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Abstract

Fourier-based regularisation is considered for the supgmtor machine (SVM) classi-
fication problem over absolutely integrable loss functioe show that a principled and
finite kernel hyper-parameter search space can be discapréati by using the sinc kernel.
The method has been tested on two representative probletitsrately chosen to be very
different. First, simulations performed on a publicly-dahle hyperspectral image dataset
reveal that the approach yields results that surpassdatdie-art benchmarks. The method
is then adapted to the recently-proposed max sequenced ketrieh has previously been
applied to speaker recognition (specifically text-indefe verification) using the PolyVar
corpus. Here, we apply our methods to text-dependent spaidification using the BT
Millar corpus. We show that this particular speaker-redtgm problem gives rise (unlike
earlier work) to a max kernel that is not sufficiently closeptmsitive semi-definiteness
for the SVM training algorithm to converge. To this end, wekenadaptations to the max
sequence kernel such that positive semi-definiteness,cacohsergence, is guaranteed.

1 Introduction

Parameter choice is an open problem in support vector mag¢BiviM) learning.
Whether the parameter takes the form of a scaling vector,angcnumber,
or the kernel itself, the fact remains that in the context oh4linear support
vector machines there are uncountably many solutions. rtinfately, the only

1 This work was supported by the Data and Information Fusidi&(Defence Technology
Centre funded by the UK Ministry of Defence and managed byeGdmbynamics Limited
and QinetiQ.
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way to elicit the best solution is to build uncountably margrrels. This is,
of course, intractable.

However, when framed in the context of reproducing kerndbéit spaces, it
can be shown that the parameters control the nature andedefjregularisation
that is imposed on the solution. A related issue is that theafled curse of
dimensionality [2] often turns out to be much less of a probkhan expected.
Some recent machine learning research has focused on fiomjegt explanations
for this phenomenon. Belkin and Niyogi [1] argue that a palgsreason is that
the data lie on a sub-manifold, embedded in the input spadeed, data with a
large number of variables may lie entirely in a much smalierensional manifold.
Knowledge pertaining to the structure of the manifold carnubed to guide the
choice of parameters, and thus the nature and degree oaresgtion.

Such realisations lead to a more considered approachtd.ascertain, a priori,
properties of the space wherein the data lie. Although thmeg still exist infinitely
many solutions, the range of an empirical search could thdeast be focused
upon subsets of parameters rather than all possible choiqgesameters. In fact,
we propose principled assertions that reduce the infindeckespace to a finite
one. Ultimately, our philosophy is inspired by the disangliof sampling theory
where the main goal is to establish equivalence relatiohsdsn data sequence
spaces and kernel function spaces. To this end, we emplogpethe most simple
function space from sampling theory, namely the simply emted and zero-
centred Paley-Wiener reproducing kernel Hilbert spaceensommonly referred
to by engineers as base-band-limited signals. For a givessaf data we show
how to estimate, a priori, a suitable kernel and parametessace. Our method is
evaluated on two representative problems, deliberatelgamto be quite different
so as to exercise fully the approach. The first is a remotehsgrproblem, i.e.,
classification of the pixels of a hyperspectral image usnegopular, extensively-
studied AVIRIS dataset. The second problem involves sempielata, i.e., text-
dependent speaker identification using the BT Millar databa

The remainder of this paper is structured as follows. IniSe@, the data class
and corresponding reproducing kernel Hilbert space arstoacted. Accordingly,
some necessary signal theory concepts are introduced stukded in Section 3,
and exploited in Section 4. In Section 5, we announce theressits to date on
the AVIRIS hyperspectral image dataset. In Section 6, wetitie approach to the
application of a new sequence kernel family to the spead@wgnition problem.
Although the results are some way short of the best repontelde literature on
the Millar dataset, the work brings to light some importamtgtical and theoretical
issues surrounding the use of sequence kernels.



2 Model Construction

Consider the usual SVM classification problem, withe X C RY, Yn € {£1},
andn € N, namely

1
min = |ITfl2+C 11—y f (X))l .
min = IT 11 + % yn f ()l

where f, the decision function to be determined, in some Hilbercega(X), is
regularised by the operatdr: H — F. The resulting learned decision function,
implied by the representor theorem [12], is the solutioe: ),y Ynank(Xn, -,
wherek is a Mercer kernel [18]. Herewith, the classifier is definedsgp f. Our
main contention is that before an effort is made to build tlassifier it is good
practice, in a qualitative sense, to attempt to discerntbpgsties of the underlying
decision function. A natural preface, proposed in this waskihat the labelling
function maps-variate data to labels vig: RY > X > {£1}, with

y(x) 1= sgn(e(x) + €(x)), 1)

where the noise is modelled ley and under the assumption that the information
contenty, lies entirely within the space of Paley-Wiener (PW) fuan8 over some
multi-dimensional base-band regi@f, viz.

d

¢ € PWo: 1= P {¢ € La(X) : suppt” € @}, (2
r=1

with suppe ;= {x € X : ¢(x) # 0}, and where” denotedd-variate Fourier trans-
formation. The conditionp € PWq+ restricts the behaviour of the information
content to functions of finite bandwidth around the origitthAugh this kernel is
familiar to signal theorists and engineers, it is a seemimgte tool in machine
learning. It is perhaps less well known that, by virtue of fo#owing three
established results, the sinc kernel also lends itselfd@egularised support vector
classification setting.

Theorem 2.1 (Self consistency property, Smola, 8&opf, and Miller [23]) Let
the Mercer kernel k X x X — R, and the regularisation operator TH +— F,
be such that kx, &) = ((T K (x), (T k)(é))f. Then the SVM classification problem
can be written
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min = | Tf] +anZN|1—ynf(xn>|+.

Theorem 2.2 (Translation invariant kernels, Smola, Sdkopf, and
Muller [23]) Consider a kernel, endowed with translation amance, namely
k(x, &) = k(x — &), with the regularisation operator TH — F, defined by

dw.

TETg)r 1 / f ()" (w)
Rd

~ (21972 )

Then kx, &) = ((T K)(X), (TK) (g))f, and the self consistency property from Theo-
rem 2.1 is satisfied.

Corollary 2.1 It follows from Theorem 2.2 that the regularisation termnfréghe
SVM problem is

\fA(w)\

|| “.7: (2 )d/zl_[/* kr/\(a)r

-1
with w := (o")?_;, and that(kA(a)))_l = (]‘[E':l kp(d)) regularises the deci-

sion function f by acting as a filter, in the signal analysisse on fA|2.

The unique kernel associated with the reproducing kernkerti spaceP W+ is
the sinc kerne]_[r 18ING, (X" — &"). Given the model (1), where the information
content is embedded in the Paley-Wiener space (2), it is segible to constrain
the decision function to the same Paley-Wiener space. Fronolldry 2.1, it

follows that in the Fourier domain the multiplicative filterhich acts uponf |2, is

1 d
K@) m(w) l:[m*(wr

with thed-dimensional hypercuboid

@) : 1 fweQ
w) .=
xs 0 otherwise

In this case, sinck” > 0 holds oveiRY, Bochner’s theorem ensures that the sinc
kernel is a Mercer kernel. The multiplicative filter regusas the decision function



by penalising the frequency content 6fon R\Q*. The sinc kernel also keeps
the content ovef2* unaltered. These penalisation and preservation propexte
by definition, unique to the sinc kernel. Since Paley-Wiesgaces are closed
under addition, the representor result ensures that theidedunction is restricted
to PWg-.

Remark 2.1 We now see that, in the context of our work, the non-reguddris
higher dimensional input space discussed by Belkin andgijjtd is P W4, and
the sub-manifold is PW < PWga4. That is, in the frequency domain, the sub-
manifold invoked by our work can be described as a hyperclutentred on the ori-
gin, and the regularising operator is precisely the mapplihgP Wrda +— P Wgs.

We are now left with the problem of finding an optimal hypergraeter sefw },
in the sense of the SVM problem. Before this is attempted, vwopgse a novel
approach to elicit spectral properties of the labellingction that employs some
recently constructed tools from signal theory.

3 From Signal Theory to SVM Classification

Intuitively, the labelling functiony can be understood as a piecewise constant
function that mapgl-many real variables to positive, or negative, unity. It ,can
therefore, be treated as a square-wave function dwariate space. To this end,
we propose the use of sequency analysis as a means to eln@toperties of/
and, consequently, the information contgntSuch properties will suggest how
the decision function should be regularised. Before thdyaig it is instructive to
introduce a family of functions that has the labelling fuoctas a member.

Let cal,(t) :=sgncosot, and sal(t) ;= sgnsimwt, and define the complex

w — C I(,) S .

This differs from the definition of the more common Walsh-Hadhrd analysis
described elsewhere. In particular, the system employee isedefined over a
denser, uniform grid rather than over a dyadic grid and, #do@ishown below, it
forms a biorthogonal basis. As such, it can be used to antigssgpectral properties
of functions over a more opaque domain. Consider the Mddmitismetic function
w: N+ {0, +1}, given by



1, ifn=1
w(n) =4 (=M, if nis the product ofn distinct primes,
0, otherwise

which is employed here due to the utility afforded by thedwling result, taken
from number theory.

Lemma 3.1 (Mobius) Letu denote the Ndbius function. Then, for ma N,

> u(n) =dma,

nim

wheres. . denotes the Kronecker delta. The next result, outlined bigdwe[19],
enables us to express the labelling function in terms of th@plex square-
wave family.

Proposition 3.1 (Biorthogonal complex square-wave system, Nelson [199 Th
biorthogonal dual of yn} is

1 .
Yn () = — m~tu(Impent/m.
V2 megz:—i-l

We introduce the sequency transformation,namely

(@) = fR F (PO dt. ®)

From Proposition 3.1, it follows thatcan be expanded as a superposition of square
waves, Viz.

y= Z <y, er)Lz(R) Vn.

nez

Hence, the coefficients that exprgss terms of the square-wave basis are found
by performing the sequency transformyfRecall from (1) thaty € PWg+, and,
without loss of generalitye € PWq+. The linearity property of Paley-Wiener
spaces gives rise to

p+ee PWQ*UQJr.



We define the sequency function sp&geas

Spi={¢ € La(X) s suppr ™ <€ @}

Now since sgp € Sox = ¢ € PWg+, and sgr € So+ = € € PWo+, we can
express the labelling functiop as a sequency-limited function,

y=sgny +¢€) € pruq+

with y= . Y (@)Y () do, (4)

wherey™ can be computed via

yN(wr):\/% Z /L(l;nl)/y(xr)e—iwxr/mdxr
T R

medZ+1

_ ¥ u(l;nDyA (%) 5)

medZ+1

and where one fast Fourier transform is required to detaminw’), for each
r=1,...,d.

Since the sampleg, over which the Fourier transforms gf (") are computed are
typically non-uniformly distributed, the direct applicat of a Fourier transform is
inappropriate. Instead, irregular sampling techniquestrba considered. Since a
comprehensive treatment of irregular sampling issuesysrizethe scope of this
paper, we employ a simple strategy whereby the data are rdapeuniform grid
via nearest neighbour, constant interpolation.

By definition, the information content ¢f + ¢ lies in the frequency base-band
Q* = (—w47, w,r). The informative part of the labelling function sgn+ ¢) lies
analogously in some sequency base-b@fd= (—w, 7, w4 TT).

Example 3.1 Consider y= sgng, where¢(t) = cosw,t, and te R. Clearly, it
follows thaty € PW_,, «,), and

Y () =8(w—wy) +8(@+ ) = Y € S—u,.0,)-

In this casew; is estimated from 'y, andsindw,-) is chosen as the kernel.



In practice, the approach taken to determf2g and hence the value @y, is
not straightforward unless we assume 24t Q+ = {}. However, in this section
we have formulated the SVM classification problem in term& @fignal theory
one, namely that of filter design, and in Section 4 we show how &voids
computationally-expensive parameter estimators suchoas galidation.

4 Parameter Estimation

For each choice of the parametey, there is a corresponding reproducing kernel
Hilbert spaceH,, say. Commonly, the choice of parameter, or hyper-paragiste
achieved by estimating the performance of the SVM for eacampater value. The
value that yields the best performance is then chosen aptheal parameter.

There exist several different ways to measure SVM perfoomamo expedite the
empirical comparisons drawn in Section 5, we shall consphaps the most
straightforward measure, namely the validation error.e-#dre data are split into
two distinct sets. One is used to train and the other to viittee SVM. There
also exist several ways to search for the optimal paramejefften misused, the
phrase ‘exhaustive search’ has been adopted to descriljgpaveah whereby the
performance measure is computed over a finite number of @easn In practice,
however, the search can never be truly ‘exhaustive’. Eitlerange of parameters
is too small, or the discretisation too large, or both.

Various gradient-descent search methods have also bekedbiopSVM parameter
optimisation. Common drawbacks of gradient methods ireliinding a suitable
smoothing strategy for the performance measure, choosiggod initial point
for the search, and bad convergence. Unfortunately, thielgms inherent in any
search-based method are exacerbated in an exponentiabmasithe number of
parameters increases linearly, and when using a one-ageiastrategy for exam-
ple, in a combinatorial manner as the number of classesasesslinearly. Only a
few authors have attempted automatic estimation of thengbthyper-parameter
set. Lanckriet et al. [13] use semi-definite programmindtégues to compute
the kernel matrix. Debnath and Takahashi [6] attempt to naakek between the
eigenvalues of the features and the optimal Gaussian ptganowever, their
work relies almost entirely on empirical evidence and datlie remarks. Guo et
al. use measures of mutual information to guide parametdingd9].

We propose a principled means to estimate a search spaceiwliee optimal
parameter lies. Rather than blindly searching for a set cdrpaters by induction
alone, we follow an approach that is inspired by the engingetiscipline of filter
design. Although this is sometimes glibly described as &nof an art than a
science’, it has a successful theoretical and practicedfyishat arguably stretches
further back than statistical machine learning. Not onlggisignal theory suggest



parameters a priori, it can also, via spectral analysisttadnterpretation of the
underlying properties of a particular solution.

Our approach is to compute the sequency transform (3), \@as#rnies of fast
Fourier transforms (5), so as to discern the inteiRal from equation (4). For
a d-variate space§2 = @‘i Qr, we required-many sequency transforms. When
QF = (—wlm, ) has been established, we use the estimat® construct the
sinc kernel under the assumption tkxtN Q+ = {}. In practice, since each datum
has finite length, the sequency transform (3) is taken overite lomainT . From
equation (5) and the convolution theorem, this is equivat@oomputing

~ T pdmi . A
TN (@) = o> > - (snnCr*y)(g),

m
medZ+1

wherex here denotes the convolution operator. ConsequentlytHikénite Fourier
transform, the finite sequency transform is subject to $leatainc ringing effects.

Notwithstanding such artifacts, the sequency componeatsstll be estimated.
The shifted Dirac generalised functions found in the idealiand trivial Exam-
ple 3.1 above are replaced by shifted sinc functions in thiefoase. It follows that
only the locations of the local maxima pf~| should be considered as candidates
for w,. Sincey is necessarily restricted to a discrete and finite doma@nséguency
spectrum is smooth and cannot take the same value at every pl@nce, only
finitely many maxima will exist. This simple and intuitivegament serves to
reduce an exhaustive but theoretically infinite search exéaustive, finite search.
For a one-dimensional problem, one merely tests the pedioce of the SVM by
setting the parameter value to each local maximum of theeseyuspectrum.

Of course, when the number of dimensions or maxima preclmdexaaustive
search over the entire set, one may be compelled to compeoaeisuracy and
either bound the search space, conduct a sparser searcbthorTb this end,
we effect a disciplined compromise between search spasiyaccuracy by the
following construct.

Definition 4.1 Define the sequency transform of y over the rth varidte by
y (o). The sequenc(awrp}r'jf:1 is defined as the set that contains the locations
of the local maxima ofly™(e")|, ordered such that, < o' for all

. p+L
pr = 1,..., P. Furthermore, define the sets

Wi (k) = ()9,

and
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Fig. 1. The circles denote the location of the maxima overdin®nsional domain. The
lines plot the searche®V; (0)}5_, on the left andW; (0.2)}7_, on the right.

Wi () == M] () U Wj_1(6) \ M (k).

with

Mj (k) = {a)g{ e Wj_1(x): a);r —minWj_1(x) < «},

and where the set operatol is defined as

MJT: Mj = {ol } > {0l ,q).
Example 4.1 Consider the set W0) := {o}}3_|, with 0] < 0? < 0} < 3. It
follows that My(0) = {wl}, MJ(0) = {w}}, and W(0) = {0}, 02, ). Likewise,
we have W(0) = {w3, ®3, w3}, and W(0) = {wi, ®3, w3}.

The set{W; (x)}j is a subset of points that lie in the set of all sequency maxima
It is constructed such that a search over this subspace ignthily influenced

by the sequency spectrum of any one particular dimensiaitivelto the other

d — 1 dimensions. Equivalently, it assumes that the spectralwalth of the noise,

or information, does not change too much from one dimensianbther. Larger
values of« produce sparser search sets. Figure 1 depicts a simple E@mfwo
different values ofc. Herewith lies a useful compromise between accuracy and
sparsity. The result is a family of search spaces paramsetéhyx, which should

be chosen in accordance with the computational resouredsiale.

We next consider the application of our method to two repregive and quite
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different problems. The first is a remote-sensing problem.,, iclassification
of the pixels of a hyperspectral image using the popularereively-studied
AVIRIS dataset. The second problem involves sequence datatext-dependent
speaker identification using the BT Millar database.

5 Application to Hyperspectral Imagery

The airborne visual and infrared imaging system (AVIRISpénspectral image
data comprises intensity information over 224 co-termgelectromagnetic spec-
tral bands, ranging from 0.4 to 2.8n. AVIRIS data facilitate myriad applications
including land resource management, mineral exploitataomd environmental
monitoring. The large number of variables, and classesemé#ke dataset ideal
for demonstrating the utility of our sinc kernel approactd asearch strategy.
Furthermore, there exists the free, publicly-availabldNs dataset [14] that has
been widely used by several research groups to benchmadusdryperspectral
image classification techniques. The AVIRIS dataset ctssfsa single ‘datacube’,
i.e., it does not comprise sequential data.

In the hyperspectral images, each pixel is described bygesitata pointx, € RC.
Each elemenx], represents the intensity value of pixelin ther th spectral band.
Each pixel belongs to one of seventeen different classesmfng vegetation.
Previous work on the dataset has considered four-, sixt@et-seventeen-class
problems. For a fair comparison to be drawn between ourteauld others, we
follow the same sampling and validation technique as uspdewious research on
the AVIRIS data. That is, 20% of the original data is randoctipsen as training
data, and the remaining 80% is held out as the test data. FBo#ing validation
measure is simply the percentage of incorrect classification the test data.
Figure 2 shows the sequency spegfraaken from the four-class AVIRIS problem.

Table 1 compares results using the proposed sinc methodshanest results
found by previous researchers using the same sampling ditthtian regime.

Gualtieri and Cromp [8] tested several orders of polynor®eM kernels over

5 trials and found that the degree-7 kernel performed the’ba¥e can see that
the SVM approach holds a significant advantage over the Bayeasethod used by
Tadjudin [24] and Landgrebe [15].

The sinc-based search strategy implemented here is theeshgper-parameter
search spacgWw; (0-05)}15:1 from Definition 4.1. All of the sinc kernel results
represent the average, taken over 10 trials. The mean stegrdar was below 0.2%
for the four-class problem, and below 0.1% for the sixteerd seventeen-class

2 We have been unable to replicate Gualtieri and Cromp’s re$ut.1% error rate; our
result is 4.7%, in line with Du [7].
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Fig. 2. Sequency spectitg™| for the four-class AVIRIS problem. Darker tones indicate
higher magnitude.

problems. The sinc methods appear to be superior to the-cftéte-art in the
four-class problem. For the sixteen- and seventeen-cldssess, the sinc methods
comfortably surpass all previous published results

6 Application to Speaker Recognition

Using a support vector machine (SVM) sequence kernel apprd@ampbell et
al. [3] recently obtained text-independent speaker reitioginresults outperform-
ing the traditional Gaussian mixture model method [21]. ldoer, their design
precludes the kernel trick and thus limits kernel choicethVis issue in mind,
Mariéthoz and Bengio [16] not only proposed a similar dedigat admitted the
kernel trick but also proposed their max kernel method. kirtistudy of text-

independent speaker verification, they found that the maxekéncurred the least
error on the popular PolyVar [4] telephone corpus.

3 Although Guo et al. [10] report an apparently lower erroerat< 10% on the 16-class
AVIRIS problem using a polynomial kernel, this was for a diffint training and testing
regime in which the data were split 50:50.
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Table 1
AVIRIS classification: State-of-the-art

Source Penalty Method Error (%)

FOUR-CLASS PROBLEM

Section 4, Definition 4.1 00 Sinc SVM, sparse search 3.9
Gualtieri and Cromp [8] (5 trials) 1000  SVM poly. kernel, deg 7 4.1
Du [7] 1000  SVM poly. kernel, degree 7 4.5
This work 1000 SVM poly. kernel, degree 7 4.7
This work 0 Gaussian RBF kernel 4.9
Tadjudin [24], Landgrebe [15] 1000 Bayesian discrim. asialy 6.5
Du 1000 Gaussian RBF kernel 7.9

SIXTEEN-CLASS PROBLEM

Section 4, Definition 4.1 00 Sinc SVM, sparse search 10.9
Gualtieri and Cromp (1 trial) 1000 SVM poly. kernel, degree 7 12.7
SEVENTEEN-CLASS PROBLEM

Section 4, Definition 4.1 00 Sinc SVM, sparse search 11.3
This work 1000 SVM poly. kernel, degree 7 15.1
Tadjudin and Landgrebe 1000 Bayesian discrim. analysis 1 17.

Inspired by this approach to text-independent speakefication, we have ex-
plored its application to text-dependent speaker ideatifin*. Our reasons for
so doing were to avoid mere duplication of Mariethoz and dd@s work, prior
familiarity with this form of the speaker-recognition ptetm, and immediate
access to a particular corpus specifically designed fot deégognition, namely the
BT Millar corpus [20,17]. However, our simulations reatise practice a problem
that Mariéthoz and Bengio had only noted in theory, nambgt the resulting
kernel is not guaranteed to be positive semi-definite (PS$)eover, the positive
semi-indefiniteness of all the standard kernel choicesnkatttempted to use in the
max kernel paradigm meant that the SVM training algorithie€eto converge to a
solution. The specific reason that we encountered this pnolthereas Mariéthoz
and Bengio did not is unknown. However, the two problemst{iedependent
verification vs. text-independent identification) are quiifferent and involve very

4 In verification the task is to verify or deny that a speaker is who he/shenslaén be; in
identification the task is to identify from the speech signal one out of alvemof possible
speakers.

13



different training and testing regimes on different dattas€hus, potential reasons
are not hard to find.

When presented with non-PSD kernels, the standard appreaimply to add a

constant term to the diagonal of the kernel matrix [22]. Wapise a generalisation
of this technique, and hence facilitate the implementatioime sinc kernel, along
with some of the other standard kernels.

6.1 Sequence Kernels

In the context of support vector machine classification, gheaker recognition
problem gives rise to the following sequence kernel forrioila The nth utter-
anceXp of some corpus comprises a sequencé,aihany frames{xn,t}tT;l, where
each framex, ¢ containsd many cepstral coefficients. Hence, a kerdemust be
designed such thd€ (Xp, Xm): R9*Tn x Rd>Tm 5 R. Such a kernel is known as
a sequence kernel because it must act on an ordered set ofsvect

Perhaps the simplest design is the mean kernel, which iseédby constructing a
kernelk: RY x RY — R for each frame of speech and taking the mean value over
all possible combinations:

Th Tm

K(Xn, Xm) = Tanm Z Z K(Xn,t» Xm,s) - (6)

t=1s=1

An important feature of this kernel is that it is guaranteedeé positive semi-
definite. To see this we rewrite it as

1 1
K (Xn, Xm) = <T—n > d ), T Z¢(xm,t>>,
t=1 t=1

with k(x, 2) = (¢ (X), ¢(2)), and note that any matrix that can be written as a Gram
matrix of linearly independent vectors is positive definite

6.2 The Max Kernel

Mariéthoz and Bengio [16] note a clear theoretical drawbaicthis approach. It
does not necessarily make sense to compare all the frames ott@rance with all
the frames of another utterance. In particular, when vieagea similarity measure,
one would expect the kernel to give a maximum result for tvemtctal utterances.

14



The mean kernel does not guarantee this. Mariéthoz andi@effgr the following
simple counter-example.

Example 6.1 Given a multi-frame utterancepXconsider the one-frame utterance
Xm = {Xn.t,} With X,t, = argmaxk(Xn t, Xn.s)- It follows that:
t

K(Xn, Xm) > K(Xn, Xn) .

Motivated by this counter-example, Mariéthoz and Bengimstruct their max
kernel:

Th Tm
1 1
K (Xn, Xm) = T E msaxk(xn,t,xm,s) + T E mtan(Xn,t,Xm,s)- (7)
t=1 s=1

The max kernel ensures that only the closest matching frameescluded in the
computation of the kernel. Although this kernel is no longearanteed to satisfy
Mercer’s conditions, Mariéthoz and Bengio nonethelessdbit to be positive
semi-definite in practice when applied to text-independsggdaker verification
using the PolyVar corpus. By contrast, when we applied thethad to text-
dependent speaker recognition using the BT Millar corpwesfound that the max
kernel always resulted in a positive semi-indefinite tragnmatrix. Moreover, the
SVM quadratic optimiser failed to converge for any choicehaf kernek. We do
not know the specific reason for this, other than that our vikaskmany differences
to that of Mariéthoz and Bengio, any of which could potéhtibe the cause.

6.3 From Indefiniteness to Definiteness

Although, to the authors’ knowledge, non-PSD kernels yaeglse in speaker-
recognition problems, they do occur in the context of protelassification

problems. By far the most common approach to deal with pasgemi-indefinite

kernels is simply to add a constant term to the diagonal okéneel matrix so as
to obtain a PSD kernel [22]. Since a matrix is PSD if and onbllieigenvalues are
non-negative, it suffices to perform the kernel modificasometimes referred to
as the diagonal-shift kernel:

Ki =K +Al,
with A := min(in, 0) and wherei, is the smallest eigenvalue &€. However,

the resulting diagonal-shift kernel may well be far awaysame sense, from the
original kernel. This is certainly the case if the smallegeavalue ofK has a large
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magnitude. A less common method is to find the nearest PSkeramely the
so-called positive approximant.

Definition 6.1 Let S, denote the space of all positive semi-definite matrices.
Define the the positive approximant of a matrixekR9*9 by

K; :=argmin|K — S| .
SeSy

It turns out that by recovering the following result from Hegm [11], we can find
the positive approximant, in the Frobenius sense, unicamtiyanalytically.

Theorem 6.1 (Higham) Let K= KT € R4%4, have the polar decomposition
K=UH,withUTU =1l,and H=HT € S;. Then

is the unique positive approximant of K with respect to thablenius normj|-| g.

Use of the positive approximant is sometimes referred to@soising’, since it is
equivalent to replacing the negative eigenvalues of thgiral kernel matrix with
zeros. In our simulations, we have found that the positiyg@omantK ;. performs
less effectively than the diagonal-shift kerrke]. However, we propose the kernel

Kg = BKs+ (1 — BKy, 0<p=<1, (8)

and have found that it can perform better thap for 8 # 1. Moreover, thanks
to the isometry(an m) — [anm], between the space of aN-by-M matrices and

N M sized vectors, induced by the Frobenius ndriix, our kernelKg also has

a geometric interpretation as illustrated in Figure 3. Oammlel family defines a
straight line between the diagonal-shift kernel and therasaPSD kernel with
respect to the Frobenius metric. Since PSD matrices arectlasder addition, and
multiplication by scalars g defines a line that exists entirely within the space of all
PSD matrices. The parameigdetermines how close the modified kernel is to the
original kernel. It acts as a trade-off between closenetisgtpositive approximant
and the diagonal-shift kernel.

6.4 Simulations

The text-dependent British Telecom Millar corpus [20,1@inprises high quality
microphone recordings, downsampled from 20 kHz samplitg t@a 8 kHz, with
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Fig. 3. Geometrical representation of the proposed modierdel. The black solid line
illustrates the kernel familgK. + (1 — g)K,. The shaded area distinguishes the positive
semi-indefinite spac8, from the positive semi-definite space .

16-bit resolution. Speech data were collected from 46 madeld female English
speakers over five sessions and a period of three months. pdekeys were
all required to utter the digits “one” to “nine”, “zero”, “nmht”, and “oh” five
times per session. We follow a similar procedure to thatioed by Damper and
Higgins [5] and use the first 10 utterances of the words “séaerd “nine” for each
speaker as the training data and the remaining 15 sessitimswbrds “seven” and
“nine” as the test data.

The max method (7) was tested for classification accuracy thee polynomial
(X, 2)”, exponential exp§||x — Z| y—l), and sinc kerne[[sinc,(x — z). These
max kernels were tested ovgr=0,0.1, ..., 1. The best results are tabulated in
Table 2 alongside the results obtained with= 1. We see that the polynomial and
sinc kernels benefit from our generalisation of the diagshit sequence kernel.
Results for the mean method (6) are also given in Table 3 fonpdeteness. They
confirm that, overall, the best accuracy is realised withgine kernel and max
methodP . For the mean method, best results are obtained for the ergiahkernel,
but the sinc kernel is only a little worse.

7 Conclusions

We have argued that the SVM classification machine learniraplem can
profitably be tackled in the context of signal theory. Thesirglation between
Paley-Wiener spaces and the sinc kernel has been exploitedm an explicit
relationship between our information model and the sino&lehyper-parameter.
By employing some recent work on sequency analysis, thereatuthe model
can be discerned. Consequently, a finite hyper-parametsatsspace was realised.

5 We make no claim here that our results are competitive wighiist in the literature
on the BT Millar database. In fact, Damper and Higgins [5]aied 100% correct
identification for “seven” and “nine” with added noise.
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Table 2

Speaker recognition results for the max kernel on the BTavldbrpus. Best results (shown
in bold) for the two words tested were obtained with the siemkl.

Kernel y B Error (%)
sinc 16 1 3.00
sinc 1.6 07 278
exp 10 1 3.22
polynomial 1 1 18.77
polynomial 1 0.5 16.22
polynomial 2 1 16.89
polynomial 2 0.2 14.11
polynomial 3 1 18.44
polynomial 3 0.1 15.44
(a) “seven”
Table 3

Kernel y B Error (%)
sinc 3 1 5.08
sinc 3 0.7 5.31
exp 10 1 6.89
exp 10 05 6.33
polynomial 1 1 15.60
polynomial 1 0.5 13.56
polynomial 2 1 13.22
polynomial 2 0.1 11.75
polynomial 3 1 11.86
polynomial 3 0.1 11.17
(b) “nine”

Speaker recognition results for the mean kernel on the BTaMdorpus. Best results
(shown in bold) for the two words tested were obtained with élxponential kernel, but
are poorer than those for the sinc kernel.

Kernel y  Error (%) Kernel y  Error (%)

exp 10 4.00 exp 10 5.99

polynomial 1 23.00 polynomial 1 17.29

polynomial 2 10.00 polynomial 2 9.97

polynomial 3 9.94 polynomial 3 9.15

sinc 1.6 4.63 sinc 1.6 6.33
(a) “seven” (b) “nine”
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Moreover, by introducing further assumptions, we have shibat the compromise
between computational effort and search space sparsearelse managed sensibly.

The approach has been applied to two very different prohldmger-spectral
image classification using the AVIRIS dataset and text-ddpat speaker identifi-
cation using the BT Millar database. The former problem ivee a single (static)
datacube whereas the latter requires appropriate hanoflisgquential (dynamic)
speech data. Applied to the much-studied AVIRIS datasetawleeve the best
results so far published.

The approach can also be adapted for our newly-construet@desce kernel
family. The main conclusion from our work on speaker idecdifion is that the max
kernel yields superior performance to the mean kernel, sdie@ting Mariéthoz
and Bengio’s method. One of the important features of theithod is that one
can “plug in” any kernel. However, we found that this method kot converge
without modification because the kernel matrix was not guaed to be positive
semi-definite. A diagonal shift was, therefore, employegrmmote convergence.
It was found that a linear combination of the positive appr@ant K and the
diagonal-shift kerneK,, as in equation (8), generally performed slightly better
thanK, alone at the expense of having to search for a good value efeighting
coefficients.
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