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7 Reinforcement learning of recurrent neural

network for temporal coding

Daichi Kimura Yoshinori Hayakawa∗

Abstract

We study a reinforcement learning for temporal coding with neu-

ral network consisting of stochastic spiking neurons. In neural net-

works, information can be coded by characteristics of the timing of

each neuronal firing, including the order of firing or the relative phase

differences of firing. We derive the learning rule for this network and

show that the network consisting of Hodgkin-Huxley neurons with the

dynamical synaptic kinetics can learn the appropriate timing of each

neuronal firing. We also investigate the system size dependence of

learning efficiency.

1 Introduction

Many studies have assumed that neurons transmit information by their firing
rate. The McCulloch-Pits unit is a typical model and networks of these
units have been investigated. On the other hand, recent experiments suggest
that the timing of neuronal firing may also contribute to the information
representation function in the brain and the synaptic modification (Gray,
König, Engel, & Singer, 1989; Bi & Poo, 1999; Varela, Lachaux, Rodriguez,
& Martinerie, 2001; Reyes, 2003). For example, it seems that local and global
synchronization play a significant role in integration of information which is
distributed across the brain. Another example shows that the order of timing
of neuronal firings can encode the information of stimuli on fingertips, and
this encoding by sequence can transmit information faster than coding from
the firing rate directly (Johansson & Birznieks, 2004).

To capture the dynamical aspects of neural networks, networks consisting
of various model neurons other than the McCulloch-Pitts unit have been
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investigated, because McCulloch-Pitts units cannot describe the temporal
behavior of neurons over short time scales. In this context, an associative
memory for neural networks of oscillator neurons or spiking neurons has been
studied (Aoyagi, 1995; Yoshioka & Shiino, 1998; Hoppensteadt & Izhikevich,
1999; Kanamaru & Okabe, 2000; Hasegawa, 2001; Lee & Farhat, 2001, 2002).
In these systems, the relative phase differences, i.e., the timing of firings, are
used to represent the memory.

There are few studies of learning in pulse neuron models such as those
consisting of Hodgkin-Huxley (HH) neurons because of difficulty in deriving
the learning rule. Although several studies have been made of learning in
networks that consist of integrate-and-fire (IF) model neurons (Seung, 2003;
Xie & Seung, 2004; Cios, Swiercz, & Jackson, 2004), most of these studies
focus only on coding in terms of the firing rate.

However, it would be useful to combine temporal coding and learning
because it has been shown that temporal coding can deal with more infor-
mation and process it faster than coding from just the firing rate (Thorpe,
Delorme, & Rullen, 2001). As an example of this, Delorme et al.(2001) show
that a neural network consisting of IF neurons can learn to identify human
faces by using “Rank Order Coding”, i.e., coding by the order of timing of
each neuronal firing, where neurons are allowed to spike once only.

In this paper, we study a reinforcement learning for temporal coding with
neural network consisting of stochastic spiking neurons. After defining a
network of coupled stochastic HH neurons and some quantities in Sec. II, we
train the network to learn an XOR operation, where the output information
is coded by the order of firing in Sec. III. In Sec. IV, we investigate how
the result or performance of learning depends on the system size and the
strength of noise, and conclusions follow.

2 The model

To illustrate an example of the learning process of spiking neurons, we con-
sider a neural network consisting of HH neurons. Since HH neurons show
excitability, they can code information by the timing of firing. The complete
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dynamics for a network of coupled HH neurons may be expressed as

Cm
dVi

dt
= gNam

3
ihi(VNa − Vi) + gKn

4
i (VK − Vi) + gL(VL − Vi)

+
∑

j

wijI
s
j (t) + ξi(t), (1)

dmi

dt
= αm(Vi)(1−mi)− βm(Vi)mi, (2)

dhi

dt
= αh(Vi)(1− hi)− βh(Vi)hi, (3)

dni

dt
= αn(Vi)(1− ni)− βn(Vi)ni, (4)

where Vi is the membrane potential of neuron i, Cm the membrane capac-
itance, Vr(r = Na,K,L) are the equilibrium potentials, gr(r = Na,K,L) the
conductance, mi, hi, ni the voltage dependent activating or inactivating vari-
ables, αx and βx(x = m, h, n) the functions of voltage Vi (Hodgkin & Huxley,
1952), wij is the synaptic weight from neuron j to i (wij 6= wji in general),
Isj (t) the synaptic current and ξi(t) is the Gaussian white noise which obeys,

ξi(t) = 0, (5)

ξi(t)ξj(t′) = Qδijδ(t− t′), (6)

where A is the average of A over time and Q the variance of noise. The
synaptic current Isj (t) is given by

Isj (t) = rj(t)[Vsyn − Vi], (7)

where Vsyn is the synaptic reversal potential and rj(t) the fraction of bound
receptors (Destexhe, Mainen, & Seijnowski, 1994) described by

drj
dt

= αT (t)(1− rj)− βrj, (8)

T (t) =

{

1 t0j ≤ t < t0j + τ,

0 otherwise,
(9)

where α = 0.94 ms−1, β = 0.18 ms−1, t0j the time when the presynaptic
neuron j fires (membrane potential over 27 mV) and τ = 1.5 ms (Fernández,
Huerta, Corbacho, & Sigüenza, 2000) Fig. 1 shows the behavior of Vi(t) and
ri(t) of single neuron added the external current whose amplitude is 10 mA.
We used the forth order Runge-Kutta method with the time step ∆t = 0.01
to solve Eqs. (1)∼(4).
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Figure 1: The behavior of Vi(t) and rj(t) of single HH neuron added the
external current. The neuron fires at t = 2 ms, then the value of ri(t) starts
to increase. After a lapse of τ = 1.5 ms, ri(t) turns into decline.
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To train the neural network, we use a reinforcement learning algorithm.
Let us consider time sequences of states of neurons; σ ≡ (V (0),V (1),V (2), · · · ,V (T )),
where V (t) denotes the vector (V1(t), · · · , VN(t)). We assign a scalar value
(“reward”) to each time sequence σ according to the signal from the network
(Sutton & Barto, 1998). We give a high reward R to the desirable time se-
quence σ in each episode. Here we consider episodic learning. Since Eq. (1)
includes the Gaussian white noise, we calculate the expected value of the
reward 〈R〉, where 〈· · · 〉 signifies the average over all possible time sequences
σ. Then the goal of learning is to maximize 〈R〉 by adjusting wij. We use an
ascending gradient strategy;

wNew
ij = wOld

ij + δwij , (10)

δwij = ǫ
∂〈R〉

∂wij

, (11)

where ǫ is the learning coefficient. We can calculate the gradient of 〈R〉 with
respect to wij (Hayakawa, 2001; Fiete & Seung, 2006),

∂〈R〉

∂wij
=

1

Q

〈

R(σ)

∫ T

0

dtξi(t)I
s
j (t)

〉

. (12)

For details of the derivation, see appendix.

3 Learning procedure for temporal coding

The present learning rule Eq. (10)∼(12) can be effective for any information
coding including the order coding. To show an example, we consider a neural
network consisting of 2 input neurons, 15 output neurons and hidden neurons.
We divide the set of output neurons into three disjoint subsets, O1, O2 and
O3, each containing 5 output neurons.

Here, we assume that information is coded by the temporal order of the
“group activity” of subsets O1, O2 and O3. As a learning goal, we chose
an XOR operation in terms of order coding; the subsets O1, O2 and O3

should fire in this order for input patterns [−1,−1] and [1, 1], and in reverse
order for input patterns [−1, 1] and [1,−1]. We train the neural network to
learn the suitable timing tkp of firing in the subset Op for given input pattern
k = [−1,−1], [−1, 1], [1,−1] and [1, 1], respectively, as described in Table 1.
The right column of Table 1 shows the desirable order of group activity of
subsets for each input pattern. The learning goal is the reduction of the RMS
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Table 1: The order of collective firing as a learning goal. t1 = 2.0, t2 = 4.0
and t3 = 6.0, respectively.

Input tkp Desirable
pattern O1 O2 O3 order
[−1,−1] t1 t2 t3 O1, O2, O3

[1,−1] t3 t2 t1 O3, O2, O1

[−1, 1] t3 t2 t1 O3, O2, O1

[1, 1] t1 t2 t3 O1, O2, O3

errors Ek for each input pattern k given by

Ek =
1

NO

3
∑

p=1

∑

i∈Op

(

t0i − tkp
)2

, (13)

where t0i is the time when the neuron i fires and NO the number of output
neurons.

We define an “episode” as the transient dynamics of the network which
lasts from t = 0 to t = T accompanied with external inputs. We evaluate
the reward R depending on the resulting error Ek through each episode for
given input pattern as

R =

{

1 Ek < Ek
th,

0 Ek ≥ Ek
th,

(14)

where Ek
th is a threshold of error. We change the threshold Ek

th gradually as
the learning proceeds. In the following simulations, we calculate the aver-
age error Ek

ave over 100 episodes for each input pattern, and we update the
threshold for the next 100 episodes by Ek

th = 0.99 × Ek
ave. Ek

th and Ek
ave are

almost identical. It sometimes happens that Ek
ave increases through learning

since the update of wij to decrease Ek will affect the value of Ek′ where
k 6= k′. Thus, Ek

th also sometimes increases, not decreases monotonically.
During each episode, the input signals are fixed to the time-independent

value, Isi = I0 or −I0, corresponding to the input patterns. (Here, I0 = 10
mA.) The learning coefficient, the variance of noise and the period of one
episode are ǫ = 0.001, Q = 10000 and T = 10.0 ms, respectively.

We assume that all the output and hidden neurons are excitatory, i.e.,
wij for j 6∈ I can take only positive value, where I is the set of input
neurons, while wij for j ∈ I can take both positive and negative value. We
first set the synaptic weights wij for j ∈ I using the uniformly distributed
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random number in [−1.0, 1.0], while for j 6∈ I between [2.5
N
, 5.0

N
], where N is

the number of neurons. Due to this normalization factor 1
N
, the magnitude

of error Ek does not depend on N . In this section, the number of hidden
neurons was 5.

Fig. 2 shows the behavior of the output neurons at initial state (upper)
and that after 5×104 episodes for each input pattern (that is, 2×105 episodes
in total) elapsed (lower). We find that neurons in O1, O2 and O3 fire in this
order for the input patterns [−1,−1] and [1, 1], while in reverse order for
the patterns [1,−1] and [−1, 1] after learning. In fact, Fig. 3 shows that
the average error Ek

ave decrease gradually through learning. These figures
indicate that learning in terms of the order of firing by applying the present
learning rule is successful.

Fig. 4 shows wij in a matrix form representing the connections with color
after learning. As can be seen, there is few connection between O1 and O3

as a result of learning. This can be interpreted as the consequence that there
is no direct correlation between O1 and O3 in the both of the output time
sequence. Few connections from I to O2 can be understood in the same way.

4 System size dependence of learning efficiency

Since realistic biological systems consist of many neurons, it is interesting
and important how efficient this learning rule is for larger system size. In
this section, we discuss the system size dependence of the performance of
learning

At first, we train the network for various number of hidden neurons NH.
In the following simulation, all parameters but NH are given as the same as
previous section. The sum of average errors

∑

k E
k
ave are shown in Fig. 5(a).

To investigate the property of learning, we assumed an exponential decay of
the error ∼ exp(−λs) as the function of the number of episode s and showed
λ in inset of Fig. 5(a). As shown in Fig. 5(a), the speed of learning becomes
slower when extra hidden neurons are added, and, decay rate λ also has the
same tendency. However, the error is significantly reduced as the episodes
proceed. In this case, it turned out that the network with NH = 5 showed
best result in this simulation so that those added neurons are redundant and
do not contribute learnability.

Next, we examine the case the learning speed for various number of output
neurons NO, where each subsets Op consist ofNO/3 and the number of hidden
neurons NH = 5. Fig. 5(b) shows the error

∑

k E
k
ave and the decay rate λ

(inset). In this first stage of the learning process (s ≤ 104), decay rate is
approximately given as λ ∼ N δ

O, where δ ≈ −2. However, if λ is evaluated
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Figure 2: The action potential of each output neuron at initial state (upper)
and after 5 × 104 episodes for each input pattern (that is, 2 × 105 episodes
in total) elapsed (lower). The index of each output neuron is shown on the
vertical axis. The neurons with index ≤ 5 are in O1, those with index ≥ 11
are in O3, and the others are in O2. O1, O2 and O3 fire in this order for
input patterns [-1,-1] and [1,1], while in reverse order for [1,-1] and [-1,1]. See
also Table 1.
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(open square).

in the interval 4 × 104 < s < 5 × 104, the NO dependence of λ seems to be
more weaken, so that a long-term behavior of the learning process needs to
be investigated to discuss the asymptotics.

We would like to mention the effects of noise in the learning. The noise
strength may affect the result or performance of learning because a random
search process in the weight space is the essential part of this learning algo-
rithm. We tested the dependence of the learning performance on the variance
of noise Q in Eq. (6) , where NO = 15, NH = 5 and other parameters are
given as previous section. Fig. 6 shows the learning error and its decay rate.
Since the amount of update |δwij| is in the order of |ǫ/Q|, the magnitude
of Q will directly affect the stability of learning. However, Fig. 6 indicates
this learning rule is robust against the change of Q as long as the gradient
ascending process assumed in Eq. (11) holds.

5 Conclusions

We have proposed a concrete method to encode temporal information for
a network of stochastic spiking neurons utilizing a reinforcement learning
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method, and we show that this learning rule is effective for order coding.
Since the derivation of Eq. (11) does not depend on the form of the

differential equation for the action potential like Eq. (1), the learning rule
Eq. (11) is generally applicable to networks of other types of model neurons,
for example neurons following the IF or FitzHugh-Nagumo (FHN) model
with random fluctuation. In fact, we have checked the network consisting
of IF or FHN neurons can also learn the same order coding task with the
learning rule Eq. (11). (We omit these details in this paper.)

The present learning rule can be applied not only to the order coding, but
also to any information coding. In general, if one can design an appropriate
reward R by defining the error of group activity from the reference signals,
the learning process is given in a straightforward manner as described in
Sec. III. For example, we confirmed that the present method also worked for
the XOR task in terms of phase coding, where the relative phase difference
codes information in the same way as oscillator neurons (Aoyagi, 1995). In
the simulation, neural network consisted of 2 input neurons, a few hidden
neurons and 10 output neurons which were divided into two disjoint subsets,
O1 and O2, each containing 5 output elements. Learning goal was for group
activity in O1 and O2 to become in phase for input patterns [−1,−1] and
[1, 1], and to be out of phase for [1,−1] and [−1, 1].

In general, convergence of the reinforcement learning is slow and the
present model is not the exception. Several factors need to be investigated
to improve the speed of convergence. Although we have assumed Gaussian
white noise in this study, in real neuronal systems it is likely that noise may
obey other statistical properties. For example, Fiete et al. (2006) discusses a
learning rule using the arbitrary noise. Furthermore, learning speed depends
to a great extent on the design of the cost function, i.e., the reward. If
the design of the reward is not suitable, the learning process drops into
local minima easily. In the present study, we empirically employed a sliding
threshold method by changing the learning goal Ek

th in Eq. (14) started from
easier one. Although this strategy can be applied to any learning tasks, the
performance or result of learning is sensitive to define Ek

th. In this paper, we
have defined Ek

th as A× Ek
ave where A = 0.99, because A = 0.9 is too severe

to learn so that the speed of learning becomes slower and A = 1.0 causes
overestimated reward so that the learning process drops into local minima.
The point that Ek

th does not monotonically decrease is also important since
the update of wij to decrease Ek will affect the value of Ek′ where k 6= k′.
Therefore, if we decrease Ek

th monotonically while Ek
ave increases because of

this influence with update of wij, the task becomes harder to learn. As well
as the conventional back propagation learning, how to decide the number of
hidden neurons and assign the initial value of wij are also important problem.
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In the XOR task with the order coding, convergence speed in learning process
significantly affected by both the number of hidden and output neurons,
larger size system seems to require more learning steps. We intend to examine
this relationship in future research.

We have assumed a fully connected network and assigned the random
value to the initial state of wij , which may not be appropriate for learning.
Watts and Strogatz have proposed a “small-world” network structure (Watts
& Strogatz, 1998). This network has been investigated in the context of a
multi-layered feed-forward network, and some improvements in performance
have been made (Simard, Nadeau, & Kröger, 2005). Also, the propagation
velocity and coherent oscillation of IF or Hodgkin-Huxley neurons depend on
the topology of network (which includes small-world network) (Fernández et
al., 2000; Roxin, Riecke, & Solla, 2004). These results may indicate that there
are some suitable topologies of network for temporal coding as well. Since the
present learning rule Eq. (12) includes only the local relation between neuron
i and j, this learning rule may be applied to a network with an arbitrary
topology. Finding a suitable network topology to facilitate learning is also a
problem for future investigation.
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Appendix : Estimation of gradient of 〈R〉

Let us introduce a stochastic processing element as a model neuron. The
value of action potential of i-th neuron at discrete time t(= 0, 1, 2, · · · ) is
represented by Vi(t). Vi(t) and other internal state mi(t) at successive time
step t+ 1 are then determined as

Vi(t + 1) = g(Vi(t), mi(t)) +
N
∑

j

wijf(Vj(t)) + ξi(t), (15)

mi(t+ 1) = h(Vi(t), mi(t)), (16)

where wij is the synaptic weight from neuron j to i, f(Vi(t)) the signal
which i-th neuron emits according to Vi(t), N the total number of neurons,
g(Vi(t), mi(t)) and h(Vi(t), mi(t)) are functions of the neuronal states, and
ξi(t) is the Gaussian white noise which obeys Eq. (5) and Eq. (6). We consider
that f(Vi(t)), g(Vi(t), mi(t)) and h(Vi(t), mi(t)) are arbitrary functions.
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As a continuous time representation, we employ a Langevin equation for
neuronal updates;

dVi

dt
= g(Vi(t), mi(t)) +

N
∑

j

wijf(Vj(t)) + ξi(t), (17)

dmi

dt
= h(Vi(t), mi(t)). (18)

Although we treat mi(t) as a scalar variable in the following discussion, the
same method can also be applied if mi(t) is multivariate.

We consider time sequences of states of neurons for t = 0, · · · , T ;
σ ≡ (V (0),V ((1),V (2), · · · ,V (T )), where V (t) denotes the vector
(V1(t), · · · , VN(t), m1(t), · · · , mN (t)).

We assign a reward R to each time sequence σ and calculate the gradient
of 〈R〉 with respect to wij (Hayakawa, 2001; Fiete & Seung, 2006). The
probability density Tσ for each time sequence is defined as

Tσ = P (V (T )|V (T − 1)) · · ·P (V (1)|V (0)), (19)

where P (A|B) is the transition probability from state B to A. Since mi(t) is
deterministic and only Vi(t) includes the Gaussian noise described by Eqs. (5)
and (6), the transition probability in Eq. (19) may be expressed as

P (V (t+ 1)|V (t)) =
∏

i

1

(2πQ)1/2
exp

[

−
1

2Q
ξ2i (t)

]

×δmi(t+1),h(Vi(t),mi(t))

=
1

(2πQ)N/2
exp

[

−
1

2Q

∑

i

ηi(t)

]

∏

i

δmi(t+1),h(Vi(t),mi(t)), (20)

where

ηi(t) ≡

[

Vi(t+ 1)− g(Vi(t), mi(t))−
N
∑

j

wijf(mj(t))

]2

. (21)

and δm,n is the Kronecker delta. The average of a quantity Y (σ) over all
possible time sequences can be described by

〈Y 〉 =
1

Z

∑

σ

Y (σ)Tσ

=
1

Z

∑

σ

Y (σ) exp

[

−
1

2Q

∑

t

∑

i

ηi(t)

]

, (22)
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where Z is a normalization factor. Therefore, the gradient of Y (σ) may be
obtained as

∂〈Y 〉

∂wij

=
1

Z

∑

σ

TσY (σ)
1

Q

T
∑

t=0

ξi(t)f(Vj(t))

=
1

Q

〈

Y (σ)

T
∑

t=0

ξi(t)f(Vj(t))

〉

. (23)

In the continuous case (17), the sum over σ in Eq. (22) becomes the path
integral

〈Y 〉 =
1

Z

∫

σ

Y (σ) exp

[

−
1

2Q

∫ T

0

dt
∑

i

η̃i(t)

]

d(path), (24)

where

η̃i(t) ≡

[

dVi

dt
− g(Vi(t), mi(t))−

N
∑

j

wijf(Vj(t))

]2

. (25)

Using R(σ) as Y (σ), we obtain the derivative in Eq. (11) as

∂〈R〉

∂wij
=

1

Q

〈

R(σ)

∫ T

0

dtξi(t)f(Vj(t))

〉

. (26)

For the network consisting of HH neurons (1)∼(4), we can derive Eq. (12)
by instituting Eq. (7) to Eq. (26).

Thus, this result indicates that the calculation of the gradient of 〈R〉
depends only on ξi(t), f(Vj(t)) and R(σ). The linear summation of the pre-
synaptic neuronal activity and an additive independent noise as in Eq. (15)
and Eq. (17) is essential for the present learning algorithm. This learning
rule includes only the local relation between neurons i and j, while back-
propagation (Rumelhart, Hinton, & Williams, 1986) or RTRL (Williams &
Zipser, 1989) requires the information of other neurons in addition to i, j in
order to calculate δwij.
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