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Abstract

An adaptive Exponential Integrate-and-Fire (aEIF) model was used to predict the activity of layer-V-pyramidal neurons of rat

neocortex under random current injection. A new protocol has been developed to extract the parameters of the aEIF model using an

optimal filtering technique combined with a black-box numerical optimization. We found that the aEIF model is able to accurately

predict both subthreshold fluctuations and the exact timing of spikes, reasonably close to the limits imposed by the intrinsic reliability of

pyramidal neurons.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Electrophysiological data can be described by detailed
conductance-based models (Hodgkin–Huxley-type models
[6]). However, those models are rather complex, which
implies that they are difficult to analyze and costly to
implement numerically. Moreover, it is unclear how many
details of conductance-based models are really necessary
for the reproduction of experimental spike patterns [4,13].
For those reasons, simple phenomenological spiking
neurons such as Integrate-and-Fire models are highly
popular.

The adaptive Exponential Integrate-and-Fire (aEIF)
model used in this paper generalizes the standard leaky
Integrate-and-Fire model in several directions: the strict
threshold is replaced by a more realistic smooth threshold
zone as in the Exponential Integrate-and-Fire neuron [2].
Furthermore, addition of a second variable captures
subthreshold resonance or adaptation [7,15]. The aEIF
e front matter r 2006 Elsevier B.V. All rights reserved.
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model showed convincing performances when compared to
more detailed models [1], but so far, has never been tested
on recordings of real neuron.
In this report, we will test the performances of the aEIF

model on layer-V neocortical pyramidal neurons under
random current injection.

2. Model

The aEIF is defined by [1]

C
duðtÞ

dt
¼ � gLðuðtÞ � ELÞ

þ gLDT exp
uðtÞ � VT

DT

� �
� wþ I , ð1Þ

tw

dwðtÞ

dt
¼ aðuðtÞ � ELÞ � wðtÞ, (2)

where C is the membrane capacitance, gL the leak
conductance, EL the resting potential, DT the slope factor
and VT the threshold potential (Fig. 1). Note that formally,
EL is not exactly the resting potential because of the
imple models of the threshold type: Adaptive Exponential Integrate-and-
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Fig. 1. Spike function f ðuÞ ¼ C du=dt� I of the aEIF model in the non-

adapted state (w ¼ 0; black line). The left intersection of the spike function

with the horizontal axis is the resting potential EL, the right intersection

gives the potential V s above which the spike is generated. The minimum of

f ðuÞ, VT, gives the maximum subthreshold potential that can be reached

by constant current injection. In the adapted state ðw40Þ, the spike

function f ðuÞ ¼ C du=dt� I is shifted vertically downward (dotted line).
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exponential term. The variable w describes the level of
adaptation of the neuron and a represents the relevance of
subthreshold adaptation. The exponential term describes
the early activation of voltage-gated sodium channels.

Formally the model is said to generate a spike if the
potential u grows rapidly to infinity. In practice, a spike
event is recorded when the voltage reaches a threshold
Vpeak ¼ 20mV. The exact value is not critical because Vpeak

only shifts spike times by a fraction of millisecond. After
the spike has been triggered, u is reset to the resting
potential EL and the variable w is increased by an amount
b, which accounts for spike-triggered adaptation.

The original aEIF model is a point neuron model i.e.
without spatial structure. However, in this study, we
decided to take into account the coupling of the soma
with the dendrites. Therefore, we used a two-compartment
model (one somatic compartment coupled to a passive
dendritic compartment) defined by

C
dus

dt
¼ � gLðus � ELÞ �

gc

p
ðus � udÞ

þ gLDT exp
us � VT

DT

� �
� wþ I , ð3Þ

C
dud

dt
¼ �gLðud � ELÞ �

gc

1� p
ðud � usÞ, (4)

tw
dw

dt
¼ aðus � ELÞ � w, (5)

where us is the membrane voltage in the somatic compart-
ment, ud the membrane voltage in the dendritic compart-
ment, gc the coupling conductance and p ¼ somatic area/
Please cite this article as: C. Clopath, et al., Predicting neuronal activity with s
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total area. The two-compartment model is motivated by
experimental results. Indeed, the linear response kernel is
best fitted by a double exponential (see below point 3(i)),
suggesting a coupling between soma and a passive dendrite
acting as current sink [8].

3. Parameter fitting

Recordings of layer-V pyramidal neurons of rat neocor-
tex were used to determine parameters of the model. The
neurons were recorded intracellularly in vitro while
stimulated at the soma by a randomly fluctuating current
generated by an Ornstein–Uhlenbeck (OU) process (auto-
correlation time 1ms). Both mean and variance of the OU
process were varied in order to sample the response of the
neurons to various levels of tonic and time-dependent
inputs. Details of the experimental procedure can be found
in [14].
Our method to extract the parameters of the aEIF model

is based on the following steps:
(i)
imp

euc
Passive membrane properties (C, gL, gc, p, EL): In
subthreshold regime (where the exponential term can be
neglected), Eqs. (3) and (4) can be integrated [3],

uðtÞ ¼

Z þ1
0

k1ðsÞ Iðt� sÞds. (6)

In the non-adapted state w ¼ 0, we find

k1ðsÞ ¼
1

C
½pe�s=ts þ ð1� pÞe�s=tc �, (7)

where ts ¼ C=gL is the somatic membrane time
constant and tc ¼ ½pðp� 1ÞC�=½pðp� 1ÞgL � gc� is
the coupling time constant.The kernel k1 is extracted
by the Wiener–Hopf optimal filtering technique [8].
This step involves a comparison of the subthreshold
fluctuations with the corresponding input current. This
yields a ‘‘raw’’ filter kexp (Fig. 2). The filter kexp is well
fitted by the double exponential k1 derived from
our two-compartment model. C, gL, gc, p were
extracted from the double exponential fit k1 (Eq. (7))
of kexp, EL from the resting value at the beginning of the
recording.
(ii)
le

o

Slope factor: The slope factor determines the sharp-
ness of the threshold. In the limit DT! 0, the model
becomes a standard leaky Integrate-and-Fire model.
As the threshold has a region of fuzziness, we decided
to fix the slope factor at DT ¼ 2mV so as to restrict the
number of parameters to be optimized. This value
seems reasonable and is close to the value found for
the Wang–Buszaki model [2].
(iii)
 Subthreshold adaptation: According to systems theo-
ry, it is not possible to extract the subthreshold
adaptation a from our data set. Therefore, we set a

to zero. Indeed, the Laplace transformed system
has one pole and one zero that masque each other
(i.e. the determinant of the identificability matrix is
models of the threshold type: Adaptive Exponential Integrate-and-
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Fig. 2. Raw data of the kernel kexp extracted by optimal filtering

technique (symbols) have been fitted by the double exponential k1 (solid

line).
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close to zero), preventing the system to be fully
characterizable [10].
(iv)
 Voltage reset: After a spike has been triggered, the
voltage is simply reset to the resting potential EL.
(v)
 Optimization: Finally, the remaining parameters, VT,
tw, b were optimized using the simulated annealing
technique optimizing the firing rate and maximizing
the coincidence factor Gn!m. We minimized the
following expression:

2
ndata � nsim

ndata

����
����� Gn!m,
where ndata is the firing rate of the neuron data and nsim is
the firing rate of the simulated data. Gn!m is defined by [9]

Gn!m ¼
Ncoinc � hNcoinci
1
2
ðNdata þNaEIFÞ

1

N
, (8)

where Ndata is the number of spikes in the reference spike
train (recordings of pyramidal cells), NaEIF is the number
of spikes in the predicted spike train (generated with the
aEIF model with the same driving current). Ncoinc is the
number of coincident spikes with precision D ¼ 2ms and
hNcoinci is the number of coincidences generated by a
homogeneous Poisson process with the same rate nsim as
the spike train generated with the aEIF model. Finally, the
normalization N ¼ 1�2nsimD allows Gn!m to reach 1 only
if the spike train of the aEIF model reproduces exactly the
spike train of the cell. Gn!m will be 0 if the similarity
between the two spike trains is not better than between that
two random spike trains generated by homogeneous
Poisson processes at the same rate. In order to test the
robustness of the method, we picked one cell and repeated
the parameter optimization by simulated annealing 10
ase cite this article as: C. Clopath, et al., Predicting neuronal activity with s

e model with two compartments, Neurocomputing (2006), doi:10.1016/j.n
times. We found that the VT is very robust within errors
less than 3%. The parameters b and tw are strongly
correlated. While individual variance is high their product
btw is stable.

4. Results

The data set consists of four different neurons. For each
cell, a set of 10 different input currents with different means
and variances are injected. Each input trace is repeated
four times. Fig. 3 shows a direct comparison between
predicted and recorded spike trains for a typical neuron.
Both spike trains are almost indistinguishable (Fig. 3A; for
clarity reasons, the predicted spike train has been shifted
upward). Even when zooming in the subthreshold regime,
differences are in the range of a few millivolts only
(Fig. 3B). The spike dynamics is correctly predicted apart
from a short period of time just after the spike is emitted
(Fig. 3C). This is due to the reset value of the voltage which
is set to the resting potential.
The model performances were evaluated using the

coincidence factor Gn!m (Eq. (8)). Our model is facing
natural limits of prediction because cortical pyramidal
neurons respond with very different reliability depending
on the type of stimulation they receive [11]. As we cannot
expect our model to yield better predictions than the
intrinsic reliability of the neuron, we consider the intrinsic
reliability of the neuron as an upper bound. The intrinsic
reliability can be easily measured since the same input
has been injected four times in the same cell. The reliability
of neurons does not vary significantly with the mean of
the injected current. However, it strongly depends on the
variance of the current [8,11]. In the case of low variance,
the spike timing is not controlled by the stimulus
anymore. Therefore, we abandon the data with low
variance (so150 pA). Intrinsic reliability is characterized
by the factor Gn!n in analogy to Eq. (8). The subscript
n! n means that the neuron is compared to itself
across two different trials with the same realization of the
input. We remark that data with high variance input are
more likely to resemble an in vivo situation than low
variance input data. For data used below, the intrinsic
reliability varies from Gn!n ¼ 75% to as low as
Gn!n ¼ 20%.
We found that the aEIF model predicts up to Geff ¼

96% of the spikes that can be predicted (Geff ¼

Gn!m=Gn!n, m! n means model compared to neuron)
and on average Geff ¼ 60% (Fig. 4).
Fig. 5 shows the experimental spike trains during four

repetitions with the same driving current (bottom traces) as
well as the simulated spike train (top trace) for different
reliability and performance cases.

5. Discussion and conclusion

We tested the aEIF model on experimental electrophy-
siology recordings and found a prediction of the spike
imple models of the threshold type: Adaptive Exponential Integrate-and-
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Fig. 3. Performances of the aEIF model. A. Predictions of the model (grey

line) are compared to the spike train of the corresponding neuron (black

line). For this graph only, the simulated trace has been shifted by 40mV

upward for reasons of visual clarity. B. Zoom on the subthreshold regime.

C. Zoom on four correctly predicted spikes.
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Fig. 4. The performance of the aEIF (Gm!n) is plotted versus the intrinsic

reliability (Gn!n) for each data set. The diagonal yields the upper bound of

the model. The average prediction is shown by the dashed line

(Geff ¼ Gn!m=Gn!n ¼ 0.6). More details on the specific cases A, B, C

are shown in Fig. 5.
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times Geff up to 96% (average of 60%). With the same data
set, a Spike Response Model with dynamic threshold has
been evaluated and the performances were Geff up to 75%
(average 65%) [8].
We remark that the protocol used for the recordings

is not the most suitable for characterizing our model: in
our extraction method, we had to set the subthreshold
adaptation a to 0. In addition, data generated purely
by simulation of the aEIF model were characterized
very badly with our method (average of G ¼ 85%).
A completely different protocol to extract the parameters
of the aEIF model has been proposed recently by
Brette and Gestner [1]. This protocol contains a series of
standard electrophysiological paradigms (injection of
current pulses, slow current ramps and random conduc-
tance injections). It has been tested with data generated by
a detailed model and yielded excellent performances
ðG ¼ 96%Þ. In addition, this protocol allows to reduce
noise (averaging over several recordings), so that the
subthreshold adaption a could, in principal, be extracted
from pyramidal cell recordings. The latter protocol is under
study at the moment using a new data set recorded
following the methodology proposed by Brette and
Gerstner [1].
In the aEIF model, adaptation is a useful component

since it allows the model to account for different driving
regimes. We found as well that it is relatively easy to
correctly predict the subthreshold dynamics even with a
simple leaky integrator but it is difficult to find an efficient
threshold criterion for spike initiation. This problem is
solved by the aEIF model which includes an additional
exponential term to describe early activation of voltage-
gated sodium channels. This last addition allows to model
imple models of the threshold type: Adaptive Exponential Integrate-and-
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specific behaviors like delayed spike initiation and offers
flexibility at the level of the threshold mechanism. It was
recently suggested by Naundorf and colleagues that the
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rapid dynamics of action potential initiation in cortical
neurons are outside the range of behaviors described by the
classical Hodgkin–Huxley theory [12]. In the aEIF model,
the exponential term allows a fast activation of the action
potential. Thus, on a phenomenological level, the aEIF
model could possibly account for rapid spike initiation in
real neurons.
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Fig. 5. The lower four spike trains of each graph are experimental voltage

traces recorded in response to the same driving current. The top trace is

the simulated spike train with this driving current. The traces shown in A

have a high intrinsic reliability and high prediction, i.e. the model is good.

B has high reliability but a bad prediction, i.e. the model is insufficient. In

C the reliability is low and the prediction is low, but the model is good

since Geff40:65. See Fig. 4 for the G values of the different cases A, B, C.

imple models of the threshold type: Adaptive Exponential Integrate-and-

eucom.2006.10.047

dx.doi.org/10.1016/j.neucom.2006.10.047


ARTICLE IN PRESS
C. Clopath et al. / Neurocomputing ] (]]]]) ]]]–]]]6
Claudia Clopath has obtained her M.Sc. in

physics from the EPFL, in April 2005. She is

now a Ph.D. in the Laboratory of Computational

Neuroscience at the EPFL and her current

research interest is to describe neuronal activity

with simple Integrate-and-Fire type models.
Renaud Jolivet obtained his Ph.D. in theoretical

neuroscience at EPFL, in 2005, after studies in

biophysics at the University of Lausanne (M.Sc.).

He is now a postdoc in the laboratory of Prof.

Pierre Magistretti at the University of Lausanne

where his research is focused on neuro-astrocytic

interactions in the context of brain metabolism

and signal processing.
Alexander Rauch obtained his M.D., in 2003, at

the University of Bern after studies in medicine at

the University of Basel. His clinical experience

includes surgery and neurorehabilitation. Be-

tween 1999 and 2003, he has worked as an

electrophysiologist at the University of Bern

focusing his research on links between cortical

pyramidal neurons and simple models of neuro-

nal activity. He is now a research assistant in the

laboratory of Prof. Nikos Logothetis at the Max-
Planck-Institute where his research is focused on BOLD signal and brain

imaging techniques.
Please cite this article as: C. Clopath, et al., Predicting neuronal activity with s

Fire model with two compartments, Neurocomputing (2006), doi:10.1016/j.n
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