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Abstract

Large graphs are natural mathematical models for describing the structure of the
data in a wide variety of fields, such as web mining, social networks, information
retrieval, biological networks, etc. For all these applications, automatic tools are
required to get a synthetic view of the graph and to reach a good understanding
of the underlying problem. In particular, discovering groups of tightly connected
vertices and understanding the relations between those groups is very important in
practice. This paper shows how a kernel version of the batch Self Organizing Map
can be used to achieve these goals via kernels derived from the Laplacian matrix
of the graph, especially when it is used in conjunction with more classical methods
based on the spectral analysis of the graph. The proposed method is used to explore
the structure of a medieval social network modeled through a weighted graph that
has been directly built from a large corpus of agrarian contracts.
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1 Introduction

Complex networks are large graphs with a non trivial organization. They arise
naturally in numerous context [7], such as, to name a few, the World Wide
Web (which gives a perfect example of how large and complex such a network
may grow), metabolic pathways, citation networks between scientific articles
or more general social networks that model interaction between individuals
and/or organizations, etc.

Complex networks share common properties that have allowed the emergence
of mathematical descriptions such as small world graphs or power law graphs.
The structure of these graphs often gives some keys to understand the com-
plex network underlined. To study such a structure, one often begins with
a metrology process applied to the graph that describes the degree distribu-
tion, the number of components, the density, etc. The second step consists in
the search of subgraphs that have particular adjacency, in particular highly
connected parts of the graph which are at the same time lightly connected be-
tween them. Such parts are called communities 2 [41,13]. More recently, several
directions have been explored to go further in modelling large real networks,
taking into account their dynamics [47], the attributes of the data [35], a more
formal definition of the communities [42,38,37], or the relations between com-
munities [40]. However, it should be noted that dealing with very large graphs
(millions of vertices) is still an open question (see [9] for an example of an
efficient algorithm to explore that kind of data sets).

Several ways have been explored to cluster the vertices of the graph into
communities [43] and some of them have in common the use of the Lapla-

cian matrix. Indeed, there are important relationships between the spec-
trum of the Laplacian and the graph invariants that characterize its struc-
ture (see, e.g. [32,33]). These properties can be used for building, from the
eigen-decomposition of the Laplacian, a similarity measure or a metric space
such that the induced dissimilarities between vertices of the graph are related
to its community structure (see [13], among others). The Laplacian matrix
also appears when the vertices of the graph are clustered by the optimiza-
tion of a graph cut quality measure: optimizing such a measure is generally a
NP-complete problem but using the properties of spectrum of the Laplacian
provides a relaxation based heuristic solution with a reasonable complexity
[1].

In the present paper, the properties of the Laplacian are also used to iden-

2 It should be noted that this use of the term “community” while quite standard
in computer science is disputed in other disciplines, e.g., sociology, where a group
of individuals highly connected in some sense is not always considered as forming a
community.
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tify and map communities, both in a rather classical way and with a recently
proposed batch version of the kernel Self Organizing Map (SOM). The com-
bination of those tools gives complementary views of a social network. The
spectral based approach extracts a specific type of communities for which in-
terpretation biases are limited, but which cover only part of the graph (e.g., one
third of the vertices in the studied graph). The SOM solution gives a global
map of the vertices clustered into more informal communities, for which a
link analysis must be done with care. Combining the analysis of these clas-
sifications helps in getting some global results while limiting the risk of false
interpretation.

In both cases, the communities’ organization is associated to a two dimensional
representation that eases interpretation of their relations. It should be noted
that these representations are not intended to compete with those coming
from the large field of graph drawing [12,23]: the goal in this paper is not to
draw the whole graph but to extract a community structure and to provide a
sketch of the organization of these small homogeneous social groups.

The rest of this paper is organized as follows. Section 2 defines perfect com-

munities and uses spectral analysis of the Laplacian to identify them. An
alternative and complementary approach is described in Section 3, where a
kernel is derived from the Laplacian via a form of regularization. This kernel
is used in Section 4 to implement a batch kernel SOM which builds less per-
fect communities and maps them on a two dimensional structure that respects
their relationships. Section 5 is dedicated to an application of the proposed
methods to a social network that models interactions between peasants in
the French medieval society. The historical sources (agrarian contracts) are
first presented together with the corresponding social network model. Meth-
ods proposed in Sections 2 and 4 are then applied to this graph. Results are
compared and confronted to prior historical knowledge.

2 Clustering through the search of perfect communities

Understanding the structure of a large network is a major challenge. Fortu-
nately, many real world graphs have a non uniform link density: some groups
of vertices are densely connected between them but sparsely connected to out-
side vertices. Identifying those communities is very useful in practice [38] as
they can provide a sort of summary which can in turn be analyzed more easily
than the original graph, especially when human expertise is requested. How-
ever, there is no consensus on a formal definition of a community (see e.g.,
[41,43]). In the context of visualization, a particular (and somehow restrictive)
type of communities, the so called perfect communities, leads to interesting
results. In addition, this precise form of communities, easy to define and un-
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derstand, may be viewed as the elementary block of the communities, in their
general meaning.

A perfect community of a non-weighted graph is a complete subgraph (in
such a subgraph all vertices are pairwise linked by an edge), with at least 2
vertices, and such that all its vertices have exactly the same neighbors outside
the community. The perfect communities of a weighted graph are obtained as
the perfect communities of its induced non-weighted graph (i.e., of the graph
having same vertices and edges but no weights on the edges). In [49], Van
den Heuvel and Pejic proposed that particular form of community for non-
weighted graphs in the case of frequency assignment problems. They give a
different definition for weighted graphs; this last one was not followed because
it appears as too restrictive for more general graphs such as those coming from
social networks.

A nice advantage of perfect communities over looser ones is that they have
simple non ambiguous visual representations. Indeed perfect communities can
be represented by simple glyphs (circles for instance) together with their con-
nections to other perfect communities without loosing information: the nodes
in a perfect community are fully connected (hence each simple glyph symbol-
izes a complete subgraph) and share the same connections with the outside
of the community (hence the unique representation of these connections by a
simple link between two glyphs).

However, perfect communities don’t provide a complete summary of a graph.
One of their main weaknesses is that, on real applications, the set of perfect
communities can contain only a part (and sometimes a little part) of the
whole graph. Moreover, some of the vertices that don’t belong to a perfect
community can play a central role in the structure of the social network. Two
parameters are usually used in social network analysis to characterize these
important vertices: high degree and high betweenness measure (the definition
is given below).

The vertices with the highest degrees are likely to have a main role in the
graph as they are linked to a large number of other vertices. These vertices
may appear in a rich-club [56] if it exists. The rich-club occurs when the
vertices with highest degree form a dense subgraph with a small diameter. The
diameter of a graph is the longest of the shortest path between any two given
vertices of a graph and the density of a graph is the ratio beetwen the number
of its edges and the number of the total possible edges. The construction of a
rich-club starts from the highest degree vertices which are totally connected
and follows by adding the next vertices in the decreasing order of their degrees.
The process stops when the diameter reaches the fixed limit or when the
density sharply decreases. In practice, the chosen limit for the diameter of the
rich club is very small: for a graph having several hundred of vertices, as the
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one studied in Section 5, a diameter of 2 gives satisfactory results. As the rich
club is a subgraph with a small diameter and a high density and as it shares
many connections with the other vertices of the graph, it can be seen as a
set of people having a main social role by knowing almost everybody in the
community.

All the vertices of the graph don’t belong to a perfect community or to the rich
club and some of them can still be important to obtain a good summary of
the graph. Another interesting feature to localize relevant vertices is to look at
the betweenness measure of the vertices. The betweenness measure of a vertex
is the frequency of the shortest paths of any two vertices of the graph in which
this vertex occurs. These vertices also have a main role as they are essential
to connect the whole graph. In social networks, they can be seen as mediating
persons that link together subgroups that would be otherwise unrelated.

The number of high betweenness vertices is chosen according to the follow-
ing heuristic. Vertices are sorted in decreasing order of betweenness and the
number of connected components of each subgraph Sk induced by the perfect
communities, the rich-club and the first k vertices with highest betweenness
measure is computed. In general, the decrease of this number with k is non
uniform: sharp drops are separated by constant (flat) regions (see Figure 3
for an example). As important vertices are those that significantly reduce the
number of connected components, it seems logical to consider a value of k that
lies just after a significant drop. The actual selection of k remains however a
matter of compromise as there are generally several significant decreases in the
number of components: adding too much nodes will clutter the visualization
while leaving out too many will miss some important individuals. Section 5.3
provides an example of such compromise. The final set of selected vertices are
called central vertices.

Adding the rich-club and the central vertices to perfect communities enhances
the coverage of the original graph while maintaining an easy visual represen-
tation. The first step consists in using adding glyphs for central vertices. As
already explained above, links from a perfect community to any vertex is un-
ambiguous and therefore the edges between perfect communities and central
vertices (as well as between those vertices) can be added without difficulty.
The only compromise concerns the rich-club. It is also represented by a specific
glyph which does not show therefore its substructure. Another simplification is
used for links: an edge between the rich-club and any other element (a central
vertex or a community) summarizes a possibly complex link structure.

Perfect communities are not only easy to visualize; their computation is also
straightforward, as described below. Let us first introduce some notations.
G denotes a connected graph with vertices V = {x1, . . . , xn} and a set of
undirected edges E, with positive weights, wi,j = wj,i (wi,j = 0 is equivalent
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to {xi, xj} /∈ E). The degree of a vertex xi is denoted di =
∑n

j=1wi,j.

The structure of G can be summarized through a symmetric n×nmatrix called
the Laplacian of G. This matrix has been intensively studied the past years
because many important structural and topological properties can be deduced
from it. The Laplacian of G is defined as the positive and semi-definite matrix
L = (Li,j)i,j=1,...,n such that

Li,j =





−wi,j if i 6= j,

di if i = j.

We will also consider the Laplacian, denoted by L̃, of the non-weighted graph
induced by G, G̃.

Spectral properties of the Laplacian can be used to cluster the vertices of
a graph. First of all, it is well known that the eigenvalue 0 is related to the
minimum number of connected subgraphs in G [32]. In the same way, a spectral
analysis of the Laplacian allows one to find perfect communities, using the
following property (a set of vertices is called non-stable if it contains at least
two adjacent vertices):

Theorem 1 ([49]) A non-stable set S of vertices is a perfect community if

and only if there is a non-zero eigenvalue, λ, of L̃ whose multiplicity is at least

k−1 and such that the k−1 associated eigenvectors vanish for the same n−k
coordinates.

Then, the cardinal of S is k, the coordinates for which the k − 1 eigenvectors

are not 0 represent the vertices belonging to S and λ = d + 1 where d is the

degree of a vertex of S.

As a consequence, looking at null coordinates of the eigenvectors of L̃ is a
simple and efficient way to extract perfect communities. Moreover, we also
have the following property, that will help to understand the link between
this approach and the well-known spectral clustering method:

Corollary 2 If a set of vertices, S, is a perfect community then the n−k+1
eigenvectors that do not define S have constant coordinates for the indices of

the vertices of S.

Proof Without loss of generality, S is renumbered as S = {1, . . . , k}.
An eigenvector u defining S can be written as u = (u1, ..., uk, 0, 0, ..., 0). Let
z = (z1, ..., zk, zk+1, ..., zn) be an eigenvector that does not define S and note
ũ = (u1, ..., uk), z̃ = (z1, ..., zk). As L̃ is symmetric, z is orthogonal to the
k − 1 eigenvectors that define S so z̃ is orthogonal to the k − 1 vectors ũ for
u defining S. But u is an eigenvector of L̃, so it is orthogonal to the vector
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1n = (1, 1, . . . , 1) (related to the eigenvalue 0) and so, ũ is orthogonal to
the vector 1k in R

k. The orthogonal complement, in R
k, of the vector space

spanned by the k − 1 vectors ũ has dimension one and is spanned by 1k; it
follows that z̃ is co-linear to 1k which concludes the proof.

3 Similarity measures built from the Laplacian

Some weaknesses of a representation by perfect communities are the absence
of a lot of vertices (for instance, only 35 % of the whole graph belongs to a
perfect community in the social network studied in Section 5) and the presence
of a lot of very small communities. Moreover, some relevant groupings of per-
fect communities might be missed and a bias of the interpretation can occur
from these lacks. In this sense, the definition of perfect communities gives a
too restrictive clustering of the vertices. It is therefore reasonable to comple-
ment it with the help of another clustering algorithm chosen in the numerous
methods proposed for this task [43]. A broad class of those methods consists
in building a (dis)similarity measure between vertices that capture the notion
of community and then on applying an adapted clustering algorithm to the
dissimilarity matrix.

To pursue this goal, this section introduces existing similarity measures based
on the Laplacian. Section 3.1 explains how to build a similarity measure that
is able to separate communities from each others and Section 3.2 follows a
similar idea to define a kernel that maps the vertices in a high dimensional
space. The purpose of the those sections is to emphasize the links and also the
differences between the eigenvalue approach described in the previous section,
the usual “spectral clustering” approach and the well-known diffusion kernel

which can be considered as a smooth spectral clustering.

3.1 From almost perfect communities to graph cuts

One way to obtain an optimal clustering of the vertices of a graph is to mini-
mize the following graph cut quality measure

cut(S1, . . . ,Sp) =
p∑

i=1

W (Si,G \ Si),

where S1, . . . ,Sp is a partition of V (for a chosen p in N
∗), and where

W (S, S ′) =
∑

i∈S,j∈S′ wi,j for two given sets of vertices S and S ′ included in
V . This optimization problem is NP complete for p > 2 but it can be relaxed
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into a simpler problem (see, e.g., [53]):

min
H∈Rn×p

Tr(HTLH) subject to HTH = Ip. (1)

The key point in the relaxation approach is to extend the search space from a
discrete set in which the coefficients of H define a partition of {1, . . . , n}, to
R

n×p.

For a connected graph, the solution of the relaxed problem is the matrix
H which contains the p eigenvectors associated to the p smallest positive
eigenvalues of L as columns. Of course, the real-valued solution provided by
the matrix H has to be converted into a discrete partition of p clusters. A
usual way to do do is to consider the solution matrix H as a way to map
vertices of the graph in R

p as follows:

FL : xi ∈ V → (h
(1)
i , . . . , h

(p)
i ) ∈ R

p, (2)

where (h(j))j is an orthonormal set of eigenvectors associated to the p smallest

positive eigenvalues (λj)j=1,...,p (h
(j)
i denotes the ith coordinate of the jth small-

est positive eigenvalue). Then a standard clustering algorithm in R
p (e.g., the

k-means algorithm) is applied to the mapped nodes (this can been seen as a
clustering of the rows of H), leading to one variant of spectral clustering.

This method is strongly related to perfect communities calculation. Corollary 2
shows that vertices that belong to the same perfect communities have the same
coordinates for many eigenvectors. As a consequence, any clustering algorithm
applied on nodes mapped via FL will tend to gather vertices from a perfect
communitiy in the same cluster. In this sense, spectral clustering can be seen
as a relaxed version of the search of perfect communities.

It should be noted that the spectral clustering method summarized above
gives equal weights to the first p eigenvectors of the Laplacian, whereas the
smaller the eigenvalue is, the more important the corresponding eigenvector
is. Moreover, only the first p eigenvalues are used and, hence, this approach
doesn’t use the entire information provided by the Laplacian. To avoid these
problems, a regularized version of the Laplacian can be used, as shown in the
following section.

3.2 Diffusion kernel

In [46], the authors investigate a family of kernels on graphs based on the
notion of regularization operators: a regularization function is applied to the
Laplacian and gives a family of matrices that are also kernels on V × V . In
the present paper, we focus on the diffusion kernel :
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Definition 3 The diffusion matrix of the graph G for the parameter β > 0 is

Dβ = e−βL.

The diffusion kernel of the graph G is the function

Kβ : (xi, xj) ∈ V × V → Dβ
i,j ∈ R

The diffusion matrix is easy to compute for graphs having less than a few
hundred of vertices by the way of an eigen-decomposition of the Laplacian:
if (h(i))i=0,...,n−1 are orthonormal eigenvectors associated to the eigenvalues
0 = λ0 < λ1 ≤ λ2 ≤ . . . ≤ λn−1 of L, then

Dβ =
n−1∑

k=0

e−βλkh(k)h(k)T . (3)

This diffusion kernel has been intensively studied through the past years. In
particular, [29] shows that this kernel is the continuous limit of a diffusion
process on the graph: Kβ(xi, xj) can be viewed as the value of the energy
obtained in vertex xj after a time tending to infinity if energy has been injected
in vertex xj at time 0 and if diffusion is continuously done among the edges of
the graph. In this case, β is related to the intensity of the diffusion (see also
[8] for a complete description of the properties of this operator).

It is easy to prove that the kernel Kβ is symmetric and definite positive.
Then, from Aronszajn’s Theorem [4,6], there is a Reproducing Kernel Hilbert
Space (RKHS), (Hβ, 〈., .〉β), called the feature space, and a mapping function,
φβ : V →Hβ such that:

for all i, j, 〈φβ(xi), φβ(xj)〉β = Kβ(xi, xj).

As in the previous section, this mapping provides a way to apply standard
clustering algorithms to the vertices of a graph, simply by working on their
mapped values. In addition, a kernel trick can be used in many cases to avoid
calculating explicitly the mapping (see Section 4.3 for details).

Equation (3) shows that the mapping induced by the kernel is equivalent to
the following one:

F β
K : xi ∈ V → (h

(1)
i , . . . , h

(n)
i ) ∈ (Rn, 〈., .〉βn), (4)

where R
n is considered with a specific inner product given by 〈z, z′〉βn =∑n−1

k=0 e
−βλkzkz

′
k for all z and z′ in R

n.

Once again, as stated by Corollary 2, the vertices that belong to the same
perfect community have very close images by F β

K . However the embedding
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provided by FL (see equation (2)) uses only a part of the spectrum and will
therefore loose some neighborhood informations. For example, vertices that
belong to two different perfect communities can be indistinguishable. On the
contrary, F β

K uses the whole eigen-decomposition but with a modified metric
that contains non local information.

This approach is very flexible because the parameter β permits to control the
degree of smoothing: a small value of β regularizes heavily and totally forbid to
cluster together two vertices that are not directly linked to each others whereas
a large β allows to cluster vertices that are not directly connected but share
a large number of common neighbors. This makes this kernel an attractive
tool which is quite popular in the computational biology area where it has
been used with success to extract pathway activity from gene expression data
through a graph of genes [50,45].

4 Kernel SOM for clustering the vertices of a graph

4.1 Motivations for the use of the SOM algorithm

Our purpose is to provide a description of the graph by clustering its vertices
into relevant communities. However, clustering alone doesn’t always provide
a clear picture of the global structure of a graph. As already mentioned, on
the one hand, perfect communities are easy to understand but generally don’t
cover the whole graph, while, on the other hand, clusters that are not perfect
communities have complex relations one to another: a link between two clus-
ters hides a potentially complex link structure between individuals in those
clusters. A solution to circumvent those problems is to cluster the vertices of
the graph in a way that both leads to imperfect communities but also takes
into account relations between clusters.

To achieve these goals, one can leverage the topology preservation proper-
ties of the Self Organizing Map (SOM). This algorithm, first introduced by
Kohonen [27], is an unsupervised method that performs at the same time a
clustering and a non linear projection of a dataset. The SOM is based on a
set of models (also called neurons or units) arranged according to a low di-
mensional structure (generally a regular grid in one or two dimensions). The
original data are partitioned into as many homogeneous clusters as there are
models, in such a way that close clusters (according to the prior structure)
contain close data points in the original space.

The analysis of the vertices of a graph with a SOM will therefore provide a
type of relaxed communities (the clusters) arranged in a way that is consistent
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with the link structure of the members of those communities, as long as the
graph structure can be turned into a topology that the SOM will preserve.

4.2 SOM for non vector data

The standard SOM algorithm uses the euclidean structure of the data space
and therefore cannot be applied directly to vertices of a graph. As non vector
data arise naturally in many real world problems, adapted variants of the
SOM have received a lot of attention in the past ten years. It should first be
noted that the general structured data framework proposed in [21] cannot be
applied to vertices of a graph: the framework is adapted to the case where
each observation is a whole graph, not to the one that focuses on the nodes
of a single graph.

A possible solution in this situation (explored in [51]) would be to use one
of the variants of the Median SOM (also called the dissimilarity SOM, see
[2,26,25,28,14]). Members of this class of algorithms can be applied to any
dataset on which a dissimilarity measure can be defined: numerous dissimi-
larity measures for graph nodes have been proposed for graph clustering (see
[43]) and could therefore be used with a dissimilarity SOM. Those SOM al-
gorithms are based on a generalization of the notion of center of mass called
a generalized median (fast implementations are available [10]). Another vari-
ant of the SOM for dissimilarity data, based on mean field annealing, could
also be used [17,18], as well as the recently introduced relational topographic
mappings [19,20].

The solution proposed in this paper is to rely on a kernelized version of the
SOM: this is a natural choice in the sense that graphs are well described
by their Laplacian and the corresponding heat kernels. As shown in [52], if
the dissimilarity between objects is defined via a kernel, the median SOM is
a type of constrained kernel SOM. Moreover, the constraints of the median
SOM generally induce maps of lesser quality than those obtained by the kernel
version. Further links between both approaches are outlined in [19,20].

In the proposed kernel approach, detailed in the next paragraph, the vertices
are first implicitly mapped into a feature space whose geometry reflects the
graph structure. This implicit mapping is performed via the so called “kernel
trick”, by using the diffusion kernel. Then, a batch SOM is applied in this
space to perform a nonlinear projection of the vertices and, at the same time,
a clustering, that will both respect the topology of the feature space and
therefore of the graph.

An alternative (and in fact quite similar) solution would be to rely on an
embedding, i.e., on an explicit mapping of the nodes of the graph to Rp, exactly
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as this is done in the spectral clustering approach (see [11,16,53]). Rather
than applying a k-means algorithm to the vector representation of the vertices
obtained via the mapping FL (see equation (2)), one can simply use a standard
SOM. For the application studied in this paper (the social network presented
in Section 5), this solution performed poorly. While the overall organization of
the obtained map was good, the clusters were much more unbalanced: a large
cluster contained two third of the vertices, while other clusters were quite
small (one or two vertices). This is not very surprising as the heat kernel helps
to distinguish between vertices that could seem similar if they are represented
by the information restricted to the smallest eigenvectors of the Laplacian (as
explained in Sections 3.1 and 3.2).

Nevertheless, it should be noted that the important aspect of the proposed
method is to rely on an adapted variant of the Self-Organizing Map to perform
at the same time graph clustering and graph visualization. In the particular
application studied in Section 5, the heat kernel (and therefore the batch kernel
SOM) gives interesting results. In other applications, better results might be
obtained with other kernels, with dissimilarities (via a dissimilarity SOM) or
with embedding (via a standard SOM). The numerous SOM variants provide
a general framework for graph mining: the present article explores only one of
its possible concrete implementation.

4.3 Batch kernel SOM

Several kernelized version of the SOM have been proposed [30,3,52]. The
present paper uses a batch version of the kernel SOM proposed in [52,20].
An advantage of the batch kernel SOM, with respect to the stochastic ver-
sions proposed before, is that the former generally converges much faster than
the latter.

As stated above, the kernel batch SOM first maps the original data into a high-
dimensional Hilbert space H via a feature map φ. Then, the standard batch
SOM is applied to the mapped data. As with most kernelized algorithms, the
mapping has not to be explicitly carried out. The batch SOM can be rewritten
in such a way to use only the inner product of the Hilbert space: rather than
defining H and φ, one has only to specify a kernel K on the original data set,
as this generates an associated Reproducing Kernel Hilbert Space.

Let us first describe the batch SOM on the mapped data. The prior structure
consists in M neurons. The distance between neurons i and j in the prior
structure is denoted h(i, j). It is transformed into a neighborhood function via
a decreasing function R, from R

+ to R+, with R(0) = 1 and lims→+∞R(s) = 0.
The influence of the grid is annealed through time: at iteration l, the algorithm
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uses a function Rl, based on R, that is more and more concentrated in 0.

At iteration l, neuron j is associated to a prototype (also called a code book
vector) plj , chosen in H, but constrained to be a linear combination of the
mapped data (as suggested in [30]), i.e.

plj =
n∑

i=1

γl
ijφ(xi).

The batch kernel SOM is then given by Algorithm 1. It can be simplified by

Algorithm 1 The Batch Kernel SOM in feature space

1: choose initial values for γ0
ji in R

2: p0j ←
∑n

i=1 γ
0
jiφ(xi)

3: for l = 1 to L do
4: for i = 1 to n do {representation step}
5: assign the observation xi to its closest neuron:

f l(xi) = arg min
j=1,...,M

‖φ(xi)− pl−1
j ‖

6: end for
7: for j = 1 to M do {assignment step}
8: update prototype pj according to

plj = arg min
p=

∑n

i=1
γiφ(xi), γ∈Rn

n∑

i=1

Rl(h(f l(xi), j))‖φ(xi)− p‖2

9: end for
10: end for

using the so called “kernel trick”, which simply consists in expressing opera-
tions in H solely via K. In Algorithm 1, the value of ‖φ(xi)−

∑n
j=1 γjφ(xj)‖

has to be computed for any linear combination
∑

j γjφ(xj). This can be done
via the following formulation

∥∥∥∥∥∥
φ(xi)−

n∑

j=1

γjφ(xj)

∥∥∥∥∥∥

2

= ‖φ(xi)‖
2 +

∥∥∥∥∥∥

n∑

j=1

γjφ(xj)

∥∥∥∥∥∥

2

− 2
n∑

j=1

γj〈φ(xi), φ(xj)〉.

By definition, ‖φ(xi)‖
2 = K(xi, xi) and 〈φ(xi), φ(xj)〉 = K(xi, xj). Moreover

∥∥∥∥∥∥

n∑

j=1

γjφ(xj)

∥∥∥∥∥∥

2

=
n∑

j=1

n∑

j′=1

γjγj′〈φ(xj), φ(xj′)〉 =
n∑

j=1

n∑

j′=1

γjγj′K(xj , xj′).

Therefore, the assignment step of Algorithm 1 simply reduces to

f l(xi) = arg min
j=1,...,M

n∑

u,v=1

γl−1
ju γl−1

jv K(xu, xv)− 2
n∑

u=1

γl−1
ju K(xu, xi),

13



as K(xi, xi) is fixed. Moreover, the solution of the minimization problem of

the representation step is given by plj =
∑n

i=1
Rl(h(f l(xi),j))φ(xi)∑n

i=1
Rl(h(f l(xi),j))

3 and therefore

the representation step can be simplified into

γl
ji =

Rl(h(f l(xi), j))∑n
u=1R

l(h(f l(xu), j)
.

In practice, the plj don’t have to be explicitly calculated, as f l is computed
directly from the γl

ji. It appears also clearly that φ has not to be used and
therefore that Algorithm 1 can be rewritten into the simpler Algorithm 2.

Algorithm 2 The Batch Kernel SOM (simplified version)

1: choose initial values for γ0
ji in R

2: for l = 1 to L do
3: for i = 1 to n do {assignment step}
4: assign the observation xi to its closest neuron:

f l(xi) = arg min
j=1,...,M

n∑

u,v=1

γl−1
ju γl−1

jv K(xu, xv)− 2
n∑

u=1

γl−1
ju K(xu, xi)

5: end for
6: for j = 1 to M do {representation step}
7: update prototype coordinates γji according to

γl
ji =

Rl(h(f l(xi), j))∑n
u=1R

l(h(f l(xu), j)
.

8: end for
9: end for

4.4 Implementation details

It is well known that the results of batch SOM strongly depend on the initial-
ization point, and also, but with a more limited scale, on the specific imple-
mentation choice.

In the present paper, the prior structure is a bi-dimensional regular square
grid for which h is given by the euclidean distance between the neurons.
The neighborhood function R is a Gaussian function and generates a fam-
ily Rl(x) = exp(−x2/T l). The parameter T l is a temperature like parameter
which decreases over time in a geometrical annealing process (i.e., of the form

3 this shows that choosing prototypes in the subspace spanned by the mapped data
introduces in fact no constraint on them.
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T l = T 0λl). The temperature is kept constant until stabilization of the assign-
ment step (i.e., until f l = f l−1) and then decreased. This process is repeated
until the temperature is low enough to have Rl(x) = 1 for x = 0 and Rl(x) ≃ 0
for x > 0: this ensures that the algorithm will end with a final local organi-
zation behavior. This procedure is quite standard for batch variants of the
SOM.

Two classical initialization strategies have been tested. In the first one, the
initial prototypes are randomly chosen among the original mapped data. In
practice, this is done by setting γ0

ji to δi,kj , where δu,v = 1 if and only if
u = v and where kj is randomly chosen in 1, . . . , n. The second initialization
is a kernelization of the classical Principal Component based method [27]. A
Principal Component Analysis (PCA) is conducted on the mapped data (this
is therefore a kernel-PCA [44]) to discover the two principal directions. Then a
regular square grid is built on the two dimensional subspace spanned by those
directions. Coordinates of the vertices of the grid are used as initial values for
the prototypes: this can be done easily as the principal directions are given as
linear combinations of the mapped data.

4.5 Comparing Maps

A final problem is to choose the free parameters of the SOM, most importantly
the size of the grid and, in our case, the parameter β of the diffusion kernel.
This latter parameter induces specific difficulties as the RKHS associated to
different values of β use different metrics and cannot therefore be directly
compared. It is also well know that the final quantization error

E =
n∑

i=1

‖φ(xi)− pLfL(xi)
‖2,

decreases with the number of clusters and fails also to measure topology preser-
vation.

The problem of assessing the quality of a SOM has generated a large literature.
Among all the proposed topology preservation measures, the one proposed by
Kaski and Lagus in [24] seemed to be well adapted to the considered problem.
For the kernel SOM, the criterion is given by

KL =
1

n

n∑

i=1




∥∥∥φ(xi)− pLfL(xi)

∥∥∥ + min
(j0,...,jq)∈Ci

q−1∑

k=0

∥∥∥pLjk − pLjk+1

∥∥∥



 ,

where Ci is the set of all paths in the prior structure starting from j0 = fL(xi)
(the best matching unit for xi), ending with jq the second best matching unit
for xi and such that jk and jk+1 are direct neighbors in the prior structure.
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The first part of the criterion is exactly the quantization error, whereas the
second term corresponds to a type of continuity measure. This term is small
when close points in the mapped space have contiguous best matching units
in the map. In the graph context, this translates to the following statement:
vertices that are close to each others in the feature space given by equation (4)
should be mapped to close units on the map. It should be noted that even
if the first term of this criterion decreases with the size of the map, this is
balanced by the second term as a small quantization error cannot be achieved
with very close prototypes. The criterion can therefore be used to compare
different sizes for the map, even if it’s likely to favor large maps.

In addition to Kaski and Lagus’ measure, the q-modularity [36] was also con-
sidered. This graph clustering performance criterion is defined by

Qmodul =

∑M
j=1(ej − a2j )

1−
∑M

j=1 a
2
j

,

where ej is the fraction of edges in the graph that connect two vertices in
cluster j and aj is the fraction of edges in the graph that connect to one
vertex in cluster j. A high q-modularity means that vertices are well clustered
into dense subgraphs having few edges between them. The measure is only
based on the clustering result and can therefore be used to compare e.g., two
different values of the β parameter.

5 Mining a medieval social network

5.1 Motivations

In the French medieval society, peasants constitute 90% of the whole popu-
lation. Despite this majority position, historic studies are mainly concerned
by the dominant classes (nobility and clergy) because peasants left very few
written documents compared to the well-educated part of the population. As
a consequence, historic studies on these periods often describe an anonymous
peasant community related to a master, a seignory or a church.

In order to circumvent this difficulty, another ap-
proach has been pursued. The main principle is to rely
on agrarian contracts as a source of information about
social bounds between persons. We focus on a tiny
geographical location (several thousand hectares) for
which a large documentation has been collected (see [22] for a complete pre-
sentation). This documentation is made from about 1000 agrarian contracts
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coming from about 10 villages located in the Castelnau-Montratier seignory
which is a small area (about 30 km times 30 km) located in South West of
France (Lot, in the rectangle on the right sided map). These contracts were
first written between 1250 and 1350 and especially during the first 20 years
of the XIV◦ century. After 1350, the documentation suddenly decreases be-
cause of the Hundred Years’ War. All the contracts share common properties:
they described land hiring, sales, legations and so on, they mention the name
of the peasant (or the peasants) concerned by the transaction, the names of
the lord and the notary with whom the peasants are related to, some of the
neighbors of the peasants and various other informations (such as the type of
transaction, the location, the date, and so on).

About 5000 additional similar contracts are still to be recorded. The whole
corpus, which is kept at Cahors (Archives Nationales du Lot, France), has been
totally rewritten during the XIX◦ century and is therefore a very interesting
source for historians as most of these types of contracts have been destroyed,
especially during the french revolution. A sociability network of this peasant
society can be constructed from the corpus. Because of the size and the com-
plexity of the obtained graph, automatic tools are needed to understand it.
The specific goal is to help historians to have a synthetic view of the social
organization of the peasant communities during the Middle Ages.

5.2 First description of the graph

The corpus of agrarian contracts has partially been saved on a database. From
this database, a relational graph is built according to directives provided by
the historians and summarized below. Each vertex of the graph corresponds
to one person named in the contracts. First, nobles and notaries are removed
from the analyzed graph because they are named in almost every contracts:
they are obvious central individuals in the social relationships and could mask
other important tendencies in the organization of the peasant society. Then,
two persons are linked together if:

• they appear in a same contract,
• they appear in two different contracts which differ from less than 15 years
and on which they are related to the same lord or to the same notary.

The three main lords of the area (Calstelnau Ratier II, III and Aymeric de
Gourdon) are not taken into account for this last rule because almost all
the peasants are related to one of these lords. The links are weighted by
the number of contracts satisfying one of the specified conditions. Finally,
the analysis is restricted to the largest connected component of the obtained
graph: it contains more than 80% of its vertices.
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This graph G has 615 vertices and 4 193 edges. The sum of the weights is
40 329, but almost 50% of the edges have a weight 1 and less than 2% have
a weight greater than 100. A simple representation of the graph is given in
Figure 1 (this figure has been made by the use of a force directed algorithm
performed by the open source graph drawing software Tulip 4 [5] ).

Fig. 1. Representation of the medieval social network with force directed algorithm

As this is frequently the case, the obtained social network is a small-world
network with low global connectivity and a high local connectivity [55,54].
Indeed the diameter of G is 10 and the mean of the shortest paths between
two vertices is 3.9. The local connectivity, measured by averaging the density
of subgraphs induced by the direct neighbors of a vertex [54], is 77% whereas
the density of the graph is only 2.2%. The degree distribution also obeys to
standards (see [15,39,34]): the cumulative degree distribution for the weighted
graph fits a power-law with a fast decaying tail as shown in Figure 2. It
follows that the number of vertices having a degree k is decreasing very fast
(exponentially) when k increases and is not centered on a mean value: most of
the peasants have a small number of relationships and a tiny number of them
have numerous relationships.

5.3 Clustering the medieval graph into perfect communities and rich-club

By the use of Theorem 1, all the perfect communities of a graph G can be
computed. They emphasize the main dense parts of the social networks but
also discriminate individuals by their relationships (direct neighbors). 76 per-
fect communities were found in G, most of them being very small (only 2 or 3
persons).

4 avaliable at http://www.labri.fr/perso/auber/projects/tulip/
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Then, as described in Section 2, the rich-club and central vertices are ex-
tracted. The vertices in the rich club corresponds to the largest subgraph with
highest degrees vertices having a diameter equal to 2. The rich club contains
3% of the vertices of the whole graph which corresponds to 19 vertices. This
subgraph has a high density as shown in Figure 3. Central vertices are cho-
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degrees vertices (log scale) and Right: Number of components of the subgraph of
perfect community and rich club as a function of the number of vertices with high
betweenness measure added (in both cases, the number of vertices under consider-
ation is given as a percentage of the total number of vertices in the graph).
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sen to be the 4% of the highest betweenness measure vertices of the whole
graph (i.e., 24 vertices). As show in Figure 3, it is a good compromise for this
application: the derived subgraph contains 8 components and a large number
of vertices is needed to decrease this number again. Moreover, except for one
of them, these components are tiny single perfect communities that won’t be
considered in the following.

Figure 4 5 provides a representation of the perfect communities structure of
the medieval social network together with the rich-club and central vertices.
The visual representation of each perfect community has several features. The
surface of each disk is proportional to the size of the perfect community (i.e.,
to the number of peasants in the perfect community) which is also recalled
explicitly by a number written inside the circle. The gray level of the disk en-
code the mean date of the contracts in which the members of the community
are involved (from black, 1260, to white, 1340). In addition a family name is
added when the corresponding perfect community comes from a single family.
The communities are set at random positions but efforts have been done to
represent perfect communities that are linked by an edge at nearby positions.
Two perfect communities that are linked by an edge form a complete subgraph
but the peasants in this subgraph do not necessarily have the same outside
relationships; on the contrary, two peasants contained in the same perfect com-
munity have exactly the same outside links. Links starting from a community
are therefore valid for all the members of this community. Seven communities,
that are still not connected with another perfect community, with the rich
club or with one of the vertices with a high betweenness measure, were not
considered for this representation.

Figure 5 6 provides an alternative representation of the communities of the
graph. Noting that the peasants of a perfect community lived at the same
geographical location, each perfect community is colored to represent this
location. The communities are set at the same positions as in Figure 4.

Of course, these representations have to be interpreted with care; some of
their properties could induce interpretation biases. One of the main limitation
is that only a part of the vertices of the original graph is represented on it
(35 % of them). Moreover, the respective positions of the perfect communities
can be relevant (if their are linked) or not (if they are not). Nevertheless,
these “maps” of the graph allows to understand some important facts about
the medieval society. First of all, the “small world” structure of the graph is
emphasized by the star shaped structure of the perfect communities around the

5 This figure, and similar ones, have been made with the
help of the free graph drawing software yED, available at
http://www.yworks.com/en/products_yed_about.htm
6 All colored figures are available on the publisher site.
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Fig. 4. Graph of the perfect communities (circles), the rich-club (rectangle) and
central vertices (squares). Other details about the figure are given in the text.

Fig. 5. Graph of the perfect communities by geographical locations (yellow:
Flaugnac, blue: Saint-Julien, green: Pern, pink: Cornus, red: Ganic and orange:
Divilhac).

rich-club: some persons seem to belong to small groups (a perfect community
or linked perfect communities) which are only related to each others by the
way of the main individuals (the rich-club or peasants with a high betweenness
measure).

Then, family links seem to have a great importance in the medieval society as
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all individuals in the perfect communities often share the same family name
(this is the case for 30 perfect communities) but geographical proximities are
even more important: as shown in Figure 5, all the perfect communities have
homogeneous locations and very often, linked perfect communities also share
the same geographical location. Finally, it appears that persons with a high
degree of betweenness share the same geographical location as the perfect
communities they are linked to. These individuals can be seen as peasants
making the link between several villages or between a village and one of the
central person from the rich-club.

5.4 Mapping the medieval graph with the SOM

The social network was analyzed with the batch kernel SOM as follows. The
parameter β varied between 0.01 to 0.05. Values above 0.05 lead to instability
in the calculation of the diffusion matrix in the sense that the obtained kernel
is no more positive. Values smaller than 0.01 lead to hard clustering (the
diffusion matrix is close to the identity matrix) that are not relevant (see
[52]).

For a fixed kernel (i.e., a value of β), all squared maps from 5×5 to 10×10 were
tested as prior structures of the grid. For each prior structure, several random
initial configurations, the kernel PCA based initial configuration and several
initial temperatures were compared via Kaski and Lagus’ quality measure,
leading to the selection of a single final map for each size (it should be noted
that kernel PCA, associated to an optimal choice of the initial temperature,
leads to much better results than random initialization).

In terms of q-modularity, the quality of clustering results increases with the
value of β (for almost all map sizes). As a consequence, the value of β = 0.05
was selected. Among the 6 maps built with this kernel, those of size 6 × 6
and 7×7 are the most interesting. The first one has the highest q-modularity,
whereas the second has the smallest value of KL criterion together with a high
value of the q-modularity.

We decided to focus on the 7×7 map as it seems to be the most interesting. It
contains 35 non empty clusters and is given in the left part of Figure 6. In this
graphical representation, the surface occupied by a square is proportional to
the size of the corresponding cluster, while the width of the connection between
two squares is proportional to the total weight of the edges connecting vertices
of the two clusters.

The right part of Figure 6 is the U-matrix [48] of the map. It visualizes dis-
tances between prototypes (in the mapped space): dark colors correspond to
close prototypes and light colors to a large distance between the corresponding
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Fig. 6. Final self-organizing map (7× 7 square grid)

prototypes.

The map is divided into three dense subparts: top-left, top-right and bottom-
right. The number of edges is small between these three parts and much more
dense inside the clusters of the same part, which seems to be relevant. The
most dense part of the map is the bottom-right one: one of its clusters contains
255 vertices, which represents more than one third of the whole graph. This
part is connected to the two others which are not connected to each others.

As the largest cluster still seems to be too large to be relevant, another batch
kernel SOM was constructed on the subgraph induced by the vertices of this
cluster; this methodology is known as a hierarchical feature maps [31]. As
before a 7× 7 map is selected. It is represented in Figure 7. This map seems

Fig. 7. Self-organizing map of the main cluster
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to be well connected except 3 little clusters that are not connected to the rest
of the map. The final map is sparse and well organized. Once again, the main
cluster of this map contains a high number of vertices, 81, which represents
almost one third of the whole subgraph.

Such a phenomen reflects the cumulative degree distribution described in Sec-
tion 5.2. An analysis of the degree distribution on the map of Figure 6 shows
that the 10% of the vertices having the highest degrees are all clustered in
three clusters of the bottom right part of the map (but not in the largest
one, GC 7 ). Then, looking at the degrees of the subgraph made from the ver-
tices in cluster GC, we see that, once again, their cumulative distribution is
a power-law cumulative distribution but with another scale (the density of
this subgraph is 5 times smaller than the one of the initial graph). The same
phenomenon occurs in the subgraph GC: the 10% of the vertices that have
the highest degrees are all assigned to the three mainly connected clusters of
Figure 7 and the largest cluster of this subgraph (GC20 6 ) also has a density
4 times less than the whole subgraph GC.

5.5 Historical properties of the self-organizing map

The analysis mimics what has been done for the perfect communities, starting
with the distribution of the dates on the map. The mean date for each cluster
is depicted on Figure 8 using a gray scale. Each cluster has a small standard
deviation; clusters having the highest standard deviations are the most con-
nected clusters of the bottom right part of the map. The three parts of the
Kohonen map emphasized by the U-matrix have homogeneous dates: top right
is the oldest part, bottom right have middle dates and top left, the most recent
dates. The clusters are continuously connected to each others by the date, in
the sense that connexion clusters have intermediate dates. The organization
provided by the SOM is therefore relevant. But, since the studied period is
only 100 years long, this also seems to show that various generations (sons,
fathers, grand-fathers,. . . ) are not highly mixed; particularly, the earlier part
of the map is only connected to the rest by a very few number of individuals
(1 to 3).

The geographical locations of the persons belonging to the same cluster are
generally homogeneous. More precisely, they are exactly the same for peas-
ants belonging to the same little cluster and the largest clusters often have a
dominant geographical location but also contain peasants that don’t live in
this geographical location. The family names are generally not the same for
peasants in the same cluster, with some exceptions as, for example, cluster
10 6 which corresponds to “Aliquier” family, just as one of its closest cluster,

7 The way the clusters are referenced is indicated in Figure 9.
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Fig. 8. Mean date for each cluster from black, 1260, to white, 1340

11 6 . Thus, as already mentioned in the analysis of the perfect communities,
geographical proximities seem to have a main role in the peasant’s relation-
ships.

5.6 Comparison with the work on perfect communities

A comparison of the self-organizing map with the perfect community repre-
sentation (Figure 4) is provided by Figure 9: the vertices that belong to the
same perfect community are almost always in the same cluster of the self-
organizing maps (except for three small perfect communities). To study the
reverse mapping, an arbitrary color was assigned to each cluster that contains
at least one perfect community and then used to color the same way the per-
fect communities of Figure 4. The number assigned to each perfect community
is the number of the cluster in one of the two maps (prefixed by “GC” for the
clusters of the largest cluster of the initial SOM).

Figure 9 emphasizes the great similarity between the two approaches: per-
fect communities that share links often belong to the same cluster of the self
organizing map. A similar remark can be made about peasants with a high
betweenness measure: they are often assigned to the same cluster as the per-
fect community that they link to the rich-club. Moreover, perfect communities
that share a link or that are linked to the same peasant with a high between-
ness measure but have different colors often belong to nearby clusters on the
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Fig. 9. Comparison of the representation of the graph through perfect communities
and self-organizing maps (left : of the whole graph; right : of the largest cluster of
the initial SOM. More details about this figure are given in the text)

SOM: this is the case, for example, for clusters 44 and 37, for clusters 0 and
7, for clusters 26, 33 and 34, etc. It is also interesting to note that some of the
persons having a high betweenness measure also have an important position
on the SOM: for example, peasants 17 and 34 are emphasized by the fact that
they link the bottom right part of the map with the top right part and the
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top left part, respectively. All these similarities are evidence that there is a
strong consensus between both approaches and, as a consequence, that they
offer a realistic representation of the organization of the peasant society in the
Middle Ages.

Nevertheless, there are also some interesting differences between the two ap-
proaches. First of all, it is suprising that the rich-club is separated in several
clusters (37, 38 and 44) in which some perfect communities can also be found.
Arguably, these three clusters are very close on the SOM and have strong
connectivity (depicted by the tick lines between them). Moreover, the three
clusters of the SOM correspond to different geographical locations: cluster
37 contains a majority of peasants living in “Cornus”, cluster 38 and 44 in
“Saint Julien”. In addition, Clusters 38 and 44 also contains peasants that
have different family names: “Belisie”, “Bernier”, “Bosseran”, “Cruvelier”,
“Laroque”, “Ratier” and “Sirven” are found several times in cluster 38 but
none in cluster 44 and “Amilhau”, “Camberan”, “Labarthe”, “Limoges”, “Ri-
val” and “Tessendie” are found several times in cluster 44 but none in cluster
38. However, families “Estairac” and “Fague” are well represented in both
clusters 38 and 44. It is therefore not very clear whether the separation of the
rich-club into three clusters is relevant or not. An advantage of the rich-club
approach over the SOM based analysis is to emphasize the members of this
group who clearly have a special social role, while there is nothing very specific
about the corresponding clusters in the map.

It appears also that some perfect communities share the same color whereas
they don’t seem to be “close”. Sometimes, this is due to the fact that the
positions of these perfect communities are partially random despite the fact
they are linked to each others (this is the case, for instance, for the pink
group of perfect communities 44 at the bottom of the figure and the perfect
community of the same color at the left part of it). Sometimes, this can be
explained by links that are not represented on the figure: for example, cluster
38 is separated into three groups of perfect communities that are not linked to
each other but these groups share some common relationships with vertices in
cluster 38 in the rich-club. However this argument is less convincing to explain
why cluster 37 contains two groups of perfect communities. Finally, in some
cases, there is no simple reason to explain why several perfect communities
are grouped in the same cluster: for example, GC20 is still a large cluster that
contains several perfect communities that are not linked to each others on the
perfect communities representation.
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5.7 Conclusion

The remarks made about the similarities and differences between the two
approaches show that they can both provide elements to help the historians
to understand the organization of the medieval society. Moreover, they have
distinct advantages and weaknesses.

On the one hand, representing the graph through its perfect communities
induces the question of the way these communities have to be represented in a
two-dimensional space, even if the restrictive definition chosen for communities
partly reduces this problem. This question is difficult (and related to the field
of graph drawing) but of a great importance to avoid interpretation bias.
For this point, the kernel SOM can appear as an alternative that provides a
notion of proximity, organization and even distance between the communities.
Moreover, kernel SOM allows to organize all the vertices of the graph and not
only the vertices that belong to a perfect community.

On the other hand, the links inside and outside the clusters of the kernel SOM
are not clear: some of the vertices in a cluster can have no edge in common with
the other vertices of the cluster (it is the case, e.g., for one of the cluster of the
largest cluster as is shown by Figure 7) and two vertices in the same cluster
are not necessarily related to the same vertices outside the cluster. These two
facts seem to show that kernel SOM probably provides a better macroscopic
view of the graph, whereas the perfect community approach is more reliable for
local interpretations: as the definition of a perfect community is restrictive, it
emphasizes very close social groups that share the same geographical location
and also often the same family name. The interpretation of such social groups
is then easier.

It should be noted that in both cases, the social and historical analysis is
only facilitated by the algorithms rather than somehow being automated. In
a sense, the problem of understanding the social network is simply pushed a
little bit further away 8 by the methods, especially in the case of the kernel
SOM. Figures 6 and 7 for instance give broad pictures of the social network,
but a more detailed analysis is needed to extract knowledge from the network.
One of the interesting aspect of the combined methodology proposed in the
present paper is to help this detailed analysis.

To go further, an open question is the way the parameters of the kernel SOM
have to be chosen and especially the size of the map, or, in the same spirit,
how deep a hierarchical analysis should be conducted on a large cluster. This
question is related to finding a relevant size for each community. The perfect
community approach can help driving this work by providing an idea of the

8 The authors are grateful to one reviewer for pointing this out.
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relevance of a given cluster, as we emphasized for cluster GC20.

Conversely, kernel SOM could also help to provide a more realistic representa-
tion of the perfect communities in creating a drawing algorithm that can also
take into account the distances between clusters in the SOM. This question is
currently under development.
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