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Abstract

This study investigates the control of spike-timing dependent plasticity (STDP) by
regulation of the dendritic spike threshold of the postsynaptic neuron. The control
of synaptic plasticity may be implemented in the electrosensory system of mormyrid
electric fish by feedback control. Dendritic spikes constitute the timing signal of the
STDP learning rule that regulates the output of this initial electrosensory processing
structure, and the threshold of these spikes appears to be regulated by recurrent
inputs from an external nucleus. However, the control dynamics must be shown
to be stable, and the conditions for stability would constrain potential models of
synaptic regulation. The global stability conditions for the control of STDP are
derived using nonlinear control dynamical theory.
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1 Introduction

Central processes can influence how the nervous system interprets incoming
sensory information. This control of sensory processing allows the nervous sys-
tem to focus on important new information needed to perform specific tasks.
However, it is presently unclear how sensory feedback, via central structures,
affects sensory processing.

A system where centrally originating signals are well-characterized is the initial
stage of sensory processing in the electrosensory system of mormyrid electric
fish. This weakly electric fish is a nocturnal species that senses its environment
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by emitting a weak electric pulse and then detecting the distortions caused
by external objects with electrosensory receptors in its skin. This electrosen-
sory system requires exceptional timing and precision in order for the fish to
navigate through its environment and identify external objects.

Sensory image cancellation of mormyrid electric fish. The site of ini-
tial electrosensory information processing is the electrosensory lateral line lobe
(ELL), a cerebellum-like neural structure (Fig. 1A). Neurons of the ELL are
affected not only by electrosensory input, but also by signals from central re-
gions of the brain that inform the ELL about the timing of the motor command
that elicits the electric pulse. In addition, the output of the ELL is fed back
via an external nucleus, the preeminential nucleus (PE), that receives input
from higher processing centers. Thus, electrosensory processing is controlled
by both initial processing in ELL and by higher centers.

The responses of neurons in the ELL are found to be adaptable to chang-
ing sensory conditions that effect the electrosensory system. This adaptability
leads to the ability of these neurons to store a negative image of the fish’s
expectation of its own electrical signal. The negative image essentially pre-
dicts expected sensory input that is specific to the time course of the sen-
sory response and its polarity (excitation or inhibition). The ELL acts as an
adaptive sensory processor that cancels predictable sensory input [1], allowing
unexpected input to stand out. However, the adaptive processes that lead to
the prediction may be controlled by descending input from sensory feedback.

The motor command signals drive parallel fibers in ELL at various delays
to about 80 ms [2]. Parallel fibers synapse onto apical dendrites of medium
ganglion (MG) cells in the molecular layer of the ELL (Fig. 1A). MG cells are
inhibitory, Purkinje-like interneurons, synapsing locally onto the efferent cells
(LF in Fig. 1A), the sole output of the ELL. Electrosensory input from the
periphery is transmitted to MG and efferent cells via interneurons in the deep
layers of ELL.

Spike-timing dependent synaptic plasticity (STDP). Anti-Hebbian spike-
timing dependent plasticity (STDP) [3] at the synapses from parallel fibers
onto MG cells has been demonstrated in vitro [1,4]. The size and direction
of changes in synaptic efficacy depend on the exact timing between pre- and
postsynaptic spikes at the synapses from parallel fibers onto MG cells. MG
cells have 2 types of spikes: (1) narrow, low-threshold, axon spikes that do
not invade the soma, and (2) broad, high-threshold, soma-dendritic spikes
that propagate into the apical dendrites [5]. The timing of dendritic spikes
participates in the STDP of the parallel fiber synapse [4]. Depression of the
excitatory postsynaptic potential (EPSP) was observed only after pairings in
which the dendritic spike was evoked within 60 msec after the onset of the
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parallel fiber EPSP, while pairings at other delays yielded potentiation. This
synaptic plasticity controls the adaptive responses of MG cells to changing
sensory input so that predictable sensory images are ignored and explain the
generation of negative images as observed in vivo [6,7]. Recent studies sug-
gest that centrally generated signals actively control the threshold of dendritic
spikes following the EOD motor command and, thus, control synaptic plas-
ticity and adaptive sensory processing in the ELL. However, it is unclear how
feedback loops from central regions of the brain affect the storage of sensory
information and learning dynamics.

The goal of this study is to determine how learning dynamics are affected by
feedback. Recent mathematical modeling work by the authors suggests that
adaptation in ELL must be modulated to maintain the motor command-driven
EPSP of MG cells. The model suggested that adaptation could be modulated
by increasing the threshold of the dendritic spike during the motor command-
driven EPSP. Subsequent experimental work showed that there is, indeed, an
increased dendritic spike threshold during the motor command-driven EPSP.

Synaptic inhibition has been found to modulate synaptic plasticity in hip-
pocampal slices, presumably by regulating the back-propagation of dendritic
spikes [8]. Inhibitory input has been observed in MG cells during the motor
command. One possible source of inhibition is from cells in PE that are excited
by the output of ELL. The morphology and physiology of MG cells suggests
the hypothesis that inhibitory synaptic inputs to the apical dendrites, that are
time-locked to the motor command, increase the threshold of dendritic spikes
while excitatory inputs simultaneously excite axon spikes.

2 Results

This project investigates how descending inputs can control the shape of initial
sensory responses by controlling synaptic plasticity, and whether that control
of synaptic plasticity is stable. The problem is set up as a nonlinear control
theoretic model to help elucidate how various control inputs affect the learning
dynamics. The authors find that the feedback control of synaptic plasticity is
stable only if the spike-timing dependent learning rule is (at least marginally)
stable. In addition, it is found that stability of small perturbations around
equilibrium is maintained if the feedback gain of MG cell output is small.
Since the output gain is determined by noise in spike generation of the feedback
circuit, then the conclusion is that noisy neural transmission in the feedback
loop is required to stabilize feedback regulation of synaptic plasticity.

We will follow the development in [6] and [9] for the equations with some
changes of the notation. We assume to have N time steps, x1, . . . , xN within
a single EOD cycle. For each n = 1, . . . , N , we let Vn(t) denote the membrane
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Fig. 1. Circuitry of the electrosensory lateral line lobe (ELL) with threshold control
loop. (A) The electric organ corollary discharge (CD) signals enter the ELL through
the eminentia granularis posterior (EGp) that gives rise to parallel fibers respond-
ing to each CD and through the juxtalobar nucleus that converges into granular
cells in the deep layers of ELL with electrosensory afferents. Parallel fibers (PF)
synapses excite medium ganglion (MG1) and large fusiform (LF) cells. STDP at
the PF synapse onto MG1 causes the output to adapt to the temporal pattern of
the electrosensory image. The output of the LF cells projects to the preeminential
nucleus (PE) and to higher centers of sensory processing and perception such as the
telencephalon. Recurrent inputs from the PE to the deep molecular layer may con-
trol the dendritic spike threshold, and therefore synaptic plasticity.(B) Data from
[4] showing STDP at the PF synapse onto MG1. The change in EPSP amplitude
depends on the time between onset of the EPSP and dendritic spike peak. Depres-
sion occurs only if a dendritic spike in a MG1 follows the arrival of a parallel fiber
spike within 60 msec; otherwise the synapse is potentiated.

potential of an MG cell in the ELL at time xn ms after the triggering of the
EOD in cycle t. The variable wn(t) will denote the weights on the excitatory
synapses. The interpretation is that for each n, wn(t) denotes the weight at the
synapse from a single parallel fiber. The equations relating all these variables
are as follows:

Vn(t) =
N∑

m=1

wm(t)E(xn − xm) + V el
n (1)

where E is the (normalized) EPSP waveform and V el
n is the electrosensory

signal in MG1 and LF. The dynamics for the synaptic weights are ∆wn(t) =
αw − βwLw(xb − xn), where Lw is the learning function and xb denotes the
time of occurrence of a broad spike following the beginning of each cycle. We
treat xb as a random variable with a distribution encoded by the probability
of a spike function, f(Vn(t), θn) = (1+exp{−µ[Vn(t)− θn]})−1, where µ > 0 is
a noise parameter and θn is the threshold at xn. The smaller the µ the more
noise there is in the system. In the noiseless limit, as µ →∞, the function f
becomes a discontinuous threshold function.

Using the probability distribution we will replace the function ∆w(xn, t) in
Equation (1) with its ensemble average
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〈∆wn(t)〉= αw − βw

N∑
p=1

Lw(xp − xn)f(Vp(t), θp) (2)

The corresponding equation for Vn(t) is

Vn(t + 1) = Vn(t) + αw − βw

N∑
p=1

(RT R)npf(Vp(t), θp) (3)

where we introduced the matrix R as Rij = E(xj − xi) i, j = 1, . . . , N and
assumed Lw = E.

3 Control System Formulation

We now want to look at Θ = (θ1, . . . , θN)T as a variable whose value is to
be adjusted by feedback from other nuclei. We will use the formalism from
control systems theory ([10]) to set up the equations governing a nonlinear
control system with Θ as the control variable. Equation (3) in vector form
becomes

~V (t + 1) = ~V (t) + αw1− βwRT R~f(~V (t), Θ) (4)

where ~f(~V (t), Θ) = (f(V1(t), θ1), . . . , f(VN(t), θN))T . For each vector Θ̂ we
will have an equilibrium V̂ (in fact, V̂ − Θ̂ is a multiple of the all ones vector
1) provided αw/βw < 1 [6]. The equilibrium V̂ is not just locally, but globally
asymptotically stable as long as µβw/8 < 1. That is, global stability is guaran-
teed if µ is small enough (i.e. noise is sufficiently high). This can be shown via
Lyapunov methods using xT Px as a Lyapunov function (after a translation),
where P is a suitable multiple of (RT R)−1. In fact, the stability results hold
for much more general functions than the sigmoid f defined above. All that is
needed is that the function be strictly increasing and that its derivative satisfy
βw max f ′(x) < 2 (moreover, a different f may be used on each component).
This makes it possible to guarantee stability for a large class of feedback laws
of the form θi = θ̂i +g(Vi− V̂i) with g(0) = 0. Indeed, consider such a law. The
resulting closed loop system has the same form as (4) with f(Vi(t), θi) replaced
by f(Vi(t), θ̂i + g(Vi − V̂i)). The derivative of the new composite function at
any point has the form µf(1− f)(1− g′), where f and g′ are the values of f
and g′ at the given point. This shows that, if f is the sigmoid above satisfying
the stability condition, the feedback law will not destabilize the system as long
as 0 < g′ < 1 (at all points), and moreover, the system will remain globally
stable.

Large values of g lead to multiple equilibria, some of them unstable. Negative
values of g can cause oscillations around unstable equilibria while the weights
remain bounded. Applicability of the model under those values of g has not
yet been determined empirically. In conclusion, the control loop via PE that
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allows the electrosensory system to regulate its own output, will be stable if
the learning rule is stable, and also if the response properties of neurons in
PE are such that the gain is not too great.
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