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Flexible and Efficient Implementations of
Bayesian Independent Component Analysis

Ole Winter, Kaare Brandt Petersen

Technical University of Denmark, Building 321, DK2800 Kongens Lyngby,
Denmark FEurope

Abstract

In this paper we present an empirical Bayes method for flexible and efficient Inde-
pendent Component Analysis (ICA). The method is flexible with respect to choice
of source prior, dimensionality and constraints of the mixing matrix (positivity),
and structure of the noise covariance matrix. The efficiency is ensured using param-
eter optimizers which are more advanced than the expectation maximization (EM)
algorithm, but still easy to implement. These optimizers are the overrelaxed adap-
tive EM algorithm and the easy gradient recipe. The required expectations over the
source posterior are estimated with mean field methods: variational and the expec-
tation consistent (EC) framework. We describe the derivation of the EC framework
for ICA in detail and give empirical results demonstrating the improved perfor-
mance. We demonstrate the usefulness of the approach with the publicly available
Matlab toolbox icaMF.

Key words: Independent Component Analysis, Empirical Bayes, Mean Field
Methods, Variational methods
PACS:

1 Introduction

Since Independent Component Analysis (ICA) in the early nineties caught the
attention of the machine learning community, the interest and activities within
this area have all but exploded. Although initially regarded as an example of a
blind source separation problem for independent data, the focus has in recent
years gradually shifted from different aspects of this instantaneous problem
to the challenge of the convolutive case (mixing over time). A process fuelled
by algorithms such as InfoMax [2] and FastICA [7] which, although not very
flexible, are robust and fast.

Preprint submitted to Elsevier Science 11 July 2006



But the completely general instantaneous case is far from solved: So far there
exists no algorithm which can do noisy, non-square mixing with an arbitrary
non-gaussian prior with the same robustness and speed as the above men-
tioned algorithms. Variational (so-called mean field and also known as en-
semble learning) methods [8,1,23,11,4,6] are attractive because they are very
flexible general modelling tools. The mean field ICA method as described in
6], however, had two major difficulties: First, the flexibility with respect to the
prior makes the inside of the black-box rather complicated and unattractive to
a wide range of the application-driven part of the research community. Second,
it was slow to converge and no universal stopping criteria could be given. These
two difficulties, however, can now be handled, as this paper demonstrates: The
complexity by the availability of a Matlab toolbox with plug-and-play demos
and examples and the convergence by efficient optimization schemes beyond
the traditional expectation maximization (EM) algorithm .

In a broader context reaching well beyond ICA, the mean field methods such
as variational Bayes, loopy belief propagation, expectation propagation (EP)
and expectation consistent (EC) have recently gathered much interest, see
e.g. [8,1,15,25,16,10,17] because of their potential as approximate Bayesian
inference engines. An undesirable property of the mean field methods in this
context is that the approximation error is unattainable. One cannot in any
quantitative manner say much about the deviation of marginal moments or
likelihoods from their true values. But in many tests, however, the accuracy
and the polynomial complexity of the mean field methods to intractable sums
and integrals, is positioning the mean field methods as a high-end approxima-
tion.

In this paper we give for the first time an application of the EC framework
and EP message passing algorithm to the ICA model. EC and EP are closely
related to the adaptive TAP framework [15,16,6,5]. In fact these non-linear
iterative methods share fixed points. Whereas the adaptive TAP fixed point
equations were derived from the so-called cavity method—a central limit the-
orem argument used to derive an tractable approximations to the marginal
and predictive distributions—EC is a formalization of the same underlying
idea aiming at giving an approximation to the marginal likelihood. A set of
complementary variational distributions, which share sufficient statistics, arise
naturally in the framework. EP is an intuitively appealing scheme for tuning
the variational distributions to achieve this expectation consistency. We will
not go into detail with cavity derivation here since, although it sheds lights
on why the approximation will work, nevertheless is less formalized than EC.
The interested reader is referred to Refs. [16,5] and references therein.

For the last few years, it has been observed that an important cause for the
non-robustness of the mean field methods rests not only upon the approxima-
tion error but rather on the slow convergence of the expectation maximization



(EM) style algorithms, typically used for the joint parameter-latent variable
inference problem [20]. Several alternatives to EM learning, also applicable to
non-mean field based inference, have been proposed recently [22,14] and anal-
ysis have been given to explain convergence failure both in general and specific
settings [21]. Furthermore, these methods in some cases make the difference
between convergence in finite time or not [18], but in most cases they at least
give a huge speed-up. This new insight has thus taken the mean field methods
one step closer to realizing their full potential for Bayesian inference.

In this paper we revisit mean field ICA to demonstrate that the newly found
insights can give us a much more efficient system while still retaining the flex-
ibility of the Bayesian ICA approach. Compared to methods like InfoMax and
Fast ICA, the flexibility is rather extensive and enables the user to handle both
over-/underdetermined and square mixing, positive constraints on the mixing
matrix, noise estimation and general source priors, e.g. positive or discrete.
The contributions are three-fold: Application of the EC framework and EP
message passing in the ICA context, using precise approximate inference and
EM type optimization to give an efficient and flexible framework for ICA and
a freely available software package implementation. The paper is organized as
follows: Section 2 formulates the instantaneous noisy ICA problem which is
the basic model of interest. Section 3 explains how the given log likelihood
(bound) is optimized giving three different approaches. Section 4 deals with
estimation of the source statistics. Different mean field methods — expectation
consistent and variational — are applied to the ICA model and in Section 5
we present the Matlab toolbox. Finally in Section 6 and 7 we wrap up with
demonstrations of the developed methods and conclusions.

2 Instantaneous ICA

In this section, we give a quick recap of the empirical Bayes approach to
instantaneous ICA with additive Gaussian noise — for a more detailed account
the reader is referred to e.g. [6]. The observation model is given by

Xt:ASt+nt, tzl,,N

with N being the number of samples. The noise is assumed zero-mean gaussian
with covariance X, i.e. the Likelihood is p(x;|A,s;, X) = N(xy; Asy, X). The
source prior factorizes in both sources and time steps. Denoting the stacked
sources by the matrix S, we can write the prior as p(S|v) = [l pi(Su|vi),
where v is shorthand for the parameters of the prior. The observation vectors
x; are stacked as columns into one matrix X: p(X|A, S, X) = I, p(x:| A, s¢, )
and the posterior is given by p(S|X, 0) = ’W, where we have used

the shorthand 6 = {A, X%, v} for the parameters. In the empirical Bayes (or



Maximum Likelihood II) approach applied to ICA, the noise realization and
the unobserved sources are integrated out, leaving the parameters 6 to be
determined by maximizing the (marginal) Likelihood: p(X]@). Alternatively,
one may use a hierarchical Bayesian approach [1] marginalizing also over 6,
see [11] for an application to ICA.

The log likelihood £(0) = Inp(X]|@) is for most priors too complicated for
practical approaches and instead a lower bound is used as objective function.
The lower bound B is defined by

_ - p(X,S0)
£(0)=Inp(X|6) =In | (SI$)" gy 1S
>/ (S|¢) In Xsizf)ds = B(0, $) . (1)

The bounding property is a simple consequence of Jensen’s inequality and
holds for any choice of variational distribution ¢(S|¢). In fact it is easy to show
that £(0) = B(0,¢) — KL(q,p), where KL(q,p) > 0 denotes the Kullback-
Leibler divergence between the variational distribution and the source poste-
rior. Thus, if the variational distribution becomes equal to the source posterior,
KL(p,p) = 0 and the bound is equal to the log likelihood.

The derivatives of the bound are easily derived for the ICA model

0B(0,¢) __ T
E - (X(8)F — A(SST),) (2)
O0.9) Net_Lsix—as)x - as)n, s ®)
OB(0,¢) 0lnp(sl )

ov = ov Ja (4>

Constrained variables are handled by reparametrization and considered in
detail in Section 3.4. Since many different source priors are relevant depending
on the application, the derivative involving the prior parameter is not specified
in details but left open for easier modular fit to various problem-specific priors.

3 Optimization of Parameters

In this section we discuss a number of approaches for optimization of the
lower bound of the log likelihood. The starting point is the EM algorithm for
its simplicity but also variants thereof are presented for faster convergence.
Note that the convergence issue is not merely a question of convenience but
rather a critical part of the overall performance of the approach.



3.1  The EM Algorithm

The traditional optimization applied in [6] is the Expectation-Maximization
(EM) algorithm as presented in [12]. In their formulation, the EM algorithm
is a coordinate-wise descend in the so-called free energy, which in this context
is minus the lower bound function. In short, the EM algorithm for B(6, ¢) is

E: Maximize B(0, ¢) with respect to ¢ keeping 6 fixed.
M: Maximize B(0, ¢) with respect to 8 keeping ¢ fixed.

This results holds for any variational distribution. However, if the choice of
q is constrained to a family of distributions such that the E-step does not
give ¢(S|¢p) = p(S|X, 0) then we are only optimizing the bound and not the
likelihood itself. This variational approximation works well in many cases, see
Section 6.

In the M-step the lower bound B(8, ¢) is maximized with respect to the model
(hyper) parameters @ = {A, ¥, v}. Setting the derivatives in eqs. (2) and (3)
equal to zero, one obtains the following EM updates for the mixing matrix
and the noise covariance

X(S), (ss")," ()

A
)y (X —-AS)(X - AS)T), . (6)

_ 1
N
The corresponding result for the prior parameters cannot be expressed explic-
itly without choosing what prior to use, and is therefore left for the user of
whatever specific prior. With these estimates we are ready to make another
E-step with the new values for the parameters, then another M-step, and so
on.

The EM algorithm is simple and have important theoretical convergence prop-
erties. But it is also sometimes unreasonably slow — a postulate reported and
documented by a number of papers regarding the use of EM algorithm for
ICA. The results of [20] is based on a small scale statistical investigation, and
[3] and [19] provide analytically insight to the experience of slow convergence
in the low noise limit.

The analysis in the two latter papers is based on a Taylor expansion of the true
source posterior moments in the noise variance. That is, when for simplicity
the noise is assumed isotropic with variance o2, the source posterior moments
(s¢) and (s;s!) are expanded in 02 and inserted to give the update of the the
mixing matrix. The result is

A=A, +0(0?%),



where A,, denotes the nth estimate of the mixing matrix. This shows that if
the noise variance is very small, then so is the change in the mixing matrix
and in the limit of zero noise, the EM algorithm becomes infinitely slow.
Further analysis demonstrates that the first order correction term for the
mixing matrix is proportional to the noiseless InfoMax update [2]. This renders
the use of EM for the noise model even less attractive, since only in cases where
the noise is large enough to make the O(c?) contribution significant, is the
solution of the noise model different from the noiseless InfoMax model. A
recent result in [21] shows that going to in to hierarchical variational Bayesian
framework [1] does not solve the problem. The resulting Variational Bayes EM
algorithm, is suffering from the exact same defect.

With this defect of the EM algorithm in mind, we present two optimization
alternatives which are closely related to the original EM algorithm.

3.2  Fasy Gradient Recipe

The very appealing property of the EM algorithm is the combination of the
easily implementable scheme and a guaranteed increase of the likelihood. Of-
ten, more advanced optimization methods is more demanding either analyti-
cally, computationally or both, and thus not appealing for large class of com-
plicated problems. But using the Easy Gradient Recipe [14], one can obtain
the efficiency of state-of-the-art gradient based optimization methods for the
cost of the EM algorithm.This is done by recycling the E and M-steps: Con-
sider in pseudo-code some function which is given the model parameters 6
and returns the log likelihood bound and gradient of the log likelihood bound
computed in three steps

(B, %] = fct(0)

; * 0B
1) Find ¢ such that 52 "

=0 (E-step)
2) Calculate B(0, ¢")

3) Calculate % (M-step)
Step 1) is optimizing the bound with respect to the variational parameters and
is therefore equivalent to the E-step. Step 2) is to compute the bound — a task
which in many hidden variable problems is easy given the E-step, and step 3) is
essentially the same computation as in the M-step, since the M-step is solving
the stationarity condition for the model parameters. Note that in step 3) we
have exploited that we in step 1) set ¢ to it’s value at stationarity such that
implicit @ dependence through ¢ in the gradient will vanish. The returned
function value and gradient can be fed to any gradient based optimizer. In



this paper we have chosen the so-called UCMINF described in [13], which is
a quasi-Newton method using BFGS update, line search and trust-regions.

Note that the Easy Gradient Recipe is not merely a generalized EM algorithm.
A generalized EM algorithm is increasing the bound in each step instead of
maximizing it. The Easy Gradient Recipe is also a generalized EM, but is more
than that: It is making it possible to approximate the log likelihood directly
and maximize it with any standard gradient based method.

3.8  Qwerrelaxed Adaptive EM

The Easy Gradient Recipe is a very efficient approach for a modest num-
ber of parameters to be estimated, but when in the case of for example very
overcomplete systems, length(x)<length(s), such as images, the number of
parameters becomes too large for practical optimization. To deal with these
situations, we need to introduce a third optimization approach which in some
sense is a compromise between the two already presented. Among the variants
of the EM algorithm that modifies the step length we find the so-called Over-
relaxed Adaptive EM algorithm, which, in the M-step, takes a larger step in
the direction proposed by EM,

0n+1 — en + 77(0EM - en)

where 7 > 1. For n = 1 we retain the ordinary EM algorithm, but for each
time we take a successful step forward, the parameter 7 is increased by a factor
above 1 e.g. 2. If the bound is decreasing in a certain step, we undo the step
and reset 7 = 1. This speeds up the process significantly and a nice feature
about the Adaptive Overrelaxed EM is that the computational time spent in
each step is reasonable for also a large number of parameters.

3.4 Dealing with Constrained Parameters

Some of the parameters @ = {A, X v} are either by definition or applica-
tion constrained to be positive, positive definite, etc. Within the hierarchical
Bayesian framework this is dealt with by imposing priors on these and re-
stricting these priors to be zero in the forbidden domains as is the case for the
hidden sources S. In the empirical Bayes setting, however, constraints can be
implemented using a reparametrization and thereby avoid the trouble of the
integrals otherwise involved.

The mixing matrix A is considered to be either unconstrained or with positive
elements. The positivity constraint is constructed using the exponential func-



tion, (A);; = e(®i. In this case, the parameter A is essentially substituted
by the underlying parameter a in the parameter set 8. Note that with this
parametrization it holds for any function B that

dle],. 0A

aB__ oA 9B, [0B
- Ola];0A T .

ij

Setting this derivative to zero can be solved by a simple iterative scheme
[6,9,22] as long as both the data and the sources are positive:

A ia [=1X(8)!]
9 1 (ST A(SST) ]

ij

When negative data/sources are encountered the problem has to be solved via
somewhat slower quadratic programming techniques.

The noise covariance must be positive definite in order to serve as a covariance,
but can be further constrained to be for example diagonal. We consider in this
setup noise covariances of the simple isotropic form ¥ = €°I, the diagonal form
> = diag(e™, ..., %), and the full parametrization ¥ = 88" . The parameters
in the source prior may also be constrained, and similar reparametrizations
can be implemented.

4 Estimating Source Statistics

Calculating the required statistics and the normalization of the source poste-
rior will in most cases be intractable because the non-Gaussian source prior
and multivariate Gaussian Likelihood makes the posterior non-Gaussian mul-
tivariate. In this context tractable means we can calculate the normalization
constant of the posterior, the marginal Likelihood, p(X|@) and posterior mo-
ments exactly in polynomial time. In the intractable case, we therefore have
to resort to approximate inference techniques. In this section we discuss two
deterministic mean field approaches, expectation consistent (EC) and varia-
tional (Bayes). In both these approaches variational distributions are used to
make the approximations to the marginal Likelihood tractable, but there is
an important distinction to be made between the two. In the variational ap-
proach a restricted form of the variational distribution ¢ is used to made the
calculation of the bound B(8, ¢) tractable. In EC, on the other hand, the aim
is only for an approximation A(6, @) to the log of the marginal likelihood,
which will typically be more precise than the bound. But as will be shown
below in optimization of the parameters A(@, ¢) is used in exactly the same
way as B(6, ¢).



4.1 Expectation Consistent

The basic idea behind the expectation consistent (EC) framework [17,15,16]
is to use more than one variational distribution approximation to the pos-
terior. These encode complementary aspects such as prior constraints and
the Likelihood term. We will show below that the requirement of consistency
between the distributions on the sufficient statistics, i.e. expectation consis-
tency, follows very naturally when we derive the EC approximation to the
marginal Likelihood. We will also give a recipe for attaining the consistency
by a sequential iterative approach that alternates between updating each of
the distributions.

In instantaneous ICA we can get tractability by choosing a decomposition into
two distributions (here s = s; denotes the sources of one time instance t):

q(s) = p(s) exp(X; g(s)) (7)

r(s) = ZP(X|A, 8, 3) exp(A, g(s)) (8)

where the exponential factors are chosen to contain the first and diagonal sec-
2 82

ond moment g(s) = (s1,..., Sy, —3, ..., —=2L), the parameters are denoted

by A = (7,...,vm, A1, ..., Ap). Both ¢ and r have distinct vectors A, and

A, containing these terms. The normalizers are

ZAy) = [ dsp(s) exp(A]g(s)) (9)
Z,(A) = [ dsplx|A.s, Z) exp(Xg(s)) - (10)

The purpose of the exponential factors in the approximate distributions is to
compensate for the factor we have omitted. How to choose the parameters will
be explained below. We see that we get tractability with this choice since ¢(s)
is a product of univariate distributions and r(s) is a multivariate Gaussian. Of
course the choice of decomposition should be guided not only be tractability
but also by quality of the approximation. We expect from central limit the-
orem (CLT) arguments that the EC approximation with this decomposition
will become better the higher the number of sources with a “homogeneous”
connectivity of the mixing matrix [15,16,5]. Empirically we observe that that
the EC approximation is almost always more precise than the variational ap-
proximation even for quite small systems where we cannot really rely on the
CLT argument. So in this case one may speculate that the difference is due to
the fact EC is a more flexible approximation containing the variational as a



degenerate trivial second moments case, see below. To proceed we rewrite the
exact marginal Likelihood as

pxIA, ) = [ dsplx|A..2)p(s) = 438 [ dsplxlA, 5. 2ol
= Z,0)(p(dA 5, D) exp(-N]g(s)) (1)
where )
()= Zq()\q)/ds . p(s) exp(ATg(s)) (12)

denotes an average over ¢(s). The first step in the EC approximation is to intro-
duce a simpler distribution containing only the exponential factor (a product
of univariate Gaussians in this case)

1 T
u(s) = exp(;, g(s 13
(s) 7o) p(A,8(s)) (13)
and exchange the average over ¢ with an average over u. If u shares some key
properties with ¢, e.g. the two first moments, then in many cases the finer
details of the distribution will not change the value of the average very much:

~ (p(xlA 5. ) expl-MLgls))) = A

(plxI,5, %) exp(-Xg(s))) T )

q

Inserting the approximation we arrive at the EC approximation
A0,¢) =InZpc(Ag, Aw) =InZ,(Ay) +InZ, (A, — Ap) —InZ,(A,)  (14)

with ¢ = {A;, A,}. In the following we will use a different set of parameters:
With a change of variables A, = A, — A, we can also write

In Zec(Ag, Ar) = In Z,(Ay) +In Z,(A) — In Zy(Ag + A,) (15)

and ¢ = {A,, A, }. The second step in the EC approximation is to determine
the parameters from the stationarity condition [17] which gives the expectation
consistent condition of the three distribution

T = 0: (a(s), = (e(s). (16)
PRI~ 01 (g(s) = (g(5)e (10

with A, = A, + A,. At this stationarity point we have the EC approximation

Inp(x|A,X) ~ A0, @) .

10



Below we will test this empirically by comparing the predictions for moments
and inference in the ICA model.

EP Message Passing

Before giving explicit expressions for the marginal Likelihood expression and
parameter derivatives for the ICA model, we give a general recipe for attaining
the expectation consistent fixed-point which is identical to Minka’s expectation
propagation (EP) for two approximating factors [10]. This algorithm very
often has very good convergence properties, but is not guaranteed to converge.
Alternative guaranteed convergent so-called double loop algorithms exist [17].
The details for the ICA-model are given in the Appendix. Iteration k£ of the
algorithm can be sketched as follows:

(1) Send messages from r to ¢
e Calculate parameters of u(s): Solve for A,: (g(s)), = p,.(k — 1) =
(&(s))ri-1)
e Update g(x): Ay(k) := Ay — Ap(k — 1)
(2) Send messages from ¢ to r
e Calculate parameters u(s): Solve for Ay: (g(8))u = i, (k) = (8(8))qk)
e Update 7(s): Ap(k) := Ay — Ag(k)

r(k) and ¢(k) denote the distributions ¢ and r computed with the parameters
Ar(k) and Ag(k). Convergence is reached when p, = p, since each parameter
update ensures A, = A, — A,

EC for the ICA Model

In the following we give the explicit expressions for the EC marginal likelihood
expression, eq. (14), moments and the derivatives of the marginal Likelihood
approximation with respect to the parameters.

The moments and normalizer of the ¢(s) = IT; ¢i(s;), 1 = 1,..., M, will depend
upon the choice of prior. We denote the mean by

1

— 1 2
My 8) = g [dsisnls) ewsi- A (9

q,i (ry’

and likewise for the variance v, ;(7, A). The multivariate Gaussian r-distribution
has covariance and mean

11



X, = (A, + ATSTA) ! (19)
m, =x, (v, + ATS7'x) (20)

and normalizer

d—M

1 1 1 1
InZ, = In 27 — 3 Indet ¥ + 3 Indet x, + Em;:rxr_lmr — §XTE_1(2].)
The wu distribution is a the product of the univariate normals with moments
M = Vi Aui and v,; = 1/A, ;. In the propagation algorithm, above and in
the Appendix, we need to solve for the parameters in terms of the moments:
Yui = VuiMu; and A,; = 1/v,;. Finally the contribution to the marginal
Likelihood from wu is given by:
m2.

M 1 1
InZ, = ——In2r+=5 Inv,; + = . 99
Hou =" 7”LQZZ.:][1“7“"Z+2Zzzu,i (22)

%

Next we consider the derivatives of the marginal Likelihood with respect to

A, ¥ and v. When expectation consistency holds then alngC = alngC =0
q T

and we only need to consider the explicit parameter dependence. All A and
3 dependence is contained in In Z,, eq. (10), and all v dependence in In Z,,
eq. (9). Stacking the variables, the result—which is is most easily derived
by considering In Z, as a moment generating function—is very close to egs.
(2) and (3). Compared to these expressions the only difference is that we
should now take the average with respect to the r-distribution. Note that
although ¢ and r have the same diagonal second moments, they differ on the
off-diagonal terms: ¢ has zero covariance since it factorized and r has the
Gaussian covariance, eq. (19). It thus makes an important difference what
variational distribution we use when calculate the derivatives. Finally, the
derivatives with respect to parameters of the prior will be given by eq. (4)
with the average being over the ¢-distribution.

4.2 Variational

The variational approximation can be motivated by the need to find a tractable
expression for the bound function eq. (1). This can be achieved choosing the
variational distribution in a tractable family. We have basically two possi-
bilities for the ICA model either fully factorized ¢(S) = IT; ¢ir(sit) or as a
multivariate Gaussian. The latter choice only give tractable expression for the
variational bound for some choices of the prior. Here we will consider the fully
factorized.

Choosing the variational distribution to be completely factorized it is not likely

12



that a perfect fit to the true source posterior is possible, but in many cases, the
approximation will suffice for a successful estimation. We obtain the optimal ¢
(in the factorized family) by setting the functional derivative 0 B/dg;; equal to
zero (the so-called freeform derivation) [8]. The general and specific solutions
are:

1
it (Sit| Pie) = PR [<IHP(X7 S|0)>Q\Qit:|
1
= 7pi(3it|’/i) exp [—%Aisi + %tsit] (23)
q
where (.. .)pq = J [zt dSitp Giry (59) - . . denotes an average over the vari-
ational distribution excluding ¢;(s;) and A (a vector of length M) and v (a
M x N dimensional matrix) are defined by

A =diag(ATEZ'A) (24)
y=ATS'X - (ATE'A — diag(A) )(S), . (25)

Note how this elegantly both provide us with the structural form of ¢ by eq.
(23) and the optimal values of the parametrization by equations for A and
~. Note also, however, that the expression for v depends on the variational
mean value and the equations therefore not are closed. Using eq. (23) as a
sequential update for ¢(S) is the coordinate ascent algorithm for the factorized
variational distribution and thus guaranteed to converge to a (local) optimum.
The sufficient statistics for the variational distribution is the means because it
is the only statistic which is necessary to determine the parameter v and A.
We thus write the update equations for the variational distribution in terms
of the mean function (s;), = mg; (7, Ai), eq. (18). Any convergent integral is
formally a function and it may seem that we have gained little be reformulating
the problem. But for a large and relevant set of source priors, the mean function
mg,; have a nice closed form expression. In those cases we have substituted
an intractable integral with a non-linear equation which evaluates much faster
and more efficiently. The function m,; is described for a variety of priors in
[6] including binary, uniform, exponential (positive), Laplace (bi-exponential)
and Gaussian.

A consequence of using the factorized variational distribution is that we will
make trivial predictions for the non-diagonal second moments: (sysii), =
(Sit)q(Sirt)q for i # i'. These second moments are used in in the derivatives of
the bound function with respect to parameters, egs. (2) and (3). This should
be contrasted to the EC and the linear response correction to the variational
approximation [6]. The linear response expression for the covariance is given
by eq. (19) with A, ;; being dependent upon the solution to the variational
equations: A, ;; = 1/v,; — A;. This result can thus be seen as an intermediate
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step between the completely factorized variational approach and EC.

4.8 EC and Variational Comparison

In figure 1 we compare the mean squared approximation error on the first (s;)
and second moments ;ir = (SitSire) — (i) (sin¢) for a range of signal to noise
ratios. The two RMS error measures are defined as

1/2
1
El"l"Ol"l == [W §(<SZ >exact - <Sit>app)2‘| (26)
1 1/2
EI‘I‘OI‘Q = [W (% Xii't,exact — Xii’t,app)2‘| ) (27)

where M is the number of sources. The example is using artificial data from a
mixture of Gaussians source prior with two components (with equal weight),
with zero mean and variances 0? = 1,05 = 0.01. The number of samples
is N = 2000 and the sources are mixed with a 2 x 2 matrix with column
vectors [1 0]T and [v/2/2 v/2/2]7. For each SNR level, defined as SNR =
Tr(A(ss”)AT)/o? a data set with the appropriate noise level is generated
and thereafter solved by the various mean field approximations as indicated.
In short, Figure 1 shows that expectation consistent method (EC) is much
(typically orders of magnitude) more accurate than the variational method,
and that linear response (VarLR) gives a huge gain in accuracy for second
moments compare to the simple factorized model (VarFct).

Figure 2 shows how the gain in accuracy of the source posterior moments is
influencing the overall ICA algorithm. For the two easier challenges, there is
little or no gain by using the more advanced methods, but as the difficulty
increases, i.e. when the column vectors of the mixing matrix becomes more co-
linear, then the overall ICA algorithm is clearly benefitting from the increased
accuracy of the EC approach.

5 Software

In this section we will briefly describe the icaMF Matlab toolbox® that im-
plements the algorithms described in this paper. The basic function call is

[S,A,loglikelihood,Sigma]=icaMF(X,par) ,

1 The toolbox with demos are available from http://mole.imm.dtu.dk/.
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Fig. 1. Accuracy of the different posterior approximations. For a
Mixture of Gaussian prior, the exact source posterior moments can
be calculated and compared to the approximations. The plot show
that both for the first moment (S) and the covariance (Chi), the
EC is at least one order of magnitude more precise than the varia-
tional approach and the linear response (VarLR) gives an interme-
diate result for second moments. In [21] we also compare with the
saddle-point method. It tends to give a worse approximation than
variational.

where X is the data matrix, par is a list of parameters to algorithm (some
of which are described below), S is the estimated sources, A is the estimated
mixing matrix, loglikelihood is the estimated log Likelihood per sample and
Sigma is the estimated noise covariance (default is scalar valued).

The par argument defines a number of settings for the algorithm. Some of the
most important are summarized in table 1.

An additional feature for model selection is a Bayesian information criterion
(BIC) function which calculates

BIC = L(6) — |;ﬂlogj\f ,

where |0] is the number of parameters we estimate by maximum Likelihood,
e.g. the number of free parameters in A, 3 and v. BIC is an asymptotic
expansion for the log of the Likelihood marginalized over all parameter.

15



Easy Medium Hard

0.8 0.8 0.8
[ 1varFct

0.7 B VarlR 0.7 0.7

0.6 I =C 0.6 0.6
» 05 » 05 » 05
> > >
e 0.4 x 0.4 @ 0.4
5 5 5
0.3 0.3 m 0.3

0.2 0.2 0.2

0.1 UII 0.1 II 0.1

0 0 0—
le4 1e3 1le2 led4 1e3 1le2 le4 1le3 1le2
SNR SNR SNR

Fig. 2. Accuracy of the ICA algorithm for different posterior approxima-
tions. The three different approximations give rise to three different ICA
algorithms, and the performance of these are here compared for a 2x2 case
with 1000 samples and three different difficulty levels of the mixing matrix:
Easy (orthogonal, v = 3/67), medium (v = 2/67) and hard (v = 1/6m),
where v denotes the angle between the column vectors. The source prior
is for both sources a zero-mean MoG with equal weights and variances
U% = 0.01, and U% = 1.99. The error plot is average and standard devia-
tion of the root mean square (RMS) on the estimated sources (about thirty

repetitions).
par. Usage Default Examples options
sources number of sources size(X,1) | under-/overdetermined, square
optimizer| parameter optimizer ’aem’ ’em’,’conjgrad’,bfgs’
solver | source statistics solver ‘ec’ ’ec’,’variational’
Sprior source prior ’mog’ ’exponential’,’binary’
method ICA method ’free’ ’constant’,’positive’,
’fa’,’ppca’
Table 1

Examples of the par settings in icaMF (X, par). More detail are given in help icaMF.
The ICA methods par.method explained: ’free’, standard ICA, unconstrained
mixing matrix and isotropic noise covariance ¥ = oI optimization and heavy-
tailed source prior ’mog’ (fixed mixture of Gaussians); ’constant’, for test sets,
constant mixing matrix and noise covariance; ’positive’, positive source prior
’exponential’ and par.Aprior=’positive’; ’fa’, factor analysis; and ’ppca’,

probabilistic PCA.

We first tested BIC ability to find the true number of sources for an artificial
data set (N = 500 samples, d = 4 dimensions and each of the M = 3 sources
is a two-component mixture of Gaussians with with equal weight, zero means
and variances 0.01 and 1.99, random mixing matrix with normal distributed
entries and additive noise of variance 1073). The result, shown in Figure 3,
confirms that we can find the true number of sources. Interestingly, this result
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required O(10%) EM-steps showing that convergence to the maximum of the
marginal Likelihood even for AOEM is slow. On the other hand the A matrix
essentially remained unchanged after O(10%) iterations.

Figure 4 shows 1) the result of positive ICA for three sources on fMRI brain
image time series (described in figure caption) and 2) the output of the func-
tion call icaMFbic(X,par,1:5). For comparison, figures 5 and 6 shows the
result for positive ICA and standard ICA both for four sources. Although the
data has be preprocessed such that it contains both negative and positive val-
ues the result coming out of the positive ICA is more clear-cut than standard
ICA. Interestingly, BIC for standard ICA tends prefer a much larger number
~ 20 of sources. This is probably because the model is more flexible than pos-
itive ICA. Note also that BIC is based upon the assumption of independent
samples. This is not true in many case. In this example the samples are pixels
in the image which tend to be quite correlated. So the effective number of
samples are lower than the actual. Using the effective number of samples will
lower the preferred number of sources but it is beyond our aim to estimate
the effective number of samples.

6 Testing the Efficiency of the Framework

In this section we compare convergence properties between the optimization
schemes proposed and demonstrate the strong improvement of the more ad-
vanced methods over the EM algorithm. We also shortly discuss the relation
to the framework of non-negative matrix factorization, NMF.

The plots in Figure 7 are projections of the bound function contours and
steps in the space of the mixing matrix. The mixing matrix is 2 x 2 and the
space therefore 4 dimensional, but a plane is fitted to the path and bound
and steps projected into this two dimensional plane. The noise is isotropic
but not estimated in this example, a choice which that makes no difference
to the points made. Note that the step size of the EM optimization (EM) is
so small, that the dots form a solid line. In total, the EM algorithm use 729
steps to reach the optimal point. For the adaptive overrelaxed EM (AEM),
the step size is far greater, and we can also see a failed test step as a detour
from the region close to the optimal point. But the AEM cancels this step,
resets the step size to 1 and investigate the region close to the optimal point
more carefully to reach the optimal point in only 16 steps. The easy gradient
approach with a quasi-Newton update (BFGS) is also doing well, reaching the
optimal point in 25 steps.

Another example which links the slow convergence of the parameters with slow
increase of the log likelihood can be seen in Figure 8. The data is an artificial
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mix of the two speech signals available as a demo in the toolbox and the source
priors are chosen to be a mixtures of Gaussians with equal weights, zero mean
and variances o7 = 1,05 = 0.01. As the figure shows, the development of the
log likelihood approximation is rather different for the three methods. While
the easy gradient approach with quasi-Newton update (BFGS) is somewhat
slower in the beginning, it quickly maximizes the log likelihood to a stable
higher level. As an indicator of the development of the parameters in this
process, the inserts show the data and the estimated mixing matrix for the
BFGS at the stable level and the EM at iteration 15 and 45. Close inspection
of the inserts reveals that the EM algorithm is not at all a perfect estimation
at the latter insert and this final fine-tuning takes an excessive amount of
iterations.

Clearly the above demonstration is for a very specific scenario and gives no
indication of the general complexity. The computational complexity of the
framework as described in the following will depend crucially upon the choice
of model, mean field method and optimization scheme. To recap we have N
d-dimensional data points and M sources. In the E-step we will have to cal-
culate ATY7!'X and ATE7!'A which is O(NMd? + d*) or O(NMd) for full
and scalar noise covariance, respectively. If the iterative solution for obtaining
the moments converges in Ng_j steps then the complexity is O(NM Ng_je ),
O(NMNg_ite + NM3) and O(NM3Ng_j,) for variational, linear response
(LR) and EC, respectively. Typically the EC message passing scheme will
converge in fewer steps than the variational coordinate ascent scheme some-
what compensating for the higher complexity. EM and AOEM will have the
same complexity for one M-step consisting of an unconstrained A-update
O(NM? + NMd + M?) and ¥-update O(Nd?) or O(Nd) for full and scaler,
respectively. The positively constrained A-matrix update will typically be
more complex because it has to be iterated eventhoug it doesn’t have the
M3 term. One E-step in BFGS consists of one update (and storage) of the
Hessian estimate which is quadratic in the number of parameters, Md + d?
or Md + 1 full/scaler noise covariance, and the calculation of the gradients
which is O(d® + NMd + NM? + M?d). The d® term disappears for scalar
noise covariance. The number of iterations needed in BFGS typically will not
exceed the number of parameters making the scheme scale between quadratic
and cubic in the number of parameters.

In conclusion, we can handle large data sets. The complexity scales linearly
with IV as a simple consequence of the iid data assumption. The scaling of the
complexity with input dimensionality for estimating the full noise covariance
will make the ICA framework slow when d is large. For BFGS the scaling of
the complexity and memory requirement with the number of parameters will
not lend it impractical for large Md, as for example for images. The variational
approach will be much faster than the EC and LR when M is large because
of the O(NM?) complexity of the latter.
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We have run extensive simulations comparing non-negative matrix factoriza-
tion (NMF) [9] with positive ICA. The results for the two algorithms are
very similar although in some instances where the SNR is not very high, pos-
itive ICA gives the most reasonable results. Overall NMF, like InfoMax in
the unconstrained case, seems quite robust to the addition of noise. The main
advantages of the ICA model are precise estimates of the noise level and the
marginal likelihood at the expensive of a much slower E-step.

7 Conclusion

In this paper we have combined the improved optimization methods with the
more advanced source posterior statistics and presented it in a easy-to-use
toolbox. Several examples demonstrates the drawback of the traditional EM
algorithm and the improved optimization obtained with adaptive overrelaxed
EM and the easy gradient recipe equipped with a suitably advanced optimizer.
We have also demonstrated the improved accuracy on the estimated source
posterior statistics obtained by the use of the expectation consistent (EC)
method as compared to the more traditional variational methods.

The upshot is an efficient ICA method which is still sufficiently flexible to
encompass constraints on the source priors, mixing matrix or noise covariance.
In that sense, the potential of Bayesian ICA is being realized and we believe
that the toolbox implementation is presenting an easy interface to an advanced
method. With a user-friendly interface, we sincerely hope that practitioners in
different research disciplines will also look to the more advanced and flexible
ICA methods when analyzing data in the future.
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A Solving the EC Equations

In this appendix we give the explicit expressions for iterative scheme for solve
the EC equations for the sources at time t, s = s;:

e Initialize covariance and mean of r-distribution:
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X, = (A, + ATS A (A1)
m, :=x,(v, + ATS7'x,) (A.2)
with v, = 0 and A, set such that the covariance is positive definite. It is

sufficient to take A, to be small positive since ATX"1A is an outer-product
form with only non-negative eigenvalues.

Run sequentially over the sources:

(1) Send message from r to g;

e Calculate parameter of u;: vy = My /Xrsi and Ay = 1/Xp4i-
e Update g Vg := Yui — Vi and Ngz = Ny — Aps.
e Update moments of ¢;: my; := mgi(Vgi, Ngi) and Xqii = Vg.i(Vgir Ngii)-

(2) Send message from ¢; to r

e Calculate parameters of w;: Yy = Mg/ Xqu and Ay, = 1/x4.i-

e Update r: Vi 1= Yui — Vgir DNy == Ay — Agi — Ay and A, =
Auﬂ‘ — Aq,z‘.

e Update moments of r using Sherman-Morrison identity:

AV,

X=X T AN X Jilx, )i (A.3)
m, = x,(v, + ATS 'x,) . (A.4)
Convergence is reached when and if m, = m, and x,; = Xgi, ¢ = 1,..., M.

The computational complexity of the algorithm is O(M?3 Ny, ), where M is the
number of sources, because each Sherman-Morrison update is O(M?) and we
make M of those in each sweep over the nodes.
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Fig. 3. Test of BIC on artificial data. The left plot shows the BIC
score (full line) and the marginal log Likelihood (dashed line). The
maximum for BIC is located at the true value M = 3 sources. The
right plot shows the directions in A-matrix and a scatter plot of
the data projected to the first two data dimensions.
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Fig. 4. “Spatial” positive ICA on fMRI time-series
X = Time x Image for three sources. The data is described
in more detail in [24]. The sub-plot with line plots shows BIC
(lower full line) and the marginal log likelihood (upper dashed
line) for varying number of sources. The left plot is columns
in mixing matrix: time-series with visual activation paradigm
rest-activation-rest-activation superimposed (dashed line). Right
plot shows associated sources images. Note that the decomposition
is sorted according to “energy” E; =), A?h. Zt(sit>2'
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Fig. 5. “Spatial” positive ICA on fMRI time-series
X = Time x Image for four sources.
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Fig. 6. “Spatial” standard ICA on fMRI time-series
X = Time x Image for four sources. Standard ICA corre-
sponds to unconstrained optimization of mixing matrix and
heavy-tailed source prior.

Fig. 7. Visualization of convergence. In this plot, the paths of the
three different optimization methods are plotted: The EM algo-
rithm (EM), the adaptive overrelaxed EM (AEM), and the Easy
gradient with a quasi-Newton optimizer (BFGS). The contours are
the bound function projected into the plane of the path.
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Fig. 8. Log likelihood versus iterations for the three different
optimization alternatives: The EM algorithm (EM), the overre-
laxed adaptive EM (AEM), and the easy gradient recipe with a
quasi-Newton method (BFGS). The data is a 2 x 2 mixing of the
speech data. The inserts shows how the estimated mixing matrix
fits to the data and demonstrates that the EM algorithm is con-
verging only slowly to the right solution compared to the BFGS
method.
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Revision Notes

Authors’ Answers Referee Reports NEUCOM-D-
05-00490 Flexible and Efficient Implementations
of Bayesian Independent Component Analysis Neu-
rocomputing

General comments: We would like to thank the referees for a careful and
constructive comments. In our revision we have followed almost all of the ref-
erees’ recommendations. We give detailed answer on all points below.

Relation to previous work: The central point raised by both reviewers is
about the contributions of the paper and it’s relation to other work by the same
authors. We feel that both ‘flexible’ and ‘efficient’ are important here. This pa-
per can be seen as a follow-up to Ref. [6] which also describes the same flexible
set-up. However, the optimization issues (efficiency) were not properly under-
stood at the time of writing of the first paper. This seriously limited the success
of the approach in some cases as also illustrated in the paper. Another major
issue is the derivation of the two approximate inference methods. We think
that we are now able to give a much more concise treatment of both. Adaptive
TAP and expectation consistent (EC) give equivalent results when applied to
the ICA model at convergence. However, the current derivation adapted from
Ref. [17] give both marginals, marginal Likelihood and a message passing scheme
(EP). These results and the results for optimization are also presented elsewhere
[14,17,21], but we think that the ICA model in itself is so important that it mer-
its a separate paper. Furthermore, including a software package strengthens the
contribution (Neurocomputing explicitly publishes software papers).

We agree with the referees that these points needed to be clarified. We have
tried our best to do this in the introduction of the paper.

Reviewer #1:

In their paper the authors propose a framework for Bayesian independent
component analysis (ICA). The model is rather flexible in the choice of source
prior, noise covariance structure and mixing matrix constraints. The model is
learnt using either variational Bayes (VB) or expectation consistent (EC) and
the authors report some comparison experiments showing that EC is preferable
to VB. The problems with standard EM style updates are also discussed and
the authors propose to use two alternative methods for optimizing the model
parameters.

Bayesian ICA is a timely topic and the proposed framework as well as the
accompanied software package are very interesting seeming to fulfill the claims
of flexibility and efficiency. However, there are several issues concerning the
paper that must be sorted out before it can be reconsidered for publication.

Contribution:

I had some difficulties in figuring out what is the relation of the work pre-
sented in this paper to that of ref [6]. The introduction suggests that the main



contributions are the software package and some better optimizers. But then
in the main text, especially in Section 4 dealing with EC, no references to [6]
are made and quite different terminology is used. So, what is the exact relation
between TAP of [6] and EC of this paper?

Answer: We have clarified the relation between TAP and EC in paper.

Comparisons:

There are known problems with VB when applied to ICA which makes the
comparison of Sec. 4.3 very thought provoking. However, if I understood cor-
rectly, the comparison was about inference and not learning i.e. the parameters
were fixed. Since the off-diagonal posterior covariances are mostly important
to what extent they make the learning more accurate and subsequently allow
for better separation of the sources, it would be interesting to see a comparison
in the learning setting as well, possibly with computational complexity aspects
included too.

Answer: We have included a table comparing success rates for learning for
different instances of easy/hard problems. We have discussed computational
complexity issues in the paper.

Software:

I tried the software (a package named icaMF in the given website) and did
not find it to correspond to the description of the paper. Instead of ”icaMF”
function I found ”ica_adatap” with a somewhat different interface as described
in the paper. Was it some old package the intended software not being available
yet?

Answer: The new version of the software is now available at the website.
Sorry for this. We wanted to wait for testing feedback before we uploaded it.

Model selection:

Since the paper advocates the usage of BIC for model order selection it would
be assuring to the reader to report experiments showing that it actually works
(with data where the true model is known).

Answer: We have included one such example.

I find the ”model probabilities” P(M) in Figure 2 very suspicious. With
these kinds of models one expects only one of the models to have a significant
probability. Have you divided the log-likelihood by the number of samples or
what is it that explains the unusually homogeneous distribution?



Answer: The referee is right about this point. It was an error on our part. We
have consequently changed the figure to show the log-likelihood values instead.

Minor issues:

There are many small language issues all along the article. Some polishing
up is necessary.

sec 3.3, line 3: ”length(x) > length(s)” 7>>” should be " <”

Answer: OK.

eq. 8 7Z,(\g)” wrong subindices

Answer: OK.

eq. 14: a strange binary relation

Answer: OK.

eq. 18: choose whether or not to use the subindex i

Answer: OK.

fig. 1: Two figures, one for S and another for Chi would make the results
much clearer

Answer: We disagree. We find the figure quite clear.

fig. 6: the x-axis should definitely be running times or flops

Answer: We think that that this figure very nicely illustrates the dynamics of
learning, but of course only for a specific example. Running time or flops will be
very problem specific. We have therefore instead included a paragraph on the
computational complexity of the different inference and optimization methods.

Reviewer #2:

This paper describes an improved implementation of noisy ICA based on
a probabilistic model. The major claims of the authors are two-fold: 1) The
proposed method is efficient because two alternative optimization schemes are
used to maximize the objective function in order to improve the slow convergence
of EM; and 2) it is flexible with respect to prior setting in the probabilistic ICA
model.

First of all, the authors should state the original contributions of this paper
more clearly.



Answer: We agree and have tried to do this in the introduction.

Regarding the first point above, the use of adaptive overrelaxed EM was
previously suggested in the authors’ own work (Petersen & Winther, 2005),
and the Easy Gradient Recipe is basically the same as the “generalized EM
algorithm” (Dempster, 1977; Neal & Hinton, 1998).

Answer: Yes, but since optimization is also an important issue in the context
of an ICA framework we find it in order to present it again here. General-
ized EM is defined as an increase of the bound (in the formulation of Neal &
Hinton 1993) or the function Q (Dempster et al. 1977), rather than a maxi-
mization. Following the Easy Gradient Recipe gives a direct approximation to
maximizing the likelihood itself by any standard gradient/Newton-type method.

In addition, the flexibility of probabilistic ICA modeling, the second point,
is not indeed the unique contribution of this paper. The authors can use an-
other approximation scheme, such as Laplace approximation or sampling-based
methods, even with a flexible setting of the source prior, mixing matrix, and
noise covariance matrix. Furthermore, the discussion on such flexibility was also
presented in a previous mean-field ICA paper (Hojen-Sorensen, et al., 2002).

Answer: Yes, it possible to perform the inference with other means and yes
previous papers have also offered flexibility. But Ref. [6] didn’t offer the same
efficiency. We think it is in order to present work that brings together previously
results when it is for an important model class like ICA.

Section 5 also obscure the focus of this paper, in which the authors describe
the features of their Matlab toolbox, and also compare the positive ICA with
the standard one. Both of them seems to be irrelevant.

Answer: Neurocomputing explicitly publishes software papers. Therefore we
think it is in it’s place to have a section on software.

My suggestion is that the authors should focus on the issue of the Expecta-
tion Consistent approximation newly introduced into the ICA context. This is
interesting, and seems to be promising as shown in Figure 1.

Answer: We are happy to agree with both referees that EC applied to ICA is
interesting in it’s own right. We have tried to explain this in the introduction
without shifting the focus too much away from the ICA framework which we
also find important.

The advantage of this method in the ICA context, however, seems not to be
sufficiently supported. Then, I suggest the authors to compare the performance



of EC to the previous mean-field method (including linear response and adaptive
TAP) in a full ICA setting, in addition to comparing the estimated moments.

Answer: We agree. We have included additional results for learning for the
different inference methods.

The optimization issue is of secondary importance, while it also contains a
practical importance. So I would like the authors to present a more detailed
comparison of empirical performances of the alternative EM optimizers. Figure
6 only shows a single run for each algorithm at a fixed noise level. It is better to
compare the algorithms with multiple runs and different noise levels, and show
clearly the advantages and drawbacks (if any) of applying these alternatives.

Answer: See answer above. The disadvantage of BEFGS compared to AOEM
and of EC/LR compared to variational (naive second moments) is computa-
tional complexity as also discussed in the revised version.

I also suggest the authors to reduce the irrelevant contents such as those in
Section 5, make the optimization part (Section 3) more concisely, and reconsider
the title of this paper such to reflect the original contribution of this paper.

Answer: Answered above. We think that the optimization part is pretty con-
cise. This suggestion is not very specific.

Some other comments are as follows. 1) The authors’ usage of the term,
‘empirical Bayes’ (and also ‘hierarchical Bayes’), seems to be a bit strange,
since the EM algorithm is referred to as ‘empirical Bayes’ method in this paper,
while it is not a Bayesian method but a maximum-likelihood or a maximum-a-
posteriori method. Please reconsider the usage or make clear the actual meaning
in this paper.

Answer: We use empirical Bayes in a standard way, see e.g. Davison, Statis-
tical Models, Cambridge, 2003. Empirical Bayes is clearly a ML method (aka
MLIT) because we are not averaging over all the parameters but only those that
scale with the number of samples.

2) The final paragraph of Section 6 discusses the difference between their
positive ICA and the Non-negative Matrix Factorization (NMF), but no simu-
lation result is presented. Such a comparison to the standard method is useful,
so I request the authors to show simulation results by NMF as well as by the
previous mean-field ICA method.

Answer: We have made extensive simulations comparing NMF with positive
ICA and we didn’t find any differences in result that would fit well into a figure
or table. This should be stated clearly in the revised paper. We have included



a comparison with linear response.



