
Signal Theory for SVM Kernel Design
with Applications to Parameter Estimation

and Sequence Kernels

J. D. B. Nelson, R. I. Damper, S. R. Gunn and B. Guo

Information: Signals, Images, Systems (ISIS) Research Group
School of Electronics and Computer Science

University of Southampton
Southampton SO17 1BJ, UK

Abstract

Fourier-based regularisation is considered for the support vector machine (SVM) classi-
fication problem over absolutely integrable loss functions. We show that a principled and
finite kernel hyper-parameter search space can be discerneda priori by using the sinc kernel.
The method has been tested on two representative problems, deliberately chosen to be very
different. First, simulations performed on a publicly-available hyperspectral image dataset
reveal that the approach yields results that surpass state-of-the-art benchmarks. The method
is then adapted to the recently-proposed max sequence kernel, which has previously been
applied to speaker recognition (specifically text-independent verification) using the PolyVar
corpus. Here, we apply our methods to text-dependent speaker identification using the BT
Millar corpus. We show that this particular speaker-recognition problem gives rise (unlike
earlier work) to a max kernel that is not sufficiently close topositive semi-definiteness
for the SVM training algorithm to converge. To this end, we make adaptations to the max
sequence kernel such that positive semi-definiteness, and so convergence, is guaranteed.

1 Introduction

Parameter choice is an open problem in support vector machine (SVM) learning.
Whether the parameter takes the form of a scaling vector, a scaling number,
or the kernel itself, the fact remains that in the context of non-linear support
vector machines there are uncountably many solutions. Unfortunately, the only

1 This work was supported by the Data and Information Fusion (DIF) Defence Technology
Centre funded by the UK Ministry of Defence and managed by General Dynamics Limited
and QinetiQ.
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way to elicit the best solution is to build uncountably many kernels. This is,
of course, intractable.

However, when framed in the context of reproducing kernel Hilbert spaces, it
can be shown that the parameters control the nature and degree of regularisation
that is imposed on the solution. A related issue is that the so-called curse of
dimensionality [2] often turns out to be much less of a problem than expected.
Some recent machine learning research has focused on findingcogent explanations
for this phenomenon. Belkin and Niyogi [1] argue that a possible reason is that
the data lie on a sub-manifold, embedded in the input space. Indeed, data with a
large number of variables may lie entirely in a much smaller-dimensional manifold.
Knowledge pertaining to the structure of the manifold can beused to guide the
choice of parameters, and thus the nature and degree of regularisation.

Such realisations lead to a more considered approach: i.e.,to ascertain, a priori,
properties of the space wherein the data lie. Although theremay still exist infinitely
many solutions, the range of an empirical search could then at least be focused
upon subsets of parameters rather than all possible choicesof parameters. In fact,
we propose principled assertions that reduce the infinite search space to a finite
one. Ultimately, our philosophy is inspired by the discipline of sampling theory
where the main goal is to establish equivalence relations between data sequence
spaces and kernel function spaces. To this end, we employ perhaps the most simple
function space from sampling theory, namely the simply connected and zero-
centred Paley-Wiener reproducing kernel Hilbert space, more commonly referred
to by engineers as base-band-limited signals. For a given class of data we show
how to estimate, a priori, a suitable kernel and parameter subspace. Our method is
evaluated on two representative problems, deliberately chosen to be quite different
so as to exercise fully the approach. The first is a remote-sensing problem, i.e.,
classification of the pixels of a hyperspectral image using the popular, extensively-
studied AVIRIS dataset. The second problem involves sequence data, i.e., text-
dependent speaker identification using the BT Millar database.

The remainder of this paper is structured as follows. In Section 2, the data class
and corresponding reproducing kernel Hilbert space are constructed. Accordingly,
some necessary signal theory concepts are introduced and discussed in Section 3,
and exploited in Section 4. In Section 5, we announce the bestresults to date on
the AVIRIS hyperspectral image dataset. In Section 6, we adapt the approach to the
application of a new sequence kernel family to the speaker-recognition problem.
Although the results are some way short of the best reported in the literature on
the Millar dataset, the work brings to light some important practical and theoretical
issues surrounding the use of sequence kernels.
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2 Model Construction

Consider the usual SVM classification problem, withxn ∈ X ⊆ R
d, yn ∈ {±1},

andn ∈ N, namely

min
f ∈H

1

2
‖T f ‖2 + C

∑

n∈N

|1 − yn f (xn)|+ ,

where f , the decision function to be determined, in some Hilbert spaceH(X), is
regularised by the operatorT : H 7→ F . The resulting learned decision function,
implied by the representor theorem [12], is the solutionf =

∑

n∈N
ynαnk(xn, ·),

wherek is a Mercer kernel [18]. Herewith, the classifier is defined bysgn f . Our
main contention is that before an effort is made to build the classifier it is good
practice, in a qualitative sense, to attempt to discern the properties of the underlying
decision function. A natural preface, proposed in this work, is that the labelling
function mapsd-variate data to labels viay : R

d ⊃ X 7→ {±1}, with

y(x) := sgn
(

ϕ(x)+ ε(x)
)

, (1)

where the noise is modelled byε, and under the assumption that the information
content,ϕ, lies entirely within the space of Paley-Wiener (PW) functions over some
multi-dimensional base-band region�∗, viz.

ϕ ∈ PW�∗ :=
d

⊕

r =1

{

ζ ∈ L2(X) : suppζ∧ ⊆ �∗
r

}

, (2)

with suppζ := {x ∈ X : ζ(x) 6= 0}, and where·∧ denotesd-variate Fourier trans-
formation. The conditionϕ ∈ PW�∗ restricts the behaviour of the information
content to functions of finite bandwidth around the origin. Although this kernel is
familiar to signal theorists and engineers, it is a seemingly rare tool in machine
learning. It is perhaps less well known that, by virtue of thefollowing three
established results, the sinc kernel also lends itself to the regularised support vector
classification setting.

Theorem 2.1 (Self consistency property, Smola, Schölkopf, and M̈uller [23]) Let
the Mercer kernel k: X × X 7→ R, and the regularisation operator T: H 7→ F ,
be such that k(x, ξ) ≡

〈

(T k)(x), (T k)(ξ)
〉

F
. Then the SVM classification problem

can be written
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min
f ∈H

1

2
‖T f‖2 + C

∑

n∈N

|1 − yn f (xn)|+ .

Theorem 2.2 (Translation invariant kernels, Smola, Schölkopf, and
Müller [23]) Consider a kernel, endowed with translation invariance, namely
k(x, ξ) = k(x − ξ), with the regularisation operator T: H 7→ F , defined by

〈T f, T g〉F =
1

(2π)d/2

∫

Rd

f ∧(ω)g∧(ω)

k∧(ω)
dω.

Then k(x, ξ) ≡
〈

(T k)(x), (T k)(ξ)
〉

F
, and the self consistency property from Theo-

rem 2.1 is satisfied.

Corollary 2.1 It follows from Theorem 2.2 that the regularisation term from the
SVM problem is

‖T f ‖2
F =

1

(2π)d/2

d
∏

r =1

∫

�∗
r

∣

∣ f ∧(ω)
∣

∣

2

k∧
r (ω

r )
dωr ,

with ω := (ωr )dr =1, and that
(

k∧(ω)
)−1 =

(

∏d
r =1 k∧

r (ω
r )

)−1
regularises the deci-

sion function f by acting as a filter, in the signal analysis sense, on
∣

∣ f ∧∣

∣

2
.

The unique kernel associated with the reproducing kernel Hilbert spacePW�∗ is
the sinc kernel

∏d
r =1 sincωr

∗(x
r − ξ r ). Given the model (1), where the information

content is embedded in the Paley-Wiener space (2), it is onlysensible to constrain
the decision function to the same Paley-Wiener space. From Corollary 2.1, it
follows that in the Fourier domain the multiplicative filter, which acts upon

∣

∣ f ∧∣

∣

2
, is

1

k∧(ω)
=

1

χ�∗(ω)
=

d
∏

r =1

1

χ�∗
r
(ωr )

,

with thed-dimensional hypercuboid

χ�(ω) :=

{

1 if ω ∈ �
0 otherwise

.

In this case, sincek∧ ≥ 0 holds overRd, Bochner’s theorem ensures that the sinc
kernel is a Mercer kernel. The multiplicative filter regularises the decision function
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by penalising the frequency content off on R\�∗. The sinc kernel also keeps
the content over�∗ unaltered. These penalisation and preservation properties are,
by definition, unique to the sinc kernel. Since Paley-Wienerspaces are closed
under addition, the representor result ensures that the decision function is restricted
to PW�∗ .

Remark 2.1 We now see that, in the context of our work, the non-regularised,
higher dimensional input space discussed by Belkin and Niyogi [1] is PWRd , and
the sub-manifold is PW�∗ ⊆ PWRd . That is, in the frequency domain, the sub-
manifold invoked by our work can be described as a hypercuboid centred on the ori-
gin, and the regularising operator is precisely the mappingT : PWRd 7→ PW�∗ .

We are now left with the problem of finding an optimal hyper-parameter set{ωr
∗},

in the sense of the SVM problem. Before this is attempted, we propose a novel
approach to elicit spectral properties of the labelling function that employs some
recently constructed tools from signal theory.

3 From Signal Theory to SVM Classification

Intuitively, the labelling functiony can be understood as a piecewise constant
function that mapsd-many real variables to positive, or negative, unity. It can,
therefore, be treated as a square-wave function overd-variate space. To this end,
we propose the use of sequency analysis as a means to elicit some properties ofy
and, consequently, the information contentϕ. Such properties will suggest how
the decision function should be regularised. Before the analysis, it is instructive to
introduce a family of functions that has the labelling function as a member.

Let calω(t) := sgn cosωt , and salω(t) := sgn sinωt , and define the complex
square-wave family as

ψω :=
√

π

32
(calω +i salω) .

This differs from the definition of the more common Walsh-Hadamard analysis
described elsewhere. In particular, the system employed here is defined over a
denser, uniform grid rather than over a dyadic grid and, as will be shown below, it
forms a biorthogonal basis. As such, it can be used to analysethe spectral properties
of functions over a more opaque domain. Consider the Möbiusarithmetic function
µ : N 7→ {0,±1}, given by
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µ(n) :=











1, if n = 1

(−1)m, if n is the product ofm distinct primes

0, otherwise

,

which is employed here due to the utility afforded by the following result, taken
from number theory.

Lemma 3.1 (Möbius) Letµ denote the M̈obius function. Then, for m∈ N,

∑

n|m
µ(n) = δm,1,

whereδ·,· denotes the Kronecker delta. The next result, outlined by Nelson [19],
enables us to express the labelling function in terms of the complex square-
wave family.

Proposition 3.1 (Biorthogonal complex square-wave system, Nelson [19]) The
biorthogonal dual of{ψn} is

ψ∗
n(t) :=

1
√

2π

∑

m∈4Z+1

m−1µ(|m|)eint/m .

We introduce the sequency transformation,·∼, namely

f ∼(ω) =
∫

R

f (t)ψ∗
ω(t) dt . (3)

From Proposition 3.1, it follows thaty can be expanded as a superposition of square
waves, viz.

y =
∑

n∈Z

〈

y, ψ∗
n

〉

L2(R)
ψn.

Hence, the coefficients that expressy in terms of the square-wave basis are found
by performing the sequency transform ofy. Recall from (1) thatϕ ∈ PW�∗ , and,
without loss of generality,ε ∈ PW�+ . The linearity property of Paley-Wiener
spaces gives rise to

ϕ + ε ∈ PW�∗∪�+.
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We define the sequency function spaceS� as

S� :=
{

ζ ∈ L2(X) : suppζ∼ ⊆ �
}

Now since sgnϕ ∈ S�∗ ⇒ ϕ ∈ PW�∗ , and sgnε ∈ S�+ ⇒ ε ∈ PW�+ , we can
express the labelling functiony, as a sequency-limited function,

y = sgn(ϕ + ε) ∈ S�∗∪�+

with y =
∫

�∗∪�+
y∼(ω)ψω(·) dω, (4)

wherey∼ can be computed via

y∼(ωr )=
1

√
2π

∑

m∈4Z+1

µ(|m|)
m

∫

R

y(xr )e−iωxr /m dxr

=
∑

m∈4Z+1

µ(|m|)
m

y∧
(

ωr

m

)

, (5)

and where one fast Fourier transform is required to determine y∧(ωr ), for each
r = 1, . . . , d.

Since the samplesxr
n over which the Fourier transforms ofy∧(ωr ) are computed are

typically non-uniformly distributed, the direct application of a Fourier transform is
inappropriate. Instead, irregular sampling techniques must be considered. Since a
comprehensive treatment of irregular sampling issues is beyond the scope of this
paper, we employ a simple strategy whereby the data are mapped to a uniform grid
via nearest neighbour, constant interpolation.

By definition, the information content ofϕ + ε lies in the frequency base-band
�∗ = (−ω∗π, ω∗π). The informative part of the labelling function sgn(ϕ + ε) lies
analogously in some sequency base-band�∗ = (−ω∗π, ω∗π).

Example 3.1 Consider y= sgnϕ, whereϕ(t) = cosω∗t , and t ∈ R. Clearly, it
follows thatϕ ∈ PW(−ω∗,ω∗), and

y∼(ω) = δ(ω − ω∗)+ δ(ω + ω∗) ⇒ y ∈ S(−ω∗,ω∗).

In this case,ω∗ is estimated from y∼, andsinc(ω∗·) is chosen as the kernel.

7



In practice, the approach taken to determine�∗, and hence the value ofω∗, is
not straightforward unless we assume that�∗ ∩�+ = { }. However, in this section
we have formulated the SVM classification problem in terms ofa signal theory
one, namely that of filter design, and in Section 4 we show how this avoids
computationally-expensive parameter estimators such as cross validation.

4 Parameter Estimation

For each choice of the parameterω∗, there is a corresponding reproducing kernel
Hilbert spaceH∗, say. Commonly, the choice of parameter, or hyper-parameter, is
achieved by estimating the performance of the SVM for each parameter value. The
value that yields the best performance is then chosen as the optimal parameter.

There exist several different ways to measure SVM performance. To expedite the
empirical comparisons drawn in Section 5, we shall considerperhaps the most
straightforward measure, namely the validation error. Here, the data are split into
two distinct sets. One is used to train and the other to validate the SVM. There
also exist several ways to search for the optimal parameter,ω∗. Often misused, the
phrase ‘exhaustive search’ has been adopted to describe an approach whereby the
performance measure is computed over a finite number of parameters. In practice,
however, the search can never be truly ‘exhaustive’. Eitherthe range of parameters
is too small, or the discretisation too large, or both.

Various gradient-descent search methods have also been applied to SVM parameter
optimisation. Common drawbacks of gradient methods include finding a suitable
smoothing strategy for the performance measure, choosing agood initial point
for the search, and bad convergence. Unfortunately, the problems inherent in any
search-based method are exacerbated in an exponential manner as the number of
parameters increases linearly, and when using a one-against-one strategy for exam-
ple, in a combinatorial manner as the number of classes increases linearly. Only a
few authors have attempted automatic estimation of the optimal hyper-parameter
set. Lanckriet et al. [13] use semi-definite programming techniques to compute
the kernel matrix. Debnath and Takahashi [6] attempt to makea link between the
eigenvalues of the features and the optimal Gaussian parameter. However, their
work relies almost entirely on empirical evidence and qualitative remarks. Guo et
al. use measures of mutual information to guide parameter scaling [9].

We propose a principled means to estimate a search space wherein the optimal
parameter lies. Rather than blindly searching for a set of parameters by induction
alone, we follow an approach that is inspired by the engineering discipline of filter
design. Although this is sometimes glibly described as ‘more of an art than a
science’, it has a successful theoretical and practical history that arguably stretches
further back than statistical machine learning. Not only does signal theory suggest
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parameters a priori, it can also, via spectral analysis, aidthe interpretation of the
underlying properties of a particular solution.

Our approach is to compute the sequency transform (3), via the series of fast
Fourier transforms (5), so as to discern the interval�∗ from equation (4). For
a d-variate space,� =

⊕d
1�r , we required-many sequency transforms. When

�∗
r = (−ωr

∗π, ω
r
∗π) has been established, we use the estimateωr

∗ to construct the
sinc kernel under the assumption that�∗ ∩�+ = { }. In practice, since each datum
has finite length, the sequency transform (3) is taken over a finite domainT . From
equation (5) and the convolution theorem, this is equivalent to computing

(χT y)∼ (ω) =
T

2π

∑

m∈4Z+1

µ(|m|)
m

(

sincT ∗ y∧)

(ω

m

)

,

where∗ here denotes the convolution operator. Consequently, likethe finite Fourier
transform, the finite sequency transform is subject to so-called sinc ringing effects.

Notwithstanding such artifacts, the sequency components can still be estimated.
The shifted Dirac generalised functions found in the idealised and trivial Exam-
ple 3.1 above are replaced by shifted sinc functions in the finite case. It follows that
only the locations of the local maxima of|y∼| should be considered as candidates
for ω∗. Sincey is necessarily restricted to a discrete and finite domain, the sequency
spectrum is smooth and cannot take the same value at every point. Hence, only
finitely many maxima will exist. This simple and intuitive argument serves to
reduce an exhaustive but theoretically infinite search to anexhaustive, finite search.
For a one-dimensional problem, one merely tests the performance of the SVM by
setting the parameter value to each local maximum of the sequency spectrum.

Of course, when the number of dimensions or maxima preclude an exhaustive
search over the entire set, one may be compelled to compromise accuracy and
either bound the search space, conduct a sparser search, or both. To this end,
we effect a disciplined compromise between search sparsityand accuracy by the
following construct.

Definition 4.1 Define the sequency transform of y over the rth variate xr , by
y∼(ωr ). The sequence{ωr

p}
Pr
p=1 is defined as the set that contains the locations

of the local maxima of|y∼(ωr )|, ordered such thatωr
p ≤ ωr

p+1, for all
pr = 1, . . . , Pr . Furthermore, define the sets

W1(κ) := {ωr
1}

d
r =1,

and
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Fig. 1. The circles denote the location of the maxima over a 2-dimensional domain. The
lines plot the searches{Wj (0)}5

j =1 on the left and{Wj (0.2)}4
j =1 on the right.

Wj (κ) := M↑
j (κ) ∪ Wj −1(κ) \ M j (κ),

with

M j (κ) := {ωr
sr

∈ Wj −1(κ) : ω
r
sr

− minWj −1(κ) < κ},

and where the set operator·↑ is defined as

M↑
j : M j = {ωr

sr
} 7→ {ωr

sr +1}.

Example 4.1 Consider the set W1(0) := {ωr
1}

3
r =1, with ω1

1 < ω
2
1 < ω

1
2 < ω

3
1. It

follows that M2(0) = {ω1
1}, M↑

2 (0) = {ω1
2}, and W2(0) = {ω1

2, ω
2
1, ω

3
1}. Likewise,

we have W3(0) = {ω1
2, ω

2
2, ω

3
1}, and W4(0) = {ω1

3, ω
2
2, ω

3
1}.

The set{Wj (κ)} j is a subset of points that lie in the set of all sequency maxima.
It is constructed such that a search over this subspace is notunduly influenced
by the sequency spectrum of any one particular dimension relative to the other
d−1 dimensions. Equivalently, it assumes that the spectral bandwidth of the noise,
or information, does not change too much from one dimension to another. Larger
values ofκ produce sparser search sets. Figure 1 depicts a simple example for two
different values ofκ. Herewith lies a useful compromise between accuracy and
sparsity. The result is a family of search spaces parameterised byκ, which should
be chosen in accordance with the computational resources available.

We next consider the application of our method to two representative and quite
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different problems. The first is a remote-sensing problem, i.e., classification
of the pixels of a hyperspectral image using the popular, extensively-studied
AVIRIS dataset. The second problem involves sequence data,i.e., text-dependent
speaker identification using the BT Millar database.

5 Application to Hyperspectral Imagery

The airborne visual and infrared imaging system (AVIRIS) hyperspectral image
data comprises intensity information over 224 co-terminous electromagnetic spec-
tral bands, ranging from 0.4 to 2.5µm. AVIRIS data facilitate myriad applications
including land resource management, mineral exploitation, and environmental
monitoring. The large number of variables, and classes, makes the dataset ideal
for demonstrating the utility of our sinc kernel approach and search strategy.
Furthermore, there exists the free, publicly-available AVIRIS dataset [14] that has
been widely used by several research groups to benchmark various hyperspectral
image classification techniques. The AVIRIS dataset consists of a single ‘datacube’,
i.e., it does not comprise sequential data.

In the hyperspectral images, each pixel is described by a single data point,xn ∈ R
d.

Each elementxr
n, represents the intensity value of pixeln, in ther th spectral band.

Each pixel belongs to one of seventeen different classes of ground vegetation.
Previous work on the dataset has considered four-, sixteen-and seventeen-class
problems. For a fair comparison to be drawn between our results and others, we
follow the same sampling and validation technique as used inprevious research on
the AVIRIS data. That is, 20% of the original data is randomlychosen as training
data, and the remaining 80% is held out as the test data. The resulting validation
measure is simply the percentage of incorrect classifications on the test data.
Figure 2 shows the sequency spectray∼ taken from the four-class AVIRIS problem.

Table 1 compares results using the proposed sinc methods andthe best results
found by previous researchers using the same sampling and validation regime.
Gualtieri and Cromp [8] tested several orders of polynomialSVM kernels over
5 trials and found that the degree-7 kernel performed the best 2 . We can see that
the SVM approach holds a significant advantage over the Bayesian method used by
Tadjudin [24] and Landgrebe [15].

The sinc-based search strategy implemented here is the sparse hyper-parameter
search space{Wj (0.05)}5

j =1 from Definition 4.1. All of the sinc kernel results
represent the average, taken over 10 trials. The mean standard error was below 0.2%
for the four-class problem, and below 0.1% for the sixteen- and seventeen-class

2 We have been unable to replicate Gualtieri and Cromp’s result of 4.1% error rate; our
result is 4.7%, in line with Du [7].
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Fig. 2. Sequency spectra|y∼| for the four-class AVIRIS problem. Darker tones indicate
higher magnitude.

problems. The sinc methods appear to be superior to the state-of-the-art in the
four-class problem. For the sixteen- and seventeen-class subsets, the sinc methods
comfortably surpass all previous published results3 .

6 Application to Speaker Recognition

Using a support vector machine (SVM) sequence kernel approach, Campbell et
al. [3] recently obtained text-independent speaker recognition results outperform-
ing the traditional Gaussian mixture model method [21]. However, their design
precludes the kernel trick and thus limits kernel choice. With this issue in mind,
Mariéthoz and Bengio [16] not only proposed a similar design that admitted the
kernel trick but also proposed their max kernel method. In their study of text-
independent speaker verification, they found that the max kernel incurred the least
error on the popular PolyVar [4] telephone corpus.

3 Although Guo et al. [10] report an apparently lower error rate of< 10% on the 16-class
AVIRIS problem using a polynomial kernel, this was for a different training and testing
regime in which the data were split 50:50.

12



Table 1
AVIRIS classification: State-of-the-art

Source Penalty Method Error (%)

FOUR-CLASS PROBLEM

Section 4, Definition 4.1 ∞ Sinc SVM, sparse search 3.9

Gualtieri and Cromp [8] (5 trials) 1000 SVM poly. kernel, degree 7 4.1

Du [7] 1000 SVM poly. kernel, degree 7 4.5

This work 1000 SVM poly. kernel, degree 7 4.7

This work ∞ Gaussian RBF kernel 4.9

Tadjudin [24], Landgrebe [15] 1000 Bayesian discrim. analysis 6.5

Du 1000 Gaussian RBF kernel 7.9

SIXTEEN-CLASS PROBLEM

Section 4, Definition 4.1 ∞ Sinc SVM, sparse search 10.9

Gualtieri and Cromp (1 trial) 1000 SVM poly. kernel, degree 7 12.7

SEVENTEEN-CLASS PROBLEM

Section 4, Definition 4.1 ∞ Sinc SVM, sparse search 11.3

This work 1000 SVM poly. kernel, degree 7 15.1

Tadjudin and Landgrebe 1000 Bayesian discrim. analysis 17.1

Inspired by this approach to text-independent speaker verification, we have ex-
plored its application to text-dependent speaker identification4 . Our reasons for
so doing were to avoid mere duplication of Mariéthoz and Bengio’s work, prior
familiarity with this form of the speaker-recognition problem, and immediate
access to a particular corpus specifically designed for digit recognition, namely the
BT Millar corpus [20,17]. However, our simulations realised in practice a problem
that Mariéthoz and Bengio had only noted in theory, namely that the resulting
kernel is not guaranteed to be positive semi-definite (PSD).Moreover, the positive
semi-indefiniteness of all the standard kernel choices thatwe attempted to use in the
max kernel paradigm meant that the SVM training algorithm failed to converge to a
solution. The specific reason that we encountered this problem whereas Mariéthoz
and Bengio did not is unknown. However, the two problems (text-independent
verification vs. text-independent identification) are quite different and involve very

4 In verification, the task is to verify or deny that a speaker is who he/she claims to be; in
identification, the task is to identify from the speech signal one out of a number of possible
speakers.
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different training and testing regimes on different datasets. Thus, potential reasons
are not hard to find.

When presented with non-PSD kernels, the standard approachis simply to add a
constant term to the diagonal of the kernel matrix [22]. We propose a generalisation
of this technique, and hence facilitate the implementationof the sinc kernel, along
with some of the other standard kernels.

6.1 Sequence Kernels

In the context of support vector machine classification, thespeaker recognition
problem gives rise to the following sequence kernel formulation. Thenth utter-
anceXn of some corpus comprises a sequence ofTn many frames{xn,t}Tn

t=1, where
each framexn,t containsd many cepstral coefficients. Hence, a kernelK must be
designed such thatK (Xn, Xm) : R

d×Tn × R
d×Tm 7→ R. Such a kernel is known as

a sequence kernel because it must act on an ordered set of vectors.

Perhaps the simplest design is the mean kernel, which is realised by constructing a
kernelk : R

d × R
d 7→ R for each frame of speech and taking the mean value over

all possible combinations:

K (Xn, Xm) =
1

TnTm

Tn
∑

t=1

Tm
∑

s=1

k(xn,t , xm,s) . (6)

An important feature of this kernel is that it is guaranteed to be positive semi-
definite. To see this we rewrite it as

K (Xn, Xm) =
〈

1

Tn

Tn
∑

t=1

φ(xn,t),
1

Tm

Tm
∑

t=1

φ(xm,t )

〉

,

with k(x, z) = 〈φ(x), φ(z)〉, and note that any matrix that can be written as a Gram
matrix of linearly independent vectors is positive definite.

6.2 The Max Kernel

Mariéthoz and Bengio [16] note a clear theoretical drawback of this approach. It
does not necessarily make sense to compare all the frames of one utterance with all
the frames of another utterance. In particular, when viewedas a similarity measure,
one would expect the kernel to give a maximum result for two identical utterances.
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The mean kernel does not guarantee this. Mariéthoz and Bengio offer the following
simple counter-example.

Example 6.1 Given a multi-frame utterance Xn, consider the one-frame utterance
Xm = {xn,t∗} with xn,t∗ = argmax

t
k(xn,t , xn,s). It follows that:

K (Xn, Xm) ≥ K (Xn, Xn) .

Motivated by this counter-example, Mariéthoz and Bengio construct their max
kernel:

K (Xn, Xm) :=
1

Tn

Tn
∑

t=1

max
s

k(xn,t , xm,s)+
1

Tm

Tm
∑

s=1

max
t

k(xn,t , xm,s). (7)

The max kernel ensures that only the closest matching framesare included in the
computation of the kernel. Although this kernel is no longerguaranteed to satisfy
Mercer’s conditions, Mariéthoz and Bengio nonetheless found it to be positive
semi-definite in practice when applied to text-independentspeaker verification
using the PolyVar corpus. By contrast, when we applied this method to text-
dependent speaker recognition using the BT Millar corpus, we found that the max
kernel always resulted in a positive semi-indefinite training matrix. Moreover, the
SVM quadratic optimiser failed to converge for any choice ofthe kernelk. We do
not know the specific reason for this, other than that our workhas many differences
to that of Mariéthoz and Bengio, any of which could potentially be the cause.

6.3 From Indefiniteness to Definiteness

Although, to the authors’ knowledge, non-PSD kernels rarely arise in speaker-
recognition problems, they do occur in the context of protein classification
problems. By far the most common approach to deal with positive semi-indefinite
kernels is simply to add a constant term to the diagonal of thekernel matrix so as
to obtain a PSD kernel [22]. Since a matrix is PSD if and only ifall eigenvalues are
non-negative, it suffices to perform the kernel modificationsometimes referred to
as the diagonal-shift kernel:

K∗ = K + λI ,

with λ := min(λn, 0) and whereλn is the smallest eigenvalue ofK . However,
the resulting diagonal-shift kernel may well be far away, insome sense, from the
original kernel. This is certainly the case if the smallest eigenvalue ofK has a large
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magnitude. A less common method is to find the nearest PSD kernel, namely the
so-called positive approximant.

Definition 6.1 Let S+ denote the space of all positive semi-definite matrices.
Define the the positive approximant of a matrix K∈ R

d×d by

K+ := argmin
S∈S+

‖K − S‖ .

It turns out that by recovering the following result from Higham [11], we can find
the positive approximant, in the Frobenius sense, uniquelyand analytically.

Theorem 6.1 (Higham) Let K= K T ∈ R
d×d, have the polar decomposition

K = U H, with UTU = I , and H = HT ∈ S+. Then

K+ =
K + H

2

is the unique positive approximant of K with respect to the Frobenius norm‖·‖F .

Use of the positive approximant is sometimes referred to as ‘de-noising’, since it is
equivalent to replacing the negative eigenvalues of the original kernel matrix with
zeros. In our simulations, we have found that the positive approximantK+ performs
less effectively than the diagonal-shift kernelK∗. However, we propose the kernel

Kβ = βK∗ + (1 − β)K+, 0 ≤ β ≤ 1, (8)

and have found that it can perform better thanK∗ for β 6= 1. Moreover, thanks
to the isometry(an,m) 7→ [anm], between the space of allN-by-M matrices and
N M sized vectors, induced by the Frobenius norm‖·‖F , our kernelKβ also has
a geometric interpretation as illustrated in Figure 3. Our kernel family defines a
straight line between the diagonal-shift kernel and the nearest PSD kernel with
respect to the Frobenius metric. Since PSD matrices are closed under addition, and
multiplication by scalars,Kβ defines a line that exists entirely within the space of all
PSD matrices. The parameterβ determines how close the modified kernel is to the
original kernel. It acts as a trade-off between closeness tothe positive approximant
and the diagonal-shift kernel.

6.4 Simulations

The text-dependent British Telecom Millar corpus [20,17] comprises high quality
microphone recordings, downsampled from 20 kHz sampling rate to 8 kHz, with
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Fig. 3. Geometrical representation of the proposed modifiedkernel. The black solid line
illustrates the kernel familyβK∗ + (1 − β)K+. The shaded area distinguishes the positive
semi-indefinite spaceS+ from the positive semi-definite spaceS+.

16-bit resolution. Speech data were collected from 46 male and 14 female English
speakers over five sessions and a period of three months. The speakers were
all required to utter the digits “one” to “nine”, “zero”, “nought”, and “oh” five
times per session. We follow a similar procedure to that outlined by Damper and
Higgins [5] and use the first 10 utterances of the words “seven” and “nine” for each
speaker as the training data and the remaining 15 sessions ofthe words “seven” and
“nine” as the test data.

The max method (7) was tested for classification accuracy over the polynomial
〈x, z〉γ , exponential exp

(

‖x − z‖ γ−1
)

, and sinc kernel
∏

sincγ (x − z). These
max kernels were tested overβ = 0, 0.1, . . . , 1. The best results are tabulated in
Table 2 alongside the results obtained withβ = 1. We see that the polynomial and
sinc kernels benefit from our generalisation of the diagonal-shift sequence kernel.
Results for the mean method (6) are also given in Table 3 for completeness. They
confirm that, overall, the best accuracy is realised with thesinc kernel and max
method5 . For the mean method, best results are obtained for the exponential kernel,
but the sinc kernel is only a little worse.

7 Conclusions

We have argued that the SVM classification machine learning problem can
profitably be tackled in the context of signal theory. The interrelation between
Paley-Wiener spaces and the sinc kernel has been exploited to form an explicit
relationship between our information model and the sinc kernel hyper-parameter.
By employing some recent work on sequency analysis, the nature of the model
can be discerned. Consequently, a finite hyper-parameter search space was realised.

5 We make no claim here that our results are competitive with the best in the literature
on the BT Millar database. In fact, Damper and Higgins [5] obtained 100% correct
identification for “seven” and “nine” with added noise.
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Table 2
Speaker recognition results for the max kernel on the BT Millar corpus. Best results (shown
in bold) for the two words tested were obtained with the sinc kernel.

Kernel γ β Error (%)

sinc 1.6 1 3.00

sinc 1.6 0.7 2.78

exp 10 1 3.22

polynomial 1 1 18.77

polynomial 1 0.5 16.22

polynomial 2 1 16.89

polynomial 2 0.2 14.11

polynomial 3 1 18.44

polynomial 3 0.1 15.44

(a) “seven”

Kernel γ β Error (%)

sinc 3 1 5.08

sinc 3 0.7 5.31

exp 10 1 6.89

exp 10 0.5 6.33

polynomial 1 1 15.60

polynomial 1 0.5 13.56

polynomial 2 1 13.22

polynomial 2 0.1 11.75

polynomial 3 1 11.86

polynomial 3 0.1 11.17

(b) “nine”

Table 3
Speaker recognition results for the mean kernel on the BT Millar corpus. Best results
(shown in bold) for the two words tested were obtained with the exponential kernel, but
are poorer than those for the sinc kernel.

Kernel γ Error (%)

exp 10 4.00

polynomial 1 23.00

polynomial 2 10.00

polynomial 3 9.94

sinc 1.6 4.63

(a) “seven”

Kernel γ Error (%)

exp 10 5.99

polynomial 1 17.29

polynomial 2 9.97

polynomial 3 9.15

sinc 1.6 6.33

(b) “nine”
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Moreover, by introducing further assumptions, we have shown that the compromise
between computational effort and search space sparseness can be managed sensibly.

The approach has been applied to two very different problems: hyper-spectral
image classification using the AVIRIS dataset and text-dependent speaker identifi-
cation using the BT Millar database. The former problem involves a single (static)
datacube whereas the latter requires appropriate handlingof sequential (dynamic)
speech data. Applied to the much-studied AVIRIS dataset, weachieve the best
results so far published.

The approach can also be adapted for our newly-constructed sequence kernel
family. The main conclusion from our work on speaker identification is that the max
kernel yields superior performance to the mean kernel, so vindicating Mariéthoz
and Bengio’s method. One of the important features of their method is that one
can “plug in” any kernel. However, we found that this method did not converge
without modification because the kernel matrix was not guaranteed to be positive
semi-definite. A diagonal shift was, therefore, employed topromote convergence.
It was found that a linear combination of the positive approximant K+ and the
diagonal-shift kernelK∗, as in equation (8), generally performed slightly better
thanK∗ alone at the expense of having to search for a good value of theweighting
coefficientβ.
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