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ABSTRACT

A method for estimating time delays between signals that

are irregularly sampled is presented. The approach is based

on postulating a latent variable model from which the ob-

served signals have been generated and computing the pos-

terior distribution of the delay. This is achieved partly by

exact marginalisation and partly by using MCMC methods.

Experiments with artificial data show the effectiveness of

the proposed approach while results with real-world gravi-

tational lens data provide the main motivation for this work.

1. INTRODUCTION

The estimation of a delay between two signals is concerned

with the following question: given two time series x1(t) and

x2(t), for which time lag τ the relation x1(t) = x2(t − τ)
holds most accurately? The question is of importance in

many fields of signal processing, from underwater acous-

tics to satellite positioning. Much of the work done in an-

swering the question has dealt with evenly sampled signals

and the solution is most often based on the cross correlation

function or a variation of it.

The problem drastically changes when the signals are

unevenly sampled. Such a situation rises frequently in cer-

tain fields, such as astronomy, where the sampling times are

largely determined by outside factors, like observing condi-

tions and scheduling. In the uneven sampling case, the cross

correlation function cannot usually be exactly evaluated for

any case other than τ = 0. For other values, some form

of interpolation needs to be performed, making the implicit

assumption that the signals are slowly varying. Even if that

can be assumed, it has been argued, that in noisy environ-

ments, interpolation introduces a lot of new data which has

very little to do with reality. Consequently, several methods

have been proposed as alternatives to the standard cross cor-

relation function. Of these, perhaps the most widely used

are the discrete correlation function [1] and especially the

locally normalised version [2] of it.

A recent study [3], involving one the authors of this pa-

per, shows that the delay estimation problem with irregular

sampling, mainly in the context of the determination of time

lags in gravitationally lensed multiple images of distant ce-

lestial objects, is far from completely solved.

In this paper, we propose a Bayesian approach to solv-

ing the delay estimation problem with unevenly sampled

signals. We formulate a latent variable model exploiting the

assumption that the signals are slowly varying. We avoid

any kind of interpolation on the noisy data. We derive an

inference algorithm for our model partly based on exact

marginalisation and partly on MCMC methods. Although

the main motivation of this work is solving the delays in

gravitational lensing, no domain specific assumptions are

made and the method is of general applicability as long as

the assumption of slow variability can be made.

In the next section we lay out the exact modelling as-

sumptions that we make. In Section 3 the algorithm for

computing the posterior probability distribution of the de-

lay is derived. Section 4 reports both comparison exper-

iments against other methods as well as results with real-

world gravitational lensing data.

2. MODELLING ASSUMPTIONS

In the basic setting we have two sets of observations, x1(t)
and x2(t), measured at time instants t′i, i = 1, . . . , N . Both

of these observations are due to a common source s(t) but

the second observation is delayed by τ . Now, with a fixed

delay τ , we can think of having observations at 2N distinct

time instants, namely at t′i and t′i − τ . By ordering these

we obtain a signal x(ti), measured at time instants ti, i =
1, . . . , 2N , which incorporates the samples from both x1

and x2. We denote the correspondence with k(i) ∈ {1, 2}
such that x(ti) = xk(i)(t

′

j) for some j. The source can also

be shifted and scaled individually for each of the two ob-

servations. Denoting the data as X = {x(ti)|i}, the source

as S = {s(ti)|i}, the scaling coefficients and the shifts as

ak and bk, respectively, and finally the log-variances of the

noise as vk, we can write the likelihood for the model pa-
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Fig. 1. The time delay τ affects the structure of the model.

rameters as

p(X|S, {ak}, {bk}, {vk}, τ)

=

2N
∏

i=1

N
(

x(ti)|ak(i)s(ti) + bk(i), e
vk(i)

)

.
(1)

Here, N
(

x|µ, σ2
)

denotes the normal distribution with mean

µ and variance σ2.

The mere likelihood above doesn’t relate the individual

observations to each other in any way and hence using it

alone it is not possible to estimate the delay. The additional

assumption we make is that the source varies slowly in time,

such that the next state s(ti+1) is dependent on the current

state s(ti). We incorporate this assumption to the model by

putting the following prior on S:

p(S|w, γ, τ) =
2N
∏

i=2

p(s(ti)|s(ti−1), w, γ) × p(s(t1))

=

2N
∏

i=2

N (s(ti)|s(ti−1), (ti − ti−1)
γew)

×N
(

s(t1)|0, σ2
s

)

.

(2)

The prior states that the deviation of the source from the pre-

vious time instant is proportional to the temporal distance

between the current instant and the previous instant. We

see this formulation as least restrictive while still incorpo-

rating the prior knowledge. The constant σ2
s specifies the

prior variance of the source at the first time instant. Since

the data can be normalised as a preprocessing step, we can

use a moderate value of σ2
s = 102.

On the surface, it might seem that the delay has no role

in Equations (1) and (2). It of course does, but the effect is

of structural nature as it affects the combined time instants

ti and consequently the order in which the data samples ap-

pear in the model. This is illustrated in Figure 1.

For the parameters we choose the following priors:

p(τ) = N
(

τ |µτ , σ2
τ

)

, (3)

p(w) = N
(

w|−5, 52
)

,

p(vk) = N
(

vk|−5, 52
)

.

The constants µτ and σ2
τ are chosen to reflect the earlier

knowledge of the delay (if such exists), but so that they do

not constrain the delay too much. We have considered γ
both as a variable and a constant, but found that little dif-

ference is made in estimating it, and so we keep it fixed to

γ = 2.

For the scale and shift parameters to be identifiable, we

fix a1 and b1 to one and zero, respectively. Because of the

normalisation, the values of the parameters a2 and b2 should

not be too far from a1 and b1. Hence, for them we have the

priors

p(a2) = N (a2|1, 1) ,

p(b2) = N (b2|0, 1) .

When we have knowledge of the uncertainties related

to the measuring process, we want to incorporate that to

the model as well. In that case, we actually postulate X as

hidden variables from which we have the noisy observations

Y = {y(ti)|i} with known standard deviations σy(ti):

p(Y|X) =

2N
∏

i=1

N
(

y(ti)|x(ti), σ
2
y(ti)

)

. (4)

This concludes the formulation of the model in the case

of two observed signals. The same construction extends

straightforwardly to the multiple (> 2) signals case. Also,

when several measurements from different wavelengths or

distinct time intervals are available, we can use them jointly.

If we have M datasets, we also have M set of parameters,

excluding the delay (delays) which is (are) common to all

datasets.

3. LEARNING THE MODEL

We are only interested in the posterior distribution of the

delay p(τ |Y) and consider all the other variables in the

model to be nuisance parameters which we would like to

marginalise out. In the next subsection we show how to get

rid of most of the nuisance parameters by exact marginali-

sation which results in a recursive formula for the marginal

likelihood. This reduces the dimensionality of the param-

eter space radically making sampling from the rest of the

variables effective. The sampling procedure is discussed in

Subsection 3.2.



3.1. Marginalisation

We denote by θ all the time-independent parameters in the

model, excluding the delay. We are going to compute the

marginal likelihood p(Y|τ,θ). We can easily integrate out

the error model:

p(Y|S, τ,θ) =

∫

dX p(Y|X)p(X|S, τ,θ)

=

∫

dX

{2N
∏

i=1

p(y(ti)|x(ti))p(x(ti)|s(ti), τ,θ)

}

=

2N
∏

i=1

∫

dx(ti)N
(

y(ti)|x(ti), σ
2
y(ti)

)

×N
(

x(ti)|ak(i)s(ti) + bk(i), e
vk(i)

)

=
2N
∏

i=1

1

|ak(i)|
N (ŷ(ti)|s(ti), ỹ(ti)) ,

where

ŷ(ti) =
y(ti) − bk(i)

ak(i)
and ỹ(ti) =

evk(i) + σ2
y(ti)

a2
k(i)

.

To marginalise over the source, we need to compute the

integral

p(Y|τ,θ) =

∫

dS p(Y|S, τ,θ)p(S|τ,θ)

=

∫

ds(t1) · · · ds(t2N )

{2N
∏

i=2

1

|ak(i)|
N (ŷ(ti)|s(ti), ỹ(ti))

×N (s(ti)|s(ti−1), (ti − ti−1)
γew)

}

×
1

|ak(1)|
N (ŷ(t1)|s(t1), ỹ(t1))N

(

s(t1)|0, σ2
s

)

.

Making use of Gaussian identities, this can be evaluated by

integrating s(ti) out one by one starting from s(t1) and the

procedure yields the expression

p(Y|τ,θ) =

{2N
∏

i=2

1

|ak(i)|

× N (ŷ(ti)|ŝ(ti−1), (ti − ti−1)
γew + s̃(ti−1) + ỹ(ti))

}

×
1

|ak(1)|
N

(

ŷ(t1)|0, σ2
s + ỹ(t1)

)

,

where the quantities ŝ and s̃ are computed from the recur-

sive formulae

s̃(t1) =
(

σ−2
s + ỹ−1(t1)

)

−1

ŝ(t1) = s̃(t1) ŷ(t1)/ỹ(t1)

and for i > 1

s̃(ti) =
{

[

(ti − ti−1)
γew + s̃(ti−1)

]

−1
+ ỹ−1(ti)

}

−1

ŝ(ti) = s̃(ti)
{

ŝ(ti−1)/
[

(ti − ti−1)
γew + s̃(ti−1)

]

+ ŷ(ti)/ỹ(ti)
}

.

3.2. Sampling procedure

The final step in obtaining summaries from p(τ |Y) is to

sample from p(τ,θ|Y). As an alternative, we considered

numerically marginalising over θ, but the dimensionality is

still high enough, especially in the case of more than one

delay and more than two datasets, to render the task in-

tractable.

The Metropolis algorithm (see e.g. [4]) is particularly

suitable here, as it only requires us to be able to evaluate

the unnormalised posterior density; something we can read-

ily accomplish by multiplying the marginal likelihood of the

previous section with the prior. In addition, a suitable jump-

ing distribution needs to be formulated such that the result-

ing Markov Chain converges reasonably fast.

A crucial part in using MCMC methods is the evaluation

of the convergence of the chain. If the Markov chain has

not converged to its equilibrium distribution, the samples do

not come from the desired distribution making further infer-

ences invalid. Although there is no fool proof method to as-

sess the convergence, there exists several schemes that have

been proved to be useful in practise. One such method, and

the one we have used here, is to compute the so-called po-

tential scale reduction factor [5] from several parallel Markov

chains started from random initial states. It should give an

estimate of how much the scale of the empirical posterior

could be reduced by obtaining more samples. Practically, it

compares the first and second order moments of the parallel

chains.

4. EXPERIMENTAL RESULTS

The main motivation of this work is the estimation of de-

lays in gravitational lensing systems. However, comparing

methods using real datasets is very difficult as the true de-

lay remains unknown. Hence, we have made comparison

experiments using artificial datasets, as then we can make

well justified claims about the accuracy of different meth-

ods. These are reported in the next subsection. Results

with real-world gravitational lensing datasets are reported

and discussed in Section 4.2.

4.1. Controlled comparisons

We compare the proposed approach to the following three

widely used methods: discrete correlation function (DCF) [1],
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Fig. 2. Examples of artificial datasets with various noise

levels.

locally normalised discrete correlation function (LNDCF) [2],

and linear interpolation followed by standard cross correla-

tion (similar scheme used e.g. in [6]).

We did repeated experiments with artificial datasets gen-

erated from our model with a fixed delay of 35 units. The

datasets were comprised of two observed signals having one

hundred samples each. The sampling time instants t′i where

generated from the following mixture model:

∆t ∼ 0.8 × E (1) + 0.2 × E (0.1)

t′i = t′i−1 + ∆t ,

where E (λ) denotes the exponential distribution with in-

verse scale λ. This model was used to simulate the gaps

that are typical in astronomical datasets. The source was

generated using Eq. (2) with γ = 2 and w = 2 ln 0.05. The

observations were generated from the distribution (1) with

a1 = 1, b1 = 0, a2 = 0.8 and b2 = 0.2. The noise variances

evk were same for both observations and three different lev-

els (resulting in three sets of datasets) of it was used, namely

0.12, 0.22 and 0.42. Each of the three groups contained 225

datasets and examples from each of them are shown in Fig-

ure 2.

The DCF and LNDCF methods contain one tunable pa-

rameter: the binning size. To make the comparison as fair

as possible, we optimised this by trying various binsizes be-

tween 5 and 60. We found that the binsize of 10 produced

the best results on average with both of the methods. With

the linear interpolation approach one can vary the sampling

frequency. Again we tried several possibilities between 0.01

and 1.0, but found that between this interval, it didn’t make

much of a difference, so we selected the value 0.05. With

all these methods, we computed the value of the correlation

function between 0 and 70 with stepping of 0.2 and selected

the delay with the highest value as the estimate.

The proposed approach contains several tunable param-

eters in the proposal distribution. However, as opposed to

the comparison methods, these can be selected without know-

ing the true delay, by monitoring the rejection ratio and ad-

justing the parameters appropriately. The prior on τ (see

Eq. (3)) was chosen to be very vague with µτ = 0 and

στ = 200. We drew 10000 samples from five independent

chains having random initial value for the delay selected

from the uniform distribution on [0, 70]. To reduce the pos-

sibility of including samples not coming from the posterior

due to failure to converge, we tried to prune one to two of

the chains by computing the potential scale reduction fac-

tor for each of the subset of chains and selecting the subset

with the lowest value. Finally, half of the samples from each

of the chains were discarded as the burn-in period, and the

rest of the samples were combined. To be able to compare

against the other methods, we collapsed the posterior dis-

tribution of the delay to a point estimate by computing the

sample mean.

The accuracy of the estimates was measured using the

average error defined as

AE =
1

225

225
∑

i=1

|τ̂i − 35| ,

where τ̂i is the estimate for dataset i. Ideally the AE would

be zero, meaning an exactly correct estimate every single

time. The scheme of randomly guessing a delay between 0

and 70 can be thought of as the baseline (in the experimental

setting adopted, the comparison methods could produce an

estimate only within this interval). Using that scheme, the

average error would be (on average) 17.5.

Figure 3 shows the average errors as well as the 25%,

50% and 75% error quantiles for the different methods with

the various noise levels. DCF seems to give consistently bad

results almost independent of the amount of noise. LNDCF

and the interpolation approach perform at a very similar

level. The proposed approach is better on average with all

noise levels and the difference becomes more prominent as

the noise condition gets worse.

4.2. Estimating the delays in gravitational lensing sys-

tems

Gravitational lensing occurs when the light coming from a

distant quasar is bent by the gravitational potential of an

intermediate galaxy such that several images of the source

are observed. Relativistic effects as well as the different

lengths of the paths affect the time it takes for the photons

originating from the source to travel to the observer. This
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Fig. 3. Error statistics for different methods.

is perceived as a delay in the variations of the intensity pro-

files between the images. The significance of estimating

the delays in such systems stems from the early observation

that they can be used in determining important cosmologi-

cal quantities [7].

We have determined the delays in several lensing sys-

tems and contrasted the results against earlier findings. The

whole study is mainly interesting to the astronomical com-

munity and will be detailed elsewhere. Since the true delays

are and will remain unknown, we cannot make well justi-

fied claims of having measured them better or worse than

our predecessors. Instead, here we shall point out the ben-

efits of the kind of analysis we are doing in the sense that,

in addition of being rather accurate, it equips us with full

probability distributions over the quantities of interest. This

is very important knowledge since the uncertainties in the

delays will translate to uncertainties in the derived quanti-

ties.

We shall concentrate on two systems which lie at both

extremes on the well-determined / ill-determined axis. These

are the systems B0218+357 (with two distinct images AB,

hereafter B0218) and PG1115+080 (with at least three dis-

tinct images ABC, hereafter PG1115). The intensity pro-

files obtained from the systems are shown in Figure 4. In

summary, Table 1 shows our results and previous measures

of the delays. With B0218 we find a delay that is very

well in match with the previous measure. The situation is

somewhat different with PG1115. The results are not com-

pletely contradictory to the earlier findings but not in exact

harmony either. Then again, with PG1115 there has been

controversy before this, as is visible in the Table 1. Look-

ing at the posterior distribution of the delays provided by

our method (shown in Figure 5), we can gain some insight

why this happens. The posterior over the delay in B0218

0 20 40 60 80 100
Time (days)

0 50 100 150 200 250
Time (days)

Fig. 4. Top: the two images of B0218 and the correspond-

ing intensity measurements. Bottom: The four images of

PG1115 with the light curves (the two images close to each

other are merged). The images were obtained from CAS-

TLES [8].

Table 1. Our estimates of time delays compared to previous

results

System Im. Our Delay Previous Ref.

Measures

B0218+357 10.9 ± 0.7 10.5 ± 0.4 [9]

PG1115+080 AC −11.7 ± 1.7 −13 ± 1 [10]

−9.4 ± 3.4 [11]

BC −22.7 ± 1.8 −25 ± 1 [10]

−23.7 ± 3.4 [11]

5 10 15
Delay (days)

5 10 15
Delay AB (days)

Fig. 5. Left: the posterior over the delay in B0218. Right:

same for the delay AB in PG1115.
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lensing system PG1115.

is very well behaved, having the probability mass tightly

concentrated around the mean value. The situation is rather

different with PG1115; the posterior of one of the delays

is badly multimodal spanning a wide range of values from

5 to 15. The uncertainty is even more visible in the joint

distribution of the two delays shown in Figure 6. It has at

least two strong modes. In this light, the posterior average

and standard deviation that we customarily report in the ta-

ble, do not make that much sense. But since the two strong

modes have almost equal probability mass, we do not feel

comfortable in computing the subsequent quantities based

on just one of them either. Rather, we feel that the inde-

terminacy pointed out by this analysis should be taken as a

hint that the system PG1115, or at least the so far observed

data from it, is not the best one for the computation of the

derived quantities, and any cosmological quantities derived

from it should incorporate the posterior distribution in its

error estimates.

5. CONCLUSIONS

The estimation of a delay between unevenly sampled signals

is a recurring problem in certain fields. It is also a drastically

different problem compared to its evenly sampled counter-

part, since the standard cross-correlation methods are not

well justified and often produce questionable results. In this

paper we proposed a Bayesian approach to solve the prob-

lem, derived the learning procedure and showed its effec-

tiveness over alternative approaches.
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