002.

[35] AM. Tomé, A.R. Teixeira, E'W. Lang, K. Stadlthanner, A.P.
Rocha, Blind source separation using time delayed signals, in:
Proceedings of the International Joint Conference on Neural
Networks, IJICNN’2004, vol. CD, Budapest, Hungary, 2004.

[36] AM. Tomé, A.R. Teixeira, E.W. Lang, K. Stadlthanner, A.P.
Rocha, R. ALmeida, dAMUSE—A new tool for denoising and BSS.
Digital Signal Processing, 2005.

[37] L. Tong, R. wen Liu, V.C. Soon, Y.-F. Huang, Indeterminacy and
identifiability of blind identification, IEEE Trans. Circuits Syst. 38 (5)
(1991) 499-509.

[38] R. Vetter, Extraction of efficient and characteristic features of
multidimensional time series, Ph.D. Thesis, EPFL, Lausanne, 1999.

[39] R. Vetter, J.M. Vesin, P. Celka, P. Renevey, J. Krauss, Automatic
nonlinear noise reduction using local principal component analysis

28

and MDL parameter selection, in: Proceedings of the IASTED
International Conference on Signal Processing Pattern Recognition
and Applications (SPPRA 02) Crete, 2002, pp. 290-294.

[40] P. Vitanyi, M. Li, Minimum description length induction, bayesianism,
and kolmogorov complexity, IEEE Trans. Inf. Theory 46 (2000)
446-464.

Peter Gruber was born in Bad Homburg,
Germany, on April 12, 1976. He obtained a
degree in Mathematics in 2002 at the University
of Regensburg. He is currently working on his
Ph.D. thesis at the Biophysics Department of the
University of Regensburg. His research topics
include statistical signal processing, linear and
nonlinear independent component analysis and
geometric measure theory.

Kurt Stadlthanner received his Diploma degree in
Physics from the University of Regensburg in
2003. He is currently a doctoral student at the
Institute of Biophysics, Neuro- and Bioinformatics
group, at the University of Regensburg. His
scientific interests are in the fields of biological
data processing and analysis by means of blind
source separation and support vector machines.

M. Bohm received his physics diploma from the
University of Regensburg in 2004. He is currently
a doctoral student at the Institute of Biophysics,
Neuro- and Bioinformatics Group, University of
Regensburg. His scientific interests are in the
fields of blind source separation, bio-inspired
optimization and brain modelling.

Fabian J. Theis obtained M.Sc. degrees in Mathe-
matics and Physics at the University of Regensburg
in 2000. He also received a Ph.D. degree in Physics
from the same university in 2002 and a Ph.D. in
Computer Science from the University of Granada
in 2003. He worked as visiting researcher at the
department of Architecture and Computer Tech-
nology (University of Granada, Spain), at the
RIKEN Brain Science Institute (Wako, Japan) and
at FAMU-FSU (Florida State University, USA).
Currently, he is heading the ’signal processing &
information theory’ group at the Institute of Biophysics, University of
Regensburg, Germany. His research interests include statistical signal
processing, linear and nonlinear independent component analysis, over-
complete blind source separation and biomedical data analysis.

Elmar W. Lang received his physics diploma with
excellent grade in 1977 and his Ph.D. in physics
(summa cum laude) in 1980 and habilitated in
Biophysics in 1988 at the University of Regens-
burg. He is apl. Professor of Biophysics at the
University of Regensburg. He is currently associ-
ate editor of Neurocomputing and Neural
Information Processing—Letters and Reviews.
His current research interests focus mainly on
machine learning and include biomedical signal
processing, independent component analysis and



P. Gruber et al. | Neurocomputing 69 (2006) 1485-1501 1501

blind source separation, neural networks for classification and pattern
recognition as well as stochastic process limits in queuing applications.

Ana M. Tomeé received her Ph.D. in Electrical
Engineering from University of Aveiro in 1990.
Currently she is Associate Professor of Electrical
Engineering in the Department of Electronics and
Telecomunications/IEETA of the University of
Aveiro where she teaches courses on Digital Signal
Processing for Electronics and Computer Engi-
neering Diploms. Her research interests include
Digital and Statistical Signal Processing, Indepen-
dent Component Analysis and Blind Source
Separation as well as Classification and Pattern
Recognition Applications of Neural Networks.

Ana Rita Teixeira received her diploma degree in
mathematics applied to technology from Uni-
versity of Porto in 2003. Currently, she is
finishing the M.Sc. of electronics and telecom-
munications at the University of Aveiro. Her
research interests include biomedical digital
signal processing as well as principal and
independent component analysis.

Carlos G. Puntonet received a B.Sc. degree in
1982, an M.Sc. degree in 1986 and his Ph.D. degree
in 1994, all from the University of Granada, Spain.
These degrees are in electronics physics. Currently,
he is an Associate Professor at the “Departamento
de Arquitectura y Tecnologia de Computadores”
at the University of Granada. His research interests
lie in the fields of signal processing, linear and
nonlinear independent component analysis and
blind separation of sources, artificial neural net-
works and optimization methods.

J.M. Gorriz received the B.Sc. in Physics and
Electronic Engineering from the University of
Granada, Spain and the Ph.D. from the Uni-
versity of Cadiz, Spain in 2000, 2001, and 2003,
respectively. He is currently Assistant Professor
at the University of Granada. He is actually
developing a Ph.D. in Voice Activity Detection,
Robust Speech Recognition and Optimization
Strategies. His present interests are in Statistical
Signal Processing and its applications to speech.



	Denoising using local projective subspace methods
	Introduction
	Feature space embedding
	Embedding using delayed coordinates
	Clustering
	Principal component analysis and independent component analysis

	Denoising algorithms
	Local ICA denoising
	Embedding and clustering
	Decomposition and denoising
	Reconstruction
	Parameter estimation

	Denoising using delayed AMUSE
	Embedding
	Generalized eigenvector decomposition
	Implementation of the GEVD

	Kernel PCA based denoising

	Applications and simulations
	Denoising with Local ICA applied to toy examples
	Discussion of an MDL based subspace selection
	Comparisons between LICA and LPCA
	LICA denoising with multi-dimensional data sets

	Denoising with dAMUSE applied to toy examples
	Denoising of protein NMR spectra
	Local ICA denoising
	Kernel PCA denoising
	Denoising using delayed AMUSE


	Conclusions
	Acknowledgements
	References


