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Abstract

Feature transformation aims to reduce the effects of channel- and handset-distortion
in telephone-based speaker verification. This paper compares several feature trans-
formation techniques and evaluates their verification performance and computation
time under the 2000 NIST speaker recognition evaluation protocol. Techniques com-
pared include feature mapping (FM), stochastic feature transformation (SFT), blind
stochastic feature transformation (BSFT), feature warping (FW), and short-time
Gaussianization (STG). The paper proposes a probabilistic feature mapping (PFM)
in which the mapped features depend not only on the top-1 decoded Gaussian but
also on the posterior probabilities of other Gaussians in the root model. The pa-
per also proposes speeding up the computation of PFM and BSFT parameters by
considering the top few Gaussians only. Results show that PFM performs slightly
better than FM and that the fast approach can reduce computation time substan-
tially. Among the approaches investigated, the fast BSFT (fBSFT) strikes a good
balance between computational complexity and error rates, and FW and STG are
the best in terms of error rates but with higher computational complexity. It was
also found that fusion of the scores derived from systems using fBSFT and STG
can reduce the error rate further. This study advocates that fBSFT, FW, and STG
have the highest potential for robust speaker verification over telephone networks
because they achieve good performance without any a priori knowledge of the com-
munication channel.
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1 Introduction

Speaker verification is a biometric technology that aims to authenticate users
via their voice patterns. Among the biometric traits that are currently under
intensive investigation, speaker verification is apparently the best candidate
for identifying or authenticating users over the telephone networks. Although
commercial speaker verification systems that aim at securing financial transac-
tions and remote information access are now available, the lack of robustness
to channel variability and the acoustic mismatch between enrollment and veri-
fication conditions remain a major practical challenge. Currently, this problem
is addressed by a technique called channel mismatch compensation.

The goal of channel compensation is to achieve performance approaching that
of a “matched condition” system. Channel compensation can be applied in
feature space [1,2], model space [3,4] or score space [5]. One advantage of
feature-space compensation is that it is not necessary to modify the speaker
models after training.

This paper focuses on feature-based compensation and compares several closely
related feature compensation techniques under the 2000 NIST SRE framework
[6]. Techniques compared include feature mapping (FM) [7], stochastic feature
transformation (SFT) [8], blind stochastic feature transformation (BSFT) [2],
feature warping (FW) [9], and short-time Gaussianization (STG) [10]. The
first three techniques attempt to transform distorted spectral features to fit
the clean acoustic models. The last two, FW and STG, attempt to make the
features less channel-dependent by normalizing the feature distribution. The
paper proposes improving the performance of FM by introducing a probabilis-
tic term in the mapping function so that the mapped features depend not only
on the winner mixture but also on the posterior probabilities of other mixtures
in the root model. The resulting mapping is referred to as probabilistic feature
mapping (PFM). Because both BSFT and PFM require the posterior proba-
bilities of all mixtures in the parameter estimation process, computation time
can become excessively long for large model size. The paper therefore proposes
speeding up the computation of FM and BSFT’s parameters by considering
the top few components only in the parameter estimation process.

The paper is organized as follows. Section 2 discusses two main types of chan-
nel compensation: blind and non-blind. Section 3 explains the BSFT and its
fast version, which is followed by Section 4 where FM and fast FM are out-
lined. These methods are then compared in Sections 5 and 6 under the NIST00
evaluation protocol.

Email address: enmwmak@polyu.edu.hk (Man-Wai Mak).
URL: http://www.eie.polyu.edu.hk/∼mwmak/mypage.htm (Man-Wai Mak).
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2 Feature Transformation for Channel Compensation

There are two main types of channel compensation: blind and non-blind. The
former adapts speaker models or transforms speaker features during recog-
nition to accommodate the channel variation without a priori knowledge of
the channel characteristics. Non-blind compensation, on the other hand, esti-
mates channel-specific compensation based on a priori knowledge of all pos-
sible channels. Specifically, during recognition, the channel type is identified
and is used to select the pre-computed channel compensation to reduce the
acoustic mismatch caused by mismatched channels.

2.1 Blind Compensation

Blind compensation can be categorized into four types. The first type exploits
the temporal variability of feature vectors. For example, cepstral mean sub-
traction (CMS) [11] subtracts the cepstral mean of an utterance from each
of the cepstral vectors. RASTA [12] applies a bandpass filter to the sequence
of cepstral vectors to remove the slow varying components corresponding to
the channel. It has been shown that both mean normalization and bandpass
filtering can minimize the filtering effect of linear channels [11,12]. However,
these techniques may cause performance degradation when both training and
recognition are derived from the same acoustic environment [4].

The second type of blind compensation transforms the distorted features such
that acoustic environments have minimum effect on the distribution of the
transformed features. For example, in feature warping [9], observed features
are mapped to a target distribution (e.g., standard normal) such that they
follow the target distribution over a sliding window of feature vectors. Specif-
ically, given a sequence of feature vectors, a sliding window of 3 seconds is
applied to the sequence to compute the cumulative distribution function (cdf)
of each feature component. For each feature component, the original feature
value at the middle of the sliding window is then mapped to a target value
such that the cdf at the original feature value is equal to the target cdf at the
target value. The warping can be viewed as a nonlinear feature transforma-
tion from the original feature to a warped feature. Feature warping has been
shown to be robust to channel variations and background noise. In short-time
Gaussianization [10], a linear transformation is applied to the distorted feature
before mapping them to a normal distribution. The transformation aims to
decorrelate the feature vectors, making them more amendable to diagonal co-
variance Gaussian mixture models (GMMs). Short-time Gaussianization has
shown advantages over feature warping, especially at low false acceptance rate.
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The third type makes use of the statistical difference between the clean acous-
tic models and the distorted speech to estimate a transformation matrix to
map the distorted vectors to fit the clean model. This type of technique include
the blind stochastic feature transformation [2] to be detailed in Section 3.

The fourth type, namely discriminative feature design [13], trains a neural
network discriminatively to maximize speaker recognition performance on the
training set. Because the training set consists of different types of acoustic dis-
tortions that the system may encounter during recognition, the neural network
is able to “recall” the compensation required during recognition to reduce the
effects of handset distortions on speaker discrimination.

2.2 Non-Blind Compensation

One typical property of non-blind techniques is the requirement of channel de-
tection during recognition. Typical examples are feature mapping [7], spectral-
magnitude matching [14], and stochastic feature transformation [8].

In feature mapping, the handset type of the testing utterance is identified by a
handset detector; feature vectors are then mapped to the channel-independent
space based on the closest Gaussian in the channel-dependent GMM. In spectral-
magnitude matching [14], a nonlinear polynomial mapper is trained to mini-
mize the mean-squared spectral magnitude error between speech arising from
electret and carbon-button handsets. The mapper is shown to be good at min-
imizing mismatches caused by phantom formants, bandwidth widening, and
spectral flattening due to channel nonlinearity. Stochastic feature transforma-
tion (SFT) [8] is derived from the stochastic matching method of Sankar and
Lee [15], which was originally proposed for robust speech recognition. SFT
aims to transform the distorted features to fit the clean speech models by
selecting the most appropriate pre-computed transformation matrix. It has
been shown that SFT can be extended to non-linear feature transformation
to overcome the nonlinear distortion [8].

3 Blind Stochastic Feature Transformation

The blind stochastic feature transformation (BSFT) proposed in [2] is a blind
approach to channel mismatch compensation. Specifically, given a D-dimensional
distorted vector y, the transformed feature vector is

x = fν(y) = Ay + b, (1)
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where A = diag {a1, . . . , aD} is a transformation matrix, b = [b1, . . . , bD]T

represents a bias vector, ν = {ai, bi}D
i=1 is the set of transformation parameters,

and fν(·) denotes the transformation function.

The BSFT parameters A and b are determined by maximizing the likelihood
function of a composite GMM formed by the fusion of a compact speaker
model and a compact background model given the distorted feature vectors.
This is achieved by maximizing an auxiliary function

Q(ν ′|ν) =
T∑

t=1

Mc∑
j=1

hj(fν(yt)) log

{
p(fν′(yt)|µj, Σj)

|Jν′(yt)|
}

(2)

with respect to ν ′. In Eq. 2, ν ′ and ν represent the new and current estimates
of the transformation parameters, respectively. Λ = {πj,µj, Σj}Mc

j=1 (typically
Mc = 128) is a composite model derived from a compact target-model and
a compact background-model (both with Mc/2 centers); Y = {y1, . . . ,yT} is
the distorted features extracted from a verification utterance; T is the num-
ber of distorted vectors; fν′(·) denotes the transformation; |Jν′(yt)| is the de-
terminant of the Jacobian matrix, the (r, s)-th entry of which is given by
Jν′(yt)rs = ∂fν′(yt)r/∂yt,s; and hj(fν(yt)) is the posterior probability given
by

hj(fν(yt)) = P (j|fν(yt), Λ, ν) =
πjp(fν(yt)|µj, Σj)∑Mc
l=1 πlp(fν(yt)|µl, Σl)

,

where

p(fν(yt)|µj, Σj) = (2π)−
D
2 |Σj|− 1

2 · exp
{
− 1

2
(fν(yt)−µj)

T Σ−1
j (fν(yt)−µj)

}
.

(3)

Maximizing Q(ν ′|ν) with respect to ν ′ leads to the following close-form solution
for {a′

i} and {b′i} for i = 1, . . . , D in the M-step of the EM algorithm [16]:

b′i =
pi − qia

′
i

ri

(4)

and (
si − q2

i

ri

)
a′

i
2
+
(

qipi

ri

− ui

)
a′

i − T = 0 (5)

where
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pi =
∑T

t=1

∑Mc

j=1
hj(fν(yt))μjiσ

−2
ji

qi =
∑T

t=1

∑Mc

j=1
hj(fν(yt))ytiσ

−2
ji

ri =
∑T

t=1

∑Mc

j=1
hj(fν(yt))σ

−2
ji

si =
∑T

t=1

∑Mc

j=1
hj(fν(yt))y

2
tiσ

−2
ji

ui =
∑T

t=1

∑Mc

j=1
hj(fν(yt))μjiytiσ

−2
ji . (6)

To reduce the computational complexity of BSFT, we propose adopting a fast
technique to compute the transformation parameters. In the original BSFT,
all the posterior probabilities {hj(fν(yt))}Mc

j=1 involve in the maximization of
Eq. 2. In the fast BSFT (fBSFT), the top-C posterior probabilities in the com-
posite model are determined and the transformation parameters ν = {A,b}
are computed using these top-C Gaussians. This is equivalent to maximizing
the auxiliary function

Q(ν ′|ν) =
T∑

t=1

∑
j∈C

hj(fν(yt)) log

{
p(fν′(yt)|µj, Σj)

|Jν′(yt)|
}

(7)

with respect to ν ′, where C contains the indexes of the top-C Gaussians. In
this work, C was set to 5.

4 Probabilistic Feature Mapping

Feature mapping [7] is a non-blind technique because it requires a handset
detector to identify the channel type during verification. In feature mapping,
the transformation is based on the top-1 Gaussian only. Specifically, let GMM
ΛCDi = {πCDi

j ,µCDi
j , ΣCDi

j }M
j=1, be an M -mixture channel-dependent GMM

for channel i and GMM Λ = {πCI
j ,µCI

j , ΣCI
j }M

j=1 be an M -mixture channel-
independent root model. The mapping of a distorted vector y in the space
modelled by ΛCDi to the channel-independent vector x is given by

x =
(
y − µCDi

k

) σCI
k

σCDi
k

+ µCI
k , (8)

where k = arg maxM
j=1π

CDi
j p(y|µCDi

j , ΣCDi
j ).

To account for the effect of other Gaussian components on the transformed
features, the transformation should be based on a weighted average of all Gaus-
sian components, which leads to the probabilistic feature mapping (PFM).
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Fig. 1. A 2-D hypothetical example illustrating the clustering effect in feature map-
ping. In the figure, black dots (upper right region) represent features from a chan-
nel-dependent source and blue dots (central region) represent features transformed
by (a) feature mapping and (b) probabilistic feature mapping. The red circles • and
green triangles � represent the centers of the root model and channel-dependent
model, respectively.

More specifically, we have

x =
M∑

j=1

gj(y)

[(
y − µCDi

j

) σCI
j

σCDi
j

+ µCI
j

]
, (9)

where

gj(y) = P (j|y, ΛCDi) =
πCDi

j p(y|µCDi
j , ΣCDi

j )∑M
l=1 πCDi

l p(y|µCDi
l , ΣCDi

l )

is the posterior probability of the j-th mixture. Note that the original feature
mapping (Eq. 8) is a special case of the probabilistic feature mapping (Eq. 9).

The fast technique mentioned in Section 3 can also be applied to PFM. Specif-
ically, Eq. 9 is rewritten as

x =
∑
j∈C

gj(y)

[(
y − µCDi

j

) σCI
j

σCDi
j

+ µCI
j

]
, (10)

where C contains the indexes of the top-C Gaussians. Fig. 2 shows the mean
posterior probabilities gj(y) of the top-10 Gaussians based on an utterance
with 932 frames. Evidently, the posterior probability is large for the first few
Gaussians only. In particular, the posterior probability of the 5-th Gaussian
is only 5% of that the first one. This suggests that only the top few Gaussians
have significant influence on the transformation. Based on this observation, C
was set to 5 in this work, i.e., only the top-5 Gaussians will be considered in
the fast PFM.

The idea of PFM can be illustrated by a 2-D hypothetical example as shown
in Fig. 1. In the figure, the black dots represent patterns from a specific chan-
nel and the red circles and green triangles represent the centers of the root
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Fig. 2. Average posterior probabilities gj(y) of the top-10 Gaussians. The probabil-
ities are based on a 932-frame utterance obtained from a carbon button handset.

model and channel-dependent model, respectively. Fig. 1(a) shows that the
patterns transformed by FM form a number of clusters (blue dots). Because
only the top-1 Gaussian is used in the mapping function, distorted patterns
near the boundary of two Gaussians can be transformed by two mapping func-
tions with different characteristics (different means and variances). As a result,
these patterns can be transformed to different regions of the feature spaces,
causing a clustering effect in the transformed patterns. Fig. 1(b) shows that
this clustering effect can be largely reduced by using PFM. According to Eq. 9,
the transformation of a pattern depends on all Gaussian components; there-
fore no hard decision is made to decide which Gaussian the pattern should
belong to. This has the effect of averaging out the effect caused by different
mapping functions. The capability of PFM is also demonstrated in a speaker
verification evaluation to be described next.

5 Experiments

5.1 Speech Corpus and Features

The feature transformation methods described in Sections 3 and 4 were applied
to the one-speaker detection task specified in the 2000 NIST speaker recogni-
tion evaluation set [6]. The evaluation set contains landline telephone speech
extracted from the SwitchBoard-II, Phase 1 and Phase 4 Corpus. The evalu-
ation set includes 457 male and 546 female target speakers. For each speaker,
approximately 2 minutes of speech is available for enrollment. There are 3026
female and 3026 male verification utterances. Each verification utterance has
length not exceeding 60 seconds and is evaluated against 11 hypothesized
speakers of the same sex as the speaker of the verification utterance.
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Nineteen Mel-frequency cepstral coefficients (MFCCs) [17] and their first-order
derivatives were computed every 10ms using a Hamming window of 25ms.
Cepstral mean subtraction (CMS) was applied to the MFCCs to remove linear
channel effects. The MFCCs and delta MFCCs were concatenated to form 38-
dimensional feature vectors.

5.2 Creating Speaker and Background Models

For each gender, the corresponding gender-dependent evaluation utterances
in NIST99 were used to train a 1024-component gender-dependent universal
background models (UBMs) Λg, where g ∈ {male, female}.

The target-speaker models in BSFT and fBSFT are different from those in
feature mapping. In the former, a target-speaker model Λg,k was created for
the k-th speaker in NIST00 by adapting the corresponding gender-dependent
UBM Λg using maximum a posteriori (MAP) adaptation [18]. Note that the
adaptation process captures the speaker characteristics together with the chan-
nel characteristics of the enrollment session in the speaker models. For feature
mapping, the speaker model Λg,k is created by adapting the root model Λg

using the transformed data x obtained from feature mapping. Fig. 3 shows
the process of creating speaker models from the UBMs.

For feature warping and short-time Gaussianization, features from both enroll-
ment and verification utterances were either warped or Gaussianized. These
warped or Gaussianized features were used to create the background models
using the EM algorithm. Then, MAP adaptation was applied to the back-
ground models to create the target-speaker models using warped or Gaussian-
ized features.

5.3 Creating Channel-Dependent Models

For feature mapping and probabilistic feature mapping, the gender-dependent
UBMs Λg were used as the root GMMs, and gender- and channel-dependent
evaluation utterances in NIST99 were used to adapt the corresponding gender-
dependent UBMs to create the gender- and channel-dependent models ΛCDi

g ,
where g ∈ {male, female} and CDi ∈ {cb, el}. 1 During verification, these
models were then used for calculating the mapping function (Eq. 8, 9, or 10)
that transforms the distorted features derived from the evaluation utterances

1 cb: carbon button handsets; el: electret handsets. The relevant factors for adapting
the means, variances, and mixture weights were set to 16.
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in NIST00 to fit the gender-dependent root models Λg. Fig. 3 illustrates the
feature mapping process.

For BSFT and fBSFT, a 128-mixture gender-dependent composite models was
created for each speaker by combining his/her 64-mixture compact speaker
models with a 64-mixture gender-dependent UBMs, i.e., Mc = 128 in Eq. 2.
For SFT, the transformation parameters (A and b in Eq. 1) for transform-
ing features from carbon-button (cb) handsets to electret (el) handsets or vice
versa were determined off-line using the SFT estimation algorithm (Eq. 2 with
Mc = 64, Eq. 4, and Eq. 5) and channel-dependent data from NIST99. During
verification, if the test utterance was recorded from a handset with type iden-
tical to that of enrollment, no transformation was applied. Otherwise, the test
patterns were transformed using the appropriate transformation (fνcb→el

(y) or
fνel→cb

(y)) to reduce the acoustic mismatch between the training and testing
features.

CID GD 
speech data 
from NIST99 CID GD GMM

(Root,       )

Feature Mapping /
Probabilistic

Feature Mapping

EM CD GD GMM

CD GD 
speech data 
from NIST99

CD speaker-
dependent

speech data 
from NIST00 CD target speaker 

GMMMAP

MAP

CID target speaker 
GMMCID speaker-

dependent
speech data

MAP

CD: channel-dependent
GD: gender-dependent
CID: channel-independent

g

i
kg

CD
,

Speaker model creation for BSFT

Speaker model creation for FM and PFM

i
g

CD

CID
,kg

Fig. 3. Procedures of creating target speaker models for FM, PFM, and BSFT.

5.4 Fusion of PFM, BSFT and STG

Because BSFT, STG, and FM (or their fast variants) transform features dif-
ferently, the scores obtained by speaker verification systems based on these
transformation techniques may contain complementary information. To verify
this hypothesis, we trained a 2-input linear SVM using the training set of
NIST00 to classify scores vectors s = [sPFM sfBSFT]T into speaker class and
impostor class, where sPFM and sfBSFT are scores obtained from a PFM-based
and a fBSFT-based system, respectively. The distances of s from the decision
hyperplane of the SVM are then used for plotting DET curves. Similarly, we
have also fused the scores of fBSFT and STG.
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6 Results and Discussions

Table 1, Fig. 5, and Fig. 6 show the computation time, computational com-
plexity, EER performance, and DET performance of various transformation
methods.

6.1 Computational Complexity and Computation Time

Table 1 shows the computational complexity and transformation time of dif-
ferent transformation approaches. The measurements were performed on a
Pentium IV 3.2 GHz processor using a verification utterance of 53 seconds.

The complexity of CMS, which amounts to O(PT ), is common to all meth-
ods. For BSFT and fBSFT, the computation of the posterior probabilities
hj(fν(yt)) and the actual transformation requires O(TDMc) and O(TD) op-
erations, respectively. The computation saving of fBSFT comes from the es-
timation of the transformation parameters A and b. More precisely, BSFT
requires O(TDMc) operations, whereas fBSFT only requires O(TCMc) oper-
ations for finding the C maximum posteriors and O(TDC) operations to find
A and b.

Assuming Reynolds’ fast scoring approach is used, the handset detection in
FM, PFM, fPFM, and SFT requires O(TDM + TDC) operation. The trans-
formation in FM requires O(TD) operations because only the top-1 Gaus-
sian is involved. On the other hand, PFM and fPFM require O(TDM) and
O(TDC) operations, respectively, because in PFM all mixtures are involved
and in fPFM only the top-C mixtures are involved. Note that fPFM also
requires O(TCM) operations to find the top-C Gaussians. fPFM is consider-
ably faster than PFM because DM � CM +CD. The transformation of SFT
requires O(TD) operations. Because SFT does not require to find the top-
1 Gaussian and the transformation is computationally light, it is the fastest
among all non-blind approaches.

Both FW and STG require O(TPW log W ) operations for sorting the feature
values in the warping window of length W (assuming quicksort [19] is used),
O(TPZ) operations for looking up a z-table of size Z (assuming linear search
is used), and O(TPK) operations for computing delta cepstra using a window
of length K. STG requires additional O(TP 2) operations for performing the
linear transformation before warping the features.

The last column of Table 1 shows that CMS is the fastest among all investi-
gated methods because subtracting the mean from feature vectors is a very
simple procedure. PFM is considerably slower than FM because for large M
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(1024 here), the time spent on computing Eq. 9 is considerably longer than
that on computing Eq. 8. This is also reflected in the computational complex-
ities of these two methods. The results also show that using only the top-C
Gaussians can reduce the verification time of both BSFT and PFM.

6.2 EER and DET Performance

Fig. 6 and Table 1 show the performance of various transformation techniques
and the fusion of PFM and fBSFT and the fusion of STG and fBSFT. Evi-
dently, all methods show significant reduction in error rates when compared
to CMS. The DET curves also show that these methods, in particular feature
warping and Gaussianization, outperform CMS at all operating points.

The p-values [20] 2 in Table 2 suggest that there is no significant difference
between the EERs of the following pairs: FM-PFM, FM-BSFT, FM-fBSFT,
FM-fPFM, FM-SFT, BSFT-fBSFT, BSFT-fPFM, fBSFT-fPFM, and PFM-
SFT. On the other hand, fusion of PFM and fBSFT and fusion of STG and
fBSFT can reduce EERs significantly. Surprisingly, FM and BSFT (or their
fast variants) achieve almost the same EER and minimum decision cost al-
though the former uses the information about the channel types during train-
ing whereas the latter is an unsupervised technique that does not rely on any
a priori channel information.

The PFM is theoretically better than FM because the former takes all Gaus-
sians in the GMMs into consideration and avoids sharp changes in transfor-
mation. However, Table 1 shows that PFM is only slightly better than FM
in terms of EER and minimum DCF. To investigate why this is the case and
the condition under which PFM becomes superior to FM, we compared FM
and PFM using small and large number of mixtures in a hypothetical 2-D
problem, and the results are shown in Fig. 4. Evidently, the clustering ef-
fect in FM becomes more prominent when the number of mixtures is large.
Some of the transformed patterns (red dots) in Fig. 4(c) even overlap with
the channel-dependent patterns (green dots). The PFM, on the other hand,
is able to transform the channel-dependent data to the region occupied by
the channel-independent space for both small and large number of mixtures,
suggesting that PFM has merit provided that the number of mixtures is suf-
ficiently large. Therefore, whether increasing the number of mixtures to say
2048 will bring more performance improvement for real speech data worth
further investigation.

2 A p-value less than 0.005 means that the difference in EERs between the two
corresponding transformation methods is statistically significant with a confidence
level of 99.5%.
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(c) FM (M = 256) (d) PFM (M = 256)

Fig. 4. A 2-D hypothetical example comparing feature mapping (FM) and proba-
bilistic feature mapping (PFM) under small and large numbers of mixtures in the
GMMs. (a) and (b) 4 mixtures. (c) and (d) 256 mixtures. Green dots: channel-de-
pendent patterns. Blue dots: channel-independent patterns. Red dots: transformed
patterns. Both FM and PFM attempt to transform the channel-dependent patterns
to the space occupied by the channel-independent patterns.

Feature Warping and short-time Gaussianization are among the best method
in terms of DET performance and EER, but their computation time is longer
than many others. Because BSFT, fBSFT, FW, and STG do not require hand-
set detection, they are more flexible than FM, PFM, and SFT. Bear in mind
that in real-world systems, users are likely to use handsets with widely dif-
ferent characteristics. In this situation, it is imperative to use a method that
neither requires handset detection nor a priori information about the hand-
set characteristics. Therefore, given their high performance in terms of EER
and DET performance and their moderate complexity, FW and STG appear
to be the best channel compensation method (among those that have been
investigated in this work) for practical implementation of speaker verification
system. On the other hand, if computation time is a concern, fBSFT is an
appropriate choice because it achieves reasonable performance at a low com-
putational complexity. If it is necessary to reduce the error rate further, we
may fuse the scores of fBSFT and STG.

The software for BSFT, FM, FW, and STG can be downloaded from
http://www.eie.polyu.edu.hk/∼mwmak/programs/feaTx.tgz.
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ture transformation methods. See the caption of Table 1 for the full name of the
acronyms. Legends are arranged in descending order of EER.

7 Conclusions

This paper has compared several state-of-the-art feature transformation meth-
ods for robust speaker verification. The feature mapping method is also ex-
tended to probabilistic feature mapping. Fast algorithm for these methods are
proposed and results show that computation saving can be achieved by con-
sidering the top few Gaussians only in the parameter estimation process. It
was also found that although BSFT is more computationally demanding than

14



FM, its fast version can reduce the computation time to a manageable level
without jeopardizing verification accuracy.
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Table 1
Equal error rates, p-value of EER with respect to FM, and minimum decision cost
achieved by cepstral mean subtraction (CMS), blind stochastic feature transforma-
tion (BSFT), fast BSFT (fBSFT), feature mapping (FM), probabilistic feature map-
ping (PFM), fast PFM (fPFM), stochastic feature transformation (SFT), feature
warping (FW), short-time Gaussianization (STG), fusion of PFM and fBSFT, and
fusion of STG and fBSFT. Note that the transformation time for non-blind methods
(FM, PFM, fPFM, and SFT) includes the time for handset detection, transforma-
tion parameter estimation, and actual transformation. The feature extraction time
(computing MFCCs) and scoring time for all approach is 0.72 and 7.38 seconds,
respectively. All CPU times are based on the average of 20 verification attempts
using a 53-second utterance (without silence).
Transformation Method EER

in %
p-
value

Minimum
Decision
Cost

Computational
Complexity of Feature

Transformation

Transforma-
tion Time
(sec.)

CMS 17.43 0.000 0.0611 O(PT ) 0.02

BSFT 16.27 0.189 0.0564 O(PT +TDMc +TDMc +
TD)

78.01

Blind fBSFT 16.04 0.402 0.0557 O(PT +TDMc +TCMc +
TDC + TD)

18.84

FW 15.04 0.000 0.0573 O(PT + TPW log W +
TPZ + TPK)

33.50

STG 14.67 0.000 0.0553 O(PT + TP 2 +
TPW log W + TPZ +
TPK)

33.80

STG+fBSFT 13.93 0.000 0.0514 O(PT + TP 2 +
TPW log W + TPZ +
TPK + TDMc + TCMc +
TDC + TD + DS)

52.64

FM 16.05 – 0.0577 O(PT + TDM + TDC +
TM + TD)

7.89

Non- PFM 15.91 0.567 0.0574 O(PT + TDM + TDC +
TDM)

66.19

Blind fPFM 16.47 0.009 0.0594 O(PT + TDM + TDC +
TCM + TDC)

7.90

SFT 15.64 0.032 0.0589 O(PT + TDM + TDC +
TD)

7.67

PFM+fBSFT 15.09 0.000 0.0540 O(PT +2TDM +2TDC +
TDMc+TCMc+TD+DS)

85.03

P : No. of cepstral coefficients, excluding delta coefficients (= 19)

T : No. of feature vectors in the test utterance (= 5300)

D : Feature dimension (= 38)

M : No. of mixtures in speaker and background models (= 1024)

Mc : No. of mixtures in the composite models in BSFT and fBSFT (= 128)

C : No. of top mixtures used in handset detection, fBSFT, and fPFM (= 5)

S : No. of support vectors in the fusion SVM

W : Length of warping window in feature warping and Gaussianization (= 301)

Z : Size of the z-table in feature warping and Gaussianization (= 40001)

K : Window size for calculating delta cepstra (= 7)
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FM PFM BSFT fBSFT fPFM SFT PFM +
fBSFT

FW STG STG +
fBSFT

CMS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FM – 0.5666 0.1888 0.4016 0.0094 0.1029 0.0000 0.0000 0.0000 0.0000

PFM – – 0.0058 0.0403 0.0000 0.0535 0.0003 0.0000 0.0000 0.0000

BSFT – – – 0.1002 0.1011 0.0000 0.0000 0.0000 0.0000 0.0000

fBSFT – – – – 0.0197 0.0001 0.0000 0.0000 0.0000 0.0000

fPFM – – – – – 0.0000 0.0000 0.0000 0.0000 0.0000

SFT – – – – – – 0.0090 0.0026 0.0000 0.0000

PFM+fBSFT – – – – – – – 0.5906 0.0001 0.0000

FW – – – – – – – – 0.0000 0.0000

STG – – – – – – – – – 0.0000

Table 2
p-values of McNemar’s tests on the differences between the equal error rates of
various transformation methods. For each entry, p < 0.005 means that the difference
between the EERs of the two corresponding transformation methods is statistically
significant at a confidence level of 99.5%.
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