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Abstract

Recent progress in chips-neuron interface suggests real biological neurons as long-term alternatives to

silicon transistors. The first step to designing such computing systems is to build an abstract model of

self-assembled biological neural networks, much like computer architects manipulate abstract models of

transistors. In this article, we propose a model of the structure of biological neural networks. Our model

reproduces most of the graph properties exhibited by Caenorhabditis elegans, including its small-world

structure and allows generating surrogate networks with realistic biological structure, as would be needed

for complex information processing/computing tasks.

Key words: Biological neural networks, Network structure, Growth model, Graph properties, Computing devices

1. Introduction

Carbon nanotubes look like a promising alternative technology to silicon chips because the

manufacturing process, possibly based upon self-assembly, will be much cheaper than current

CMOS processes [9]. On the other hand, these individual components may turn out to be much

slower than current transistors, exhibit lots of manufacturing defects, and may be difficult to

assemble into complex and irregular structures like today’s custom processors. Current research

are focused on building increasingly large structures of carbon nanotubes and understanding how

they can be transformed into computing devices [14].

However, carbon nanotubes, though the most promising and short-term, is not the only possible

alternative to silicon chips. Other emerging technologies, even if they are less familiar to chip de-

signers, should be explored as well. In this article, we focus our attention on biological neurons.
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They share some properties with carbon nanotubes: they have a low design cost, but they will

provide even slower components, a significant percentage of these components will be similarly

faulty, and it will be hard to assemble them into complex, irregular pre-determined structures. On

the other hand, they have a significant asset over carbon nanotubes: we already know it is possi-

ble to self-assemble them into very large structures capable of complex information processing

tasks.

While proposing computing structures based on biological neurons may seem preposterous at

first sight, G. Zeck and P. Fromherz [18,56] at the Max Planck Institute for Biochemistry in

Martinsried, Germany, have recently demonstrated they can interface standard silicon chips with

biological neurons, pass electrical signals back and forth through one or several biological neu-

rons, much like we intend to do with carbon nanotubes, i.e., hybrid carbon nanotubes/standard

CMOS chips [21]. Moreover, based on this research work, Infineon (one of the main European

chip manufacturers) has recently announced it is investigating a prototype of a chip (called “Neu-

roChip” that can interconnect a grid of transistors with a network of biological neurons [29],

based on Fromherz’s research work. So, while we will not claim this research direction should

be mainstream, it is certainly worth exploring.

Now, computing machines, such as current processor architectures, are designed using a very

abstract model of the physical properties of transistors and circuits. Typically, what processor

architects really use (e.g., at Intel or other chip manufacturers) is how many logic gates can be

traversed in a single clock cycle, and how many logic gates can be laid out on a single chip.

They do not deal with the complex physics occurring at the transistor level but rely upon a very

abstract and simplified model of the undergoing physical phenomena. Similarly, if we want to

start thinking about computing systems built upon biological neurons, we must come up with

sufficiently abstract models of biological networks of neurons that will enable the design of large

systems without dealing with the individual behavior of biological neurons.

The vast literature on artificial neural networks provides little indications on the structures of bi-

ological neural networks [24]. To understand what kind of computing systems can be built upon

biological neurons, we must first understand the kind of structures into which biological neu-

rons can self-assemble. Consequently, we have turned to biology for that issue, and the current

article is a joint work between computer science and biology research groups. We start with the

biological neural network of Caenorhabditis elegans, which has been described in great details

in [2,53]. Based on this work, Oshio et al. [40] have recently built a database which describes

this biological neural network and facilitates its manipulation. Using this map as an oracle, we

define a model of network growth in real space and provide empirical evidence that the charac-

teristics of networks built upon this model and the above mentioned biological network closely

match. Since this model describes the network growth using simple local rules, it can be used to

represent much larger networks, as would be needed for computing systems. In other words, it

allows the generation of surrogate networks with structures comparable to that of C. elegans .

There are many studies on biological neural networks, but they mostly focus on the identification

of regular biological networks with clear structures, such as the basic circuits of the neocor-

tex [15,16], and seldom account for the seemingly irregular structure of the vast majority of

biological neural networks. We provide a statistical description of these apparently unstructured

biological networks, that can be used as a building block for computing systems studies. Future

work will focus on analyzing the evolution and learning properties of neural networks with such

structures.

In Section 2, we present the biological neural network of C. elegans and study its properties.

In Section 3, we build a network model with similar properties, provide empirical evidence that
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Fig. 1. Visual illustration of the neural network of C. elegans . Neurons are displayed as nodes and connections between

them are symbolized as links. Spatial positions are arbitrary.

it closely emulates the neural network of C. elegans and provide a detailed comparison of the

model and its biological counterpart.

2. A biological neural network

C. elegans is a millimetric worm with a simple network of 302 neurons. All the connections

between its neurons have been mapped [2,53] and are believed to be relatively well conserved

between individual worms. To construct a graph model of this system, we used the electronic

database recently published by Oshio et al. [40]. A part of this system, comprising 20 neurons

and referred to as the ”pharyngeal system” is dedicated to control rhythmic contractions of a mus-

cular pump that sucks food into the worm body [2]. This system is almost totally disconnected

from the rest of the network. Following Morita et al. [37], we neglected here the pharyngeal sys-

tem and only deal with the remaining 282 neurons. We then further neglected those neurons for

which no connection had been described, as well as the connections to non specified cells. At the

end, the network thus consisted of 265 neurons. Unlike Morita et al. [37], we treated each link

as directed, i.e., we differentiated links from neuron i to neuron j and links from j to i; however,

we collapsed multiple identical links into a single one. Furthermore, C. elegans neural network

displays a great number of gap junctions. These are electrical synapses (as opposed to chemi-

cal ones) that provide electrically conductive links between two neurons. Contrarily to chemical

synapses, these electrical couplings are bidirectional (i.e. the gap junction conductance depends

on the voltage difference between the two neurons). Here, we treated gap junctions as pairs of

links with opposite directions. Overall, we obtain 2335 unique links (or 10234 connections if we

allow redundant links with the same orientation between two neurons).

Figure 1 shows a visual illustration of the corresponding neural network. A visual inspection of

this figure, especially the peripheral nodes, 1 indicates that the network is rather heterogeneous:

strongly connected nodes coexist with sparsely connected ones. We further tried to estimate the

nature of the probability distribution of the connectivity (or graph degree), as it plays a fundamen-

tal role in characterizing the network type. The probability distribution of the connectivity in C.

1 On paper, the core of the network structure is barely visible, but on a screen, it can be inspected through zooming and

3D manipulations; however the peripheral structure is the same as the core structure.
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Fig. 2. Cumulated distributions of the connectivity, P (x > k), where k is the total connectivity (i.e. the number of links

to and from each node), for the C. elegans neural network shown Fig 1. The same data are presented as a linear-linear

(A), a log-log (B) and log-linear plot (C).

elegans neural network has been controversial. A first study claimed the distribution was compat-

ible with a power-law (graphs determined by power-law distributions are also called “scale-free”

graphs) [5]. Not long after, this result was contradicted by an article from H.E. Stanley’s team that

studied outgoing and incoming connectivity separately (and ignored gap junctions) and showed

that both distributions were exponential, thus excluding scale-free properties [3]. Finally, Morita

et al. put forward correlations among incoming, outgoing and gap junctions to explain that the

total degree (incoming + outgoing + gap junctions) was neither exponential nor displayed a clear

power law decrease [37]. Figure 2 presents the distribution of the total connectivity for the C.

elegans neural network displayed Fig 1. The center panel is a replot of the left one, in log-log

coordinates. A power law decrease would yield a straight line in this representation, which is

clearly not the case. Further, the right panel is another replot of the same data, in log-linear coor-

dinates. Here, a straight line would indicate an exponential decrease. Clearly, the curve is closer

to an exponential decay than a power-law one. However, the agreement is far from perfect. Thus,

our results confirm that connectivity distribution for C. elegans neural network is not scale-free,

but rather vaguely exponential.

We will see in the next section that several network characteristics are necessary to emulate this

network structure; more importantly, we will extract simple local rules governing the network

growth, enabling the development of potentially large but realistic biological networks using the

same rules.

3. A model of biological neural networks

3.1. The model

Small-World graphs and neural networks. The global behavior of most large systems emerges

from local interactions between their numerous components. At an abstract level, these systems

can often be viewed as graphs, with each link representing the interaction between two compo-

nents. Such graph theory approaches have proven successful in understanding the global proper-
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ties of several complex systems originating from highly disparate fields, from the biological to

social and technological domain. Hence the same (or similar) reasoning can be applied to analyze

cell metabolism [30], the citation of scientific articles [39], software architecture [49], the Inter-

net [5] or electronic circuits [27]. A common feature of all these networks is that their physical

structure reflects their assembly and evolution, so that their global features can be understood

on the basis of a small set of simple local rules that control their growth. The most common

statistical structures resulting from these local rules are the so-called small-world and scale-free

networks. In the broadest sense, the “small-world” phenomenon relates to sparse networks that

display a low mean shortest path (or more precisely one that scales as the logarithm of the net-

work size). However, in recent literature, the term “small-world network” is usually employed

in the sense of Watts & Strogatz’s model [52], where “small-world” networks are networks with

both a low mean shortest path (i.e. displaying the “small-world” phenomenon) and a clustering

index that is much higher than in comparable purely random networks (formal definitions of

these network structure observables are given below). Actually, this definition encompasses non-

trivial networks in which both the local (high clustering index) and global (short mean shortest

path) properties are very efficient. Another important frequently encountered property in real-

world networks is the scale-free structure, that is defined by a connectivity probability density

function that decreases as a power law instead of an exponential decay. At a much coarser grain,

graph theory methods have recently been applied to networks of cortical areas [48,17], i.e., not

networks of neurons but networks of neuron areas, with the prospect of understanding the net-

work functions. Since we target the characterization of networks of biological neurons, we study

the neural network of the millimetric worm C. elegans at the level of individual neurons, and

attempt to derive a network growth model that closely emulates it.

Most complex (sparse) networks can be categorized into four families [6]: purely random net-

works, regular networks, small-world networks and scale-free networks (note however that these

categories are not exclusive, as many scale-free networks are also small-world ones). In purely

random networks (also known as Erdős-Rényi graphs), two nodes i and j are connected with a

predefined probability independently of all others. These graphs are characterized by short paths

between two nodes (denoted λ) and a low clustering (denoted 〈C〉). On the opposite, regular

graphs (where each node has the same connectivity) are characterized by a high clustering and

usually display a large average shortest path. Between these two extremes, small-world networks

(in the sense of [52]) display both small average shortest paths and a high degree of clustering.

For most small-world networks, P (k), i.e., the probability density function of the connectivity k,

decreases very quickly (exponentially) beyond the most probable value of k, which thus sets the

connectivity scale. However, in some graphs (such as the Internet), P (k) decreases as a power-

law of k (P (k) ∝ k−γ), i.e., in a much slower way [42]. In this case, nodes with a very high

connectivity (hubs) can also be present with a significant probability so that the connectivity does

not display a clear scale, hence the term “scale-free” networks.

We now formally introduce the parameters of a network model. Besides the number of nodes N
and number of links K, the structural characteristics of complex networks are mainly quantified

by their link density ρ, average connectivity 〈k〉, connectivity distribution P (k), average short-

est path λ and average clustering coefficient 〈C〉 [47]. The network density ρ is the density of

links out of the N(N − 1) possible directed links 2 (recall multiple links between two nodes are

considered a unique link and self-connections are forbidden)

2 Each node can have at most N − 1 outgoing links, so the maximum number of links is N(N − 1).
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ρ = K/
(

N2 − N
)

(1)

The connectivity (or degree) ki of node number i is the number of links coming from or directed

to node i. P (k) is the probability density function of the ki’s and 〈k〉 their average over all the

nodes in the network. Let d(i, j) be the shortest path (in number of neurons) between neuron i
and j, then λ is its average over the network

λ = 1/
(

N2 − N
)

∑

i,j

d(i, j) (2)

The clustering coefficient of a node i with ki (incoming plus outgoing) connections is defined by

Ci = Ei/
(

k2
i − ki

)

(3)

where Ei is the number of connections among the ki neighbors of node i, excluding the connec-

tions between a neighbor and node i itself. The average clustering coefficient 〈C〉 is the average

of the Ci’s over all nodes and expresses the probability that two nodes connected to a third one

are also connected together (degree of cliquishness).

We also quantify the average level of asymmetry between incoming and outgoing links. To this

aim, we calculate for each node an asymmetry index

αi =
|kout

i − kin
i |

ki

(4)

where kout
i and kin

i are, respectively, the number of links leading out of (out-degree) or into

(in-degree) node i (i.e. kout
i + kin

i = ki). The average value of the αis over the network, 〈α〉,
expresses the tendency of the nodes to have unbalanced out-degree and in-degree values. Its value

is 0 when all nodes in the network have as many incoming links as outgoing ones, and 1 when

nodes have exclusively incoming or outgoing links.

Further information about the network structure can be obtained by inspecting the k-dependence

of C(k), the average clustering coefficient restricted to nodes of connectivity k

C(k) =

∑

i δkikCi
∑

i δkik

(5)

with Kronecker’s Delta

δij =







1 if i = j

0 if i 6= j

In many real-world networks, such as actor networks or the World Wide Web, C(k) decreases

as a power law of k [46], indicating that high degree nodes are more likely to have a poorly

interconnected neighborhood. This property is a strong indicator of the hierarchical organization

of these scale-free networks.

Finally, we quantified the correlation among the connectivities of two connected nodes by the

conditional probability P (k′|k) that a link with connectivity k is linked to a node with connec-

tivity k′ [41]. To this aim, we compute for each node i the average connectivity knn,i of i’s
neighbors [7] (a neighbor being a node having at least one link leading out of or into i)

knn,i =
1

ni

∑

i

aijkj (6)

where ni is the number of i’s neighbors and aij = 1 if j is a neighbor of i, 0 else. The average

value of knn restricted to nodes of connectivity k is then
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Network ρ 〈k〉 λ 〈C〉 〈α〉

C. elegans 0.033 17.62 3.19 0.173 0.358

random 0.033 17.62 2.79 0.0334 0.192

model 0.033 17.58 3.23 0.181 0.421

Table 1

Structural characteristics of the neural network of C. elegans shown in Figure 1, a comparable random (Erdős-Rényi)

network and the network obtained with the proposed growth model. Data for the random and model networks are averages

over 100 network realizations. See text for definition of the listed properties. The parameters for the model network are

Lx = Ly = 15, Lz = 300 (neuron size units), Pnew = 0.00130, ξ = 10, N = 265

knn(k) =

∑

i δkikknn,i
∑

i δkik

(7)

The evolution of knn(k) with k is an important indicator of mixing properties in the network

(mixing by node degree). If knn increases with k, highly connected nodes are more likely to

be connected to highly connected nodes. This property, known as “assortative mixing”, is often

found in social networks, for example [7], while the opposite (“disassortative mixing”) is a prop-

erty of the Internet, for instance [41].

The main structural characteristics of the C. elegans neural network are indicated in Table 1.

Compared to a random network with the same density, this neural network has a similar av-

erage shortest path but the clustering has increased almost fivefold. This means that, in the C.

elegans neural network, one neuron can reach any other neuron in only three connections on

average. This is a clear sign of small-world properties. Considering the network is treated here as

a directed graph, these results are coherent with previously published estimates [52,13]. Another

characteristic of C. elegans network, that can be seen from Table 1, is the slight asymmetry of its

node connectivity. Indeed, compared to a random network, the value of the asymmetry index 〈α〉
for the network of C. elegans is almost twice its value in a comparable random network. Hence,

the neurons of C. elegans are more likely to present unbalanced in- and out-degrees than if the

connection directions were random.

In biological neural networks, distance matters. Most network growth models do not consider

the physical distance between two nodes (neurons) [34]. For instance, most scale-free networks

are obtained through a preferential attachment rule which postulates that new nodes are linked to

the already most connected nodes [5]. Not only this development rule implies some global con-

trol mechanism (i.e., a node must somehow know which are the most connected nodes) which

seems unlikely in the case of a neuronal system, but it also implies that long connections are

just as likely as shorter ones. Similar arguments can be opposed to the Watts-Strogatz rewiring

algorithm that generates small-world networks through addition of long-range connections to a

pre-existing regular circular network [52]. An improved variation of the Watts-Strogatz algo-

rithm restricts rewiring to a local spatial neighborhood around each node [13] thus implicitly

introducing the distance factor. However, these last two models are not network growth models

and it is unlikely that they can be modify to yield growth models. They thus do not provide a

biologic realistic metaphor. In opposition to these models, we address in the present work the

specific case of biological neuron network growth in real three dimensional space.

Several observations support the key notion of physical distance. Long distance connections are

expensive in biological neural networks because they imply large volumes of metabolically active

tissue to be maintained and long transmission delays [12]. Such long-distance connections are
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thus much less likely than short-distance ones, just like long-distance links between two nodes in

Internet or in airport transportation systems are more unlikely than short ones. Indeed, connect-

ing two nodes on the Internet and maintaining the resulting physical line comes together with a

cost proportional to the line’s length, which favors shorter links [55]. Likewise, fuel cost, flight

length limitations or geo-political reasons [23] are possible explanations for the increased proba-

bility of small-distance connections in airplane networks [19]. Moreover, the total wiring length

cost seems to be a crucial factor of cortical circuit development [10,11]. The network structure

itself depends on the wiring length. For instance, small-world properties have been shown to

emerge naturally upon minimization of the Euclidean distance between nodes [35]. Furthermore,

Kaiser et al. [33,32] have recently shown that the network structure during growth in a metric

space is influenced by neuron density (number of neurons per unit volume) when growth occurs

in a spatially constrained domain.

A network growth model for C. elegans . We now propose a network growth model in a

three-dimensional space. Neurons are abstracted as cubical volumes of unit size. The position

of each neuron on the cubic lattice is defined by the integer coordinates (i, j, k) of its cen-

ter of mass and spans over the volume comprised between (i − 1/2, j − 1/2, k − 1/2) and

(i + 1/2, j + 1/2, k + 1/2). The lattice dimensions are Lx, Ly and Lz , defining a volume of

Lx×Ly×Lz unit sizes. We start by placing a unique neuron at the center of the three-dimensional

lattice. Each step of the growth algorithm then consists of six elementary substeps:

(i) choose a neuron n at random among the neurons already connected in the network (origin

neuron). Let (i, j, k) be the spatial coordinates of n on the lattice.

(ii) Then choose a destination site (i′, j′, k′) at distance d with probability

P (d) = 1/ξ exp(−d/ξ) (8)

where d is the Euclidean distance between (i, j, k) and (i′, j′, k′), and ξ is a parameter

that sets the rate of P (d) decay with d. If the chosen destination site is located outside the

lattice borders, go back to substep 1. Thanks to the exponential distance distribution, the

probability to create a connection of a given length (at a certain distance) decreases rapidly

with the length, which accounts for the high cost of long wires. Note that, in biologi-

cal neural networks, new connections are established through cell outgrowths (neurites)

from existing neurons; these outgrowths are guided by gradients of chemical concentra-

tion which similarly decay rapidly with distance. Exponentially decaying-distance proba-

bility is classically used in the modeling of networks for which long-distance wirings are

very costly [55,23]. Furthermore, recent evaluations of the probability distribution of the

internode length in the C. elegans network have clearly evidenced such an exponential

decay (albeit with several characteristic length scales) [1]. The 1/ξ prefactor is added as

a normalization term so that the distribution function is unity for infinite distances. Note

however that in practice, because distances greater than the lattice volume are rejected, the

possible distances are indeed constrained by the lattice size.

(iii) If a neuron n′ of the network already exists at the destination site (i′, j′, k′), a connection

is created between n and n′.

(iv) If there is no neuron at the destination site, a new neuron n′ is placed at the destination site

and a connection is created between n and n′ with probability Pnew; the value of Pnew is

discussed below.

(v) If a connection has been created during one of the two preceding steps, its direction (n →
n′ or n′ → n) is chosen with probability Pn→n′ = 1−Pn′→n = kout

n /
(

kout
n + kin

n

)

. This

process accounts for the property that, C. elegans neurons exhibit slightly unbalanced in-
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Fig. 3. Structural characteristics of the networks obtained with the proposed model as a function of the probability Pnew

that a new neuron connects to the network. Values are averages over 100 realizations. The dotted line indicates the

corresponding value found for the network of C. elegans . Other parameters were Lx = Ly = 15, Lz = 300 (neuron

size units), ξ = 10 and N = 265

and out-degrees (see above).

(vi) go back to substep 1.

This algorithm iterates until the network contains a prescribed number of neurons N . Because

we ultimately want to compare the model results with C. elegans we set N = 265 in this study.

For most of the presented results, the size of the lattice volume in which the network growth is

restricted was determined from C. elegans body dimensions. The body length of the adult varies

between 1.00 [4] and 1.30 mm [36], and its body volume is close to 4.0 nL [25]. Assuming the

body is a Lz = 1.20mm-long square cylinder hence yields Lx = Ly ≈ 60 µm. The diameter of

a neuron cell body (soma) varies according to the estimations between 3.8 [22] and 5 µm [54].

Using a 4 µm-diameter, we obtain Lx = Ly = 15 and Lz = 300 neuron (soma) size units.

3.2. Results

New neurons are unlikely to be created in already cluttered areas. The probability Pnew

that a new neuron is integrated in the preexisting network is the most important parameter in

the model. As seen in Figure 3, connection density, average connectivity and clustering index

increase as Pnew decreases while the evolution of the average shortest path λ is biphasic, with a

maximum at Pnew ≈ 0.01. Thus, decreasing Pnew below 0.01 yields networks with increasingly

strong small-world properties together with increasingly high average connectivity.

Interestingly, the results of Figure 3 show that the studied structural properties of the networks

obtained with our algorithm match that of C. elegans neural network for Pnew ≈ 1.3 × 10−3.

The main structural characteristics of the networks obtained using this algorithm with Pnew =
1.30 × 10−3 are listed in Table 1, and can be compared to the values obtained for C. elegans .

Clearly, the values obtained with the model are in very good agreement with those observed in

the real network. Even the node asymmetry of the model networks is fairly close (within 15%) to

that observed in C. elegans . Further comparisons between the real network and our model can

be found in Figure 4. The connectivity distribution of the real network (Fig. 4A) is clearly well

approximated by the model with Pnew = 1.30 × 10−3. The clustering index for nodes of con-

nectivity k, C(k) is displayed in Fig. 4B. For the C. elegans network, albeit strong fluctuations
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obtained with the model using Pnew = 0.00600 (dashed line) or 0.00060 (dashed-dotted line) are also displayed. (A)

Cumulated probability distribution of the connectivity k; (B) k-dependence of the average clustering coefficient restricted

to nodes of connectivity k, C(k) (Eq.5); (C) k-dependence of the average neighbor connectivity of nodes with degree k,

knn(k) (Eq.7). Other parameters for the model results were Lx = Ly = 15, Lz = 300 (neuron size units), ξ = 10
and N = 265. Results for the model are averages over 100 realizations.

are observed at low k values (k < 10), C(k) is largely constant up to k ≈ 40 and displays a rapid

decay after this cutoff value. Hence, in this network, the clustering index of most nodes does not

strongly depend on their connectivity with the exception of highly connected ones that tend to

have slightly less interconnected neighborhoods. All these properties are satisfactorily captured

by our model, including a close to independent behavior for k < 40, and a cutoff decay for highly

connected nodes. Finally Fig. 4C shows the average connectivity knn(k) of the neighbors of a

node as a function of the node connectivity k. A clear-cut behavior of C. elegans network is the

independence of knn(k) with respect to k. This indicates a perfect mixing by node degree: the

network is neither assortative nor disassortative. The behavior of our model related to this point

is partly satisfactory. The evolution of knn(k) for the real network is globally well rendered by

the model (at least for k > 10), albeit the behavior of the model for the less connected nodes is

more assortative than observed in C. elegans . However, it must be noted that, even for the low

values of k, the increase in the model results remains moderate (from k = 1 to k = 10, knn(k)
increases from ≈ 15 to ≈ 21.)

Taken together, these results indicate that the present model (with Pnew = 1.30 × 10−3 and

the other parameters given in Fig.4) yields networks that are statistically very similar to that of

C. elegans . It thus provides a simple way to generate network surrogates for the structure of

C. elegans neural networks and can be used to study the dynamical properties of these kinds

of structures (at least for those properties that do not critically depend on assortativity at low

connectivities). A crucial parameter for the model is the probability Pnew that a neuron of the

network uncovers a newcomer and connects it. Interestingly, realistic structural values are ob-

tained when this probability is rather low (Pnew ≈ 1.3 × 10−3). A biological interpretation of

this value is that natural neural networks would be very reluctant to admit new neurons in the

network (as only 1 trials out of ≈ 800 would be statistically successful). In fact, this probability

(which is actually a probability by time step, i.e. a probability rate) encompasses both the rate
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Fig. 5. Structural characteristics of the networks obtained with the proposed model as a function of the relative distance

parameter ξ (see Eq. 8). The value of newcomer neuron integration probability Pnew was 0.0013 (full thick line), 0.0060

(dashed-dotted line) or 1.00 (dashed line). Results are averages over 100 network realizations. Other parameters were

Lx = Ly = 15, Lz = 300 (neuron size units) and N = 265.

at which neurons belonging to the network discover newcomers that are not already part of it,

and the rate at which, once uncovered, these newcomer neurons are incorporated in the network.

Interestingly, recent results in neurobiology suggests that this rate is indeed low in real biological

neural networks. For instance, the time necessary for neurons to develop from isolated cells to

a fully connected mature network in vitro is very long, of the order of a month [50]. Likewise,

in adult mice hippocampus, newborn neuron incorporation is a complex process that needs more

than a month before newcomers are fully incorporated in the network and reach a mature mor-

phology [51,20]. Finally, it has recently been suggested that the lack of neural turnover and/or

replacement of injured neurons in several parts of the adult brain is not due to the absence of

potentially competent cell, but, more probably, to a strong reluctance of the neurons to accept

newcomers into an already established neural network [45]. In light of these findings, our results

suggest that this strong reluctance could be an important factor for the structure of the networks.

For instance a somewhat trivial effect concerns the high average connectivity observed in biolog-

ical neural networks: if new neurons can hardly emerge in already cluttered areas, connections

are mostly drawn among existing neurons, hence the connectivity increases.

In the rest of the paper, we turn to the study of the model itself and show how the structure of the

obtained networks depends on the model parameters.

Influence of neuron density. We first present results obtained when the local neuron density

changes. To this aim, we varied the parameter ξ of the connection distance probability, Eq.8.

When ξ decreases, the probability that two neurons are connected by long-distance connections

decreases, so that local neuron density increases. Figure 5 presents the results obtained for vari-

ous ξ values and three values for Pnew (the other parameters are set to the same values as Fig. 4).

Setting Pnew = 1, i.e. a new neuron is certain to be created in a currently empty location, our

algorithm is closely related to the two-dimensional model recently proposed by Kaiser and Hilge-

tag [33,32]. In their paper, the obtained networks progressively acquire small-world properties

when neuron density increases. In our case, with Pnew = 1, the obtained networks are mainly

insensible to local density and remain random networks with very few connections. When Pnew

decreases, however, increasing local neuron densities has a marked effect on the networks. On

the one hand, connection density (and average connectivity) increases with increasing local den-

sity. On the other hand, this increase in connectivity comes together with increased clustering

and decreasing mean-shortest path. In other words, when the probability Pnew is low, increasing
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Fig. 6. Structural characteristics of the networks obtained with the proposed model as a function of the global average

neuron density N
Lx×Ly×Lz

with Pnew = 0.0013 (full thick line), 0.0060 (dashed-dotted line) or 1.00 (dashed line).

The different density values are obtained through variations of the domain volume (Lx ×Ly ×Lz), preserving the same

aspect ratio as in previous figures (i.e. Lx/Lz = 20) and the square section (i.e. Lx = Ly). The results are average

values obtained over 100 network realizations. Other parameters were ξ = 10, N = 265

local neuron density yields networks with small-world properties. Note however that the “inten-

sity” of the network small-world property slightly fades when local neuron density increases (i.e.

ξ decreases). Indeed, the relative values of the clustering index and the mean shortest path (i.e.

relative to comparable random networks) changes monotonously from 6.0 to 4.5, and from 1.15

to 1.30, respectively, when ξ is decreased from 12 to 1.

Another approach to increase neuron density consists in increasing the global (average) density.

To this aim, we varied the volume of the lattice domain in which the network growth is restricted,

while keeping constant its aspect ratio (Lz/Lx) and preserving the square section (Lx = Ly).

We then define the (global) neuron density as the average number of neurons by available vol-

ume, N
(Lx×Ly×Lz) . Taken together, the corresponding results (Fig. 6) are similar to those obtained

through increase of the local neuron density, except that the mean shortest path may present satu-

rating or biphasic behaviors. But here again, the neuron density has no influence on the networks

obtained with Pnew = 1, that remains extremely sparsely connected.

Shape might also matter. The overall shape of the domain can be an important determinant

of local neuron density as well. In the following, we present results obtained keeping the lattice

volume constant while varying one of the domain length (“baguette-like” lattices with square

sections). Figure 7 presents the evolution of the network properties when the aspect ratio (or

length-to-width ratio, Lz/Lx) is varied. The overall volume of the lattice domain is kept con-

stant to within < 0.5% of its value in Figures 3- 5 (i.e. 15 × 15 × 300 in neuron soma size

units). When Pnew = 1, the structural characteristics do once again not depend on the aspect

ratio. However, with lower Pnew values, all quantities (except λ) tend to increase as the domain

anisotropy increases. Most notably, for low Pnew values (such as 0.0013), the average connec-

tivity in highly anisotropic domains is almost sevenfold its value when the network is grown in

an isotropic cubic domain.

Hence, the decrease of the lattice cross section acts in synergy with low Pnew values to further

increase local neuron density. Figure 8 illustrates this effect with two examples of model net-

works grown in a moderately anisotropic domain (LZ/Lx = 20). With Pnew = 1 (Fig. 8, Left),

the network is sparsely connected and poorly clustered. In strong contrast, the network obtained
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Fig. 7. Structural characteristics of the networks obtained in “baguette-like” space domains with square sections

(Lx = Ly). The length-to-width ratio Lz/Lx is varied at constant domain volume (i.e. constant to within < 0.5%
of 15× 15× 300). The probability to connect to a new neuron Pnew = 0.0013 (full thick line), 0.0060 (dashed-dotted

line) or 1.00 (dashed line). Shown are averages over 100 realizations of the network. Other parameters are Lx = Ly

(square section), ξ = 10, N = 265.

with Pnew = 0.00130, (Fig. 8, Right) is densely connected and highly clustered. Occasionally,

as in the network displayed Fig. 8 (right), remote neurons can form a local group of clustered

neurons, far from the main core area. These structures remind of the organization of the neu-

rons into ganglions in C. elegans neural network. These results suggest that the anisotropy of the

space domain inside which network growth is restricted, could be an important factor to deter-

mine network connectivity and clustering.

This result could be of importance because many biological neural networks are restricted to

grow into highly anisotropic domains. This is of course the case of the worm C. elegans . But

these conclusions could also be of interest for the organization of neocortical minicolumns, that

are chiefly cylinders of 30−50 µm diameter and 3−6 mm length and contain of the order of 100

neurons [38,31]. The neurons inside a given column are generated during the middle of gestation,

some distance away from the cortex, in the same underlying ventricle zone [43]. They then mi-

grate from there to their cortical area following radial bundles of glial fascicles. Because of this

scaffolding by the glial cells, the migrating neurons are spatially confined to a radially elongated

domain all along the fetal cerebral wall. This spatial restriction appears to be a major determinant

of the columnar cytoarchitecture in the neocortical minicolumn [44]. Furthermore, the formation

of these minicolumns seems an intrinsically kinetic phenomenon, as neurons destined to deeper

cortical layers are generated earliest and are bypassed by those of the more superficial layers, ar-

riving later in the developing column [43,44]. Hence, minicolumn formation is a network growth

process whose structure is mainly imposed by a highly anisotropic restricting space domain. We

thus think that our model, endowed with adequate modifications (e.g. to account for laminar

organization) could be used to study network structuration in such cases.

4. Discussion

A major characteristic of our model is that it is spatially embedded, i.e. the neurons explicitly

live in a three-dimensional Euclidean space. In spite of the possible importance of this physical

embedding, most of the works about the topological properties of complex networks have ignored

it. In most studies, the only studied distance is the graph distance, i.e. the path length (in num-

ber of links) between two nodes. However, several recent works have been devoted to the study
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Fig. 8. Two examples of model networks grown in moderately anisotropic domains (Lz/Lx = 20) and Pnew = 1.00
(Left) or Pnew = 0.00130 (Right). Other parameters are Lx = Ly = 15 (square section), ξ = 10 and N = 265. Note

that the neuron radius is not to scale.

of networks in Euclidean physical space (reviewed in [8], for instance). To account for the ten-

dency of real-world networks to present more short-range than large-distance connections, some

of these works have studied the structures generated when the average physical distance between

the nodes is minimized. This process is known to yield a rich variety of structures, including

small-world and scale-free ones, when the distance to be minimized is the graph distance [28].

Some models have compared the networks obtained when the optimization pressure is put on the

graph distance or on the Euclidean distance or intermediate situations between both [35,19]. In a

first report, Mathias and Gopal studied a network of nodes arranged on a two dimensional ring.

When only the graph distance is taken into account, the obtained networks are random star-like

ones with long-distance links and a few hubs, while optimizing the Euclidean distance between

nodes only rather leads to regular networks. Small-world networks are found in the intermediate

regime, where the optimization pressure is partly directed towards Euclidean distance and partly

towards graph distance minimization [35]. More recently, Gastner and Newman obtained com-

parable results when the nodes are randomly positioned on a square [19]. Furthermore, similar

theoretical considerations about syntactical networks in sentences has led to the hypothesis that

part of language organization can be attributed to minimization (or at least constraining) of the

Euclidean (physical) distance between linked words [26].

In contrast with these models, our model does not necessitate to minimize the global distance

between nodes. The small-world structure emerges as a result of the interplay between the low

probability of newcomer incorporation (Pnew) and the rapid decay of the connection probability

when the Euclidean distances between two neurons increases. This property can actually also be

found in Kaiser and Hilgetag’s model [33,32]. This is a spatial network growth model in which,

at each time step, a newcomer tries to connect to each neuron of the pre-existing network with a

probability that decays exponentially fast with the Euclidean distance between the two neurons.

This behavior is reminiscent of the famous “preferential attachment” model of Barabási and Al-

bert for generating scale-free networks, where newcomer nodes attach to preexisting ones with

a probability proportional to the connectivity of the destination node [5]. Varying the model pa-

rameters, Kaiser and Hilgetag’s model yields different structures, including scale-free and small-

world networks. However, the parameter range yielding small-world networks in this model is

extremely narrow. Furthermore the obtained clustering indices and connectivities are still far
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from those observed in C. elegans . The principal difference between the present model and the

model proposed by Kaiser & Hilgetag is that in our case, the connection probability between

neurons that are already parts of the network remains high, at least for densely populated areas.

Hence, once incorporated, a newcomer neuron can extensively continue to increase the number

of its connections with the rest of the network. This allows to obtain much higher connectivity

and clustering.

As shown by the results presented above, using appropriate parameters, our model yields net-

works with structures that are statistically very similar to that of C. elegans . It thus provides a

simple way to generate network surrogates for the structure of C. elegans neural networks and

can be used to study the properties of neuron dynamics on these network structures. Hence, a

first direction for future work will consist in the study of structure-dynamics relationships in

these kinds of structures. Most noticeably, as the model defines the network growth properties,

it can be used to generate large-size neural networks, that will be needed for solving computing

tasks.

A further step will consist in improving the model accuracy/realism by integrating known but

abstract characteristics of the behavior of individual neurons. Through this combined model, we

will investigate the application of such biological neural networks to computing tasks, assuming

the experimental setups described in [18]. In this perspective, our aim is to obtain a sufficiently

abstract model of biological networks of neurons that will enable the design of large systems

without dealing with the individual behavior of biological neurons. We think that the availability

of such abstract models will be a crucial chokepoint that will have to be overcome if we want to

build computing systems using real biological neurons.
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