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Abstract

In this paper, we propose three decomposition techniques for linear
programming (LP) problems: (1) Method 1, in which we decompose the
variables into the working set and the fixed set, but we do not decom-
pose the constraints, (2) Method 2, in which we decompose only the con-
straints, and (3) Method 3, in which we decompose both the variables and
the constraints into two. By Method 1, the value of the objective func-
tion is proved to be non-decreasing (non-increasing) for the maximization
(minimization) problem and by Method 2, the value is non-increasing
(non-decreasing) for the maximization (minimization) problem. Thus, by
Method 3, which is a combination of Methods 1 and 2, the value of the
objective function is not guaranteed to be monotonic and there is a pos-
sibility of infinite loops. We prove that infinite loops are resolved if the
variables in an infinite loop are not released from the working set and
Method 3 converges in finite steps. We apply Methods 1 and 3 to LP
support vector machines (SVMs) and discuss a more efficient method of
accelerating training by detecting the increase in the number of violations
and restoring variables in the working set that are released at the previous
iteration step.

By computer experiments for microarray data with huge input vari-
ables and a small number of constraints, we demonstrate the effectiveness
of Method 1 for training the primal LP SVM with linear kernels. We also
demonstrate the effectiveness of Method 3 over Method 1 for the nonlinear
LP SVMs.

1 Introduction

Support vector machines (SVMs) [1, 2] are widely used for pattern classification.
But in training an SVM we need to solve a quadratic programming problem with
the number of variables equal to the number of training data. Thus, to speed
up training for a large problem, we usually use a decomposition technique,
in which the original variables are divided into working variables and fixed
variables and a small problem with the working variables is iteratively solved
[3, 4]. A special case of the decomposition technique is the sequential minimal
optimization (SMO) with the working set size of two [5]. The convergence of
the decomposition technique for SVMs is theoretically proved [3, 4, 6, 7, 8] and
there are many discussions on working set selection to speed up convergence of
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SMO [7, 9, 10, 11] and general decomposition techniques with working set sizes
larger than two [12, 13, 14, 15]. By the decomposition techniques training of
SVMs for large-scale problems is considerably speeded up.

As a variant of SVMs, linear programming SVMs (LP SVMs), in which the
quadratic objective functions are replaced with linear objective functions, have
been proposed [16, 17, 18]. In training LP SVMs, we need to solve linear pro-
gramming problems with the number of variables more than three times the
number of training data. But until now, there are not so many discussions on
the decomposition techniques for LP SVMs. In [19], a decomposition technique
is proposed, in which only a part of linear constraints are used for linear support
vector machines. This method confirms monotonic convergence of the objective
function and is useful for the problems with a large number of constraints but
a small number of variables. In [20], decomposition techniques for SVMs are
extended to LP SVMs. Because direct implementation of the decomposition
techniques leads to infinite loops, training speedup is done by modifying work-
ing set selection when the number of violations of complementarity conditions
increases.

In this paper we propose three decomposition techniques for LP programs:
Method 1, in which variables are divided into working variables and fixed vari-
ables but constraints are all used; Method 2, in which constraints are divided
into working constraints and fixed constraints but variables are all used; and
Method 3, in which variables and constraints are divided into working and
fixed variables and constraints, respectively. We prove that in Method 1, the
values of the objective function are non-increasing for a minimization problem
during training. While in Method 2 the values of the objective function are non-
decreasing for a minimization problem. Therefore, for the combined method,
Method 3, the values of the objective function are not monotonic and there is
a possibility of infinite loops. We prove that if the variables in an infinite loop
are kept in the working set during training, Method 3 converges in finite steps.
We apply Methods 1 and 3 to LP SVMs and for Method 3, we discuss more
efficient method for training. In computer experiments, we show that Method
1 can accelerate training of linear LP SVMs for microarray data, and Method
3 for training LP SVMs with a large number of training data.

The structure of the paper is as follows. In Sections 2, we propose three
decomposition techniques and clarify relations of the proposed decomposition
techniques with that for SVMs. Then in Section 3, we apply these methods to
LP SVMs and in Section 4, we demonstrate the effectiveness of the proposed
methods using some benchmark data sets. Finally in Section 5 we conclude our
work.

2 Decomposition Techniques

If the size of a problem is very large, it is natural to consider dividing the
problem into small sub-problems and solving the sub-problems iteratively. For
an optimization problem, one way is to divide the problem into a working sub-
problem and a fixed sub-problem, solve the working sub-problem, re-divide the
problem into a working sub-problem and a fixed sub-problem, and iterate the
procedure until the solution is obtained. However, to obtain the solution by
this method, the objective function needs to be monotonic during the training
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process. If not, convergence in finite steps is required.
In the following, we discuss three decomposition techniques for a linear pro-

gramming problem.

2.1 Formulation

We consider the following problem, which is a generalized version of an LP
SVM:

minimize cTx+ dT ξ (1)
subject to Ax ≥ b− ξ, x ≥ 0, ξ ≥ 0, (2)

where c is an m-dimensional constant vector, d is an M -dimensional vector and
d > 0, A is anM×m constant matrix, b is anM -dimensional positive constant
vector, and ξ is a slack variable vector to make x = 0 and ξ = b be a feasible
solution. Therefore, the optimal solution always exists.

Introducing an M -dimensional slack variable vector u, (2) becomes

Ax = b+ u − ξ, x ≥ 0, u ≥ 0, ξ ≥ 0. (3)

The dual problem of (1) and (3) is as follows:

maximize bT z (4)
subject to AT z+ v = c, z+w = d,

v ≥ 0, z ≥ 0, w ≥ 0, (5)

where z is anM -dimensional vector, v is anm-dimensional slack variable vector,
and w is an M -dimensional slack variable vector.

The optimal solution (x∗, ξ∗,u∗, z∗,v∗,w∗) must satisfy the following com-
plementarity conditions:

x∗i v
∗
i = 0 for i = 1, . . . ,m, (6)

ξ∗i w
∗
i = 0, z∗i u

∗
i = 0 for i = 1, . . . ,M. (7)

Now solving the primal or dual problem is equivalent to solving

Ax = b+ u − ξ, x ≥ 0, u ≥ 0, ξ ≥ 0,

AT z+ v = c, z+w = d,
z ≥ 0, w ≥ 0, v ≥ 0,

xi vi = 0 for i = 1, . . . ,m,

ξi wi = 0, zi ui = 0 for i = 1, . . . ,M.

Here, we call xi active if xi > 0 and inactive if xi = 0. Likewise, the ith
constraint is active if ui = 0 and inactive if ui > 0. Notice that even if we delete
inactive variables and constraints, we can obtain the same solution as that of
the original problem.

By the primal-dual interior-point method, the above set of equations is
solved. By the simplex method, if we solve the primal or dual problem, the
primal and dual solutions are obtained simultaneously [21]. Therefore, either
by the primal-dual interior-point method or the simplex method, we obtain the
primal and dual solutions.
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2.2 Three Decomposition Techniques

Now we consider the following three decomposition methods to solve (1) and
(3).

Method 1, in which, a subset of the variables in x is optimized using all
the constraints, while fixing the remaining variables. Let the set of indices of
the subset be Wv and the remaining subset be Fv, where Wv ∩ Fv = ∅ and
Wv ∪ Fv = {1, . . . ,m}. Assuming xi = 0 (i ∈ Fv), the original problem given
by (1) and (3) reduces as follows:

minimize
∑

i∈Wv

ci xi + dT ξ (8)

subject to
∑

j∈Wv

Aijxj = bi + ui − ξi for i = 1, . . . ,M,

xi ≥ 0 for i ∈ Wv, u ≥ 0, ξ ≥ 0. (9)

The dual problem of (8) and (9) is as follows:

maximize bT z (10)

subject to
M∑

j=1

Aji zj + vi = ci, vi ≥ 0 for i ∈ Wv,

z+w = d, z ≥ 0, w ≥ 0. (11)

Therefore from (10) and (11), if we solve (8) and (9), in addition to the solution
of the primal problem, we obtain the solution of the dual problem except for
vi (i ∈ Fv). Namely, except for xivi = 0 (i ∈ Fv), the complementarity con-
ditions given by (6) and (7) are satisfied. Using the first equation in (5) for
i ∈ Fv, we can calculate vi (i ∈ Fv). Because we assume that xi = 0 (i ∈ Fv),
if vi ≥ 0 (i ∈ Fv), vi satisfy the constraint and the obtained primal solution is
optimal. But if some of vi are negative, the obtained solution is not optimal.

If the obtained solution is not optimal, we move the indices associated with
inactive variables from Wv to Fv, move, from Fv to Wv, the indices associated
with the violating variables, and iterate the previous procedure.

By this method, the optimal solution at each iteration step is obtained by
restricting the original space

{x |Ax ≥ b − ξ, x ≥ 0, ξ ≥ 0} (12)

to

{x |Ax ≥ b− ξ, ξ ≥ 0, xi ≥ 0 for i ∈ Wv, xi = 0 for i ∈ Fv}. (13)

If the solution is not optimal, we repeat solving the subproblem with the non-
zero xi (i ∈ Wv) and with the violating variables xi (i ∈ Fv). Because of the
added violating variables, the objective function of the minimization problem
for the newly obtained solution does not increase at least. Namely, the values
of the objective function are monotonically non-increasing during the iteration
process. Thus, the following theorem holds.

Theorem 1 For Method 1 the sequence of the objective function values is
non-increasing and is bounded below by the global minimum of (8).
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Method 2, in which we optimize x using a subset of the constraints. Let
the set of indices for the subset be Wc and the set of the remaining indices be
Fc. Then we consider the following optimization problem:

minimize cT x+
∑

i∈Wc

di ξi (14)

subject to Ai x = bi + ui − ξi, ui ≥ 0, ξi ≥ 0
for i ∈ Wc, x ≥ 0, (15)

where Ai is the ith row vector of A. The dual problem is given as follows:

maximize
∑

i∈Wc

bi zi (16)

subject to
∑

j∈Wc

Aji zj + vi = ci for i = 1, . . . ,M, v ≥ 0,

zi + wi = di, zi ≥ 0, wi ≥ 0, for i ∈ Wc. (17)

For the solution and the dual solution of (14) and (15), we can generate the
solution of (1) and (3) as follows: From (15), for i ∈ Fc

1. if Ai x − bi > 0, ξi = 0 and ui = Ai x − bi,

2. otherwise, ξi = bi −Ai x and ui = 0.

From (17), the first equation of (5) is satisfied if zi = 0 for i ∈ Fc. Thus
from the second equation of (5), wi = di (i ∈ Fc). Now the optimal solution x
obtained from (14) and (15) is also the optimal solution of (1) and (3) if

ξi wi = 0 for i ∈ Fc. (18)

If (18) is not satisfied for some i, we move the indices for inactive constraints
from Wc to Fc, move some indices for violating constraints from Fc to Wc, and
iterate the preceding procedure.

The optimal solution at each iteration step is obtained by restricting the
original space

{x |Ax ≥ b − ξ, x ≥ 0, ξ ≥ 0} (19)

to

{x |Ai x ≥ bi − ξi, ξi ≥ 0 for i ∈ Wc, x ≥ 0}. (20)

For the non-optimal solution, we repeat solving the subproblem with the active
constraints in the working set and with the violating constraints in the fixed set.
Therefore, because new constraints are added, the value of the objective function
for the newly obtained solution does not decrease at least [22]. Namely, the
objective function is monotonically non-decreasing during the iteration process.
Thus the following theorem holds.

Theorem 2 For Method 2 the sequence of the objective function values is
non-decreasing and is bounded above by the global minimum of (14).

Unlike Theorem 3.2 in [19], we do not claim the finite convergence of Method
2, since according to the implementation of LP infinite loops may occur even if
decomposition techniques are not used [21].

5



Method 3, in which we optimize a subset of variables using a subset of the
constraints:

minimize
∑

i∈Wv

ci xi +
∑

i∈Wc

di ξi (21)

subject to
∑

j∈Wv

Aij xj = bi + ui − ξi, ui ≥ 0, ξi ≥ 0

for i ∈ Wc, xj ≥ 0 for j ∈ Wv. (22)

The dual problem of (21) and (22) is as follows:

maximize
∑

i∈Wc

bi zi (23)

subject to
∑

j∈Wc

Aji zj + vi = ci, vi ≥ 0 for i ∈ Wv,

zj + wj = dj , zj ≥ 0, wj ≥ 0 for j ∈ Wc. (24)

Now we construct, from the solution of (21) and (22), the solution of x in
(1) and (3). Assuming xi = 0 (i ∈ Fv), x satisfies

Ai x = bi + ui − ξi for i ∈ Wc. (25)

We generate ξi and ui (i ∈ Fc) as follows:

1. if Ai x − bi > 0, ξi = 0 and ui = Ai x − bi,

2. otherwise, ξi = bi −Ai x and ui = 0.

Now assuming zi = 0 for i ∈ Fc,

(AT )i z+ vi = ci for i ∈ Wv, (26)

and wi = di for i ∈ Wc. Further,

vi = ci −
∑

j∈Wc

Ajizi for i ∈ Fv. (27)

Now, if vi ≥ 0 (i ∈ Fv) and ξi wi = 0 (i ∈ Fc), the generated solution
is optimal. If the solution is not optimal, we move the indices for inactive
variables from Wv to Fv, the indices for violating variables from Fv to Wv, the
indices for inactive constraints from Wc to Fc, and some indices for violating
constraints from Fc to Wc, and iterate the preceding procedure.

Since Method 3 is a combination of Methods 1 and 2, whose objective func-
tions are non-increasing and non-decreasing, respectively, monotonicity of the
objective function of Method 3 is not guaranteed. Namely, the following corol-
lary holds:

Corollary 1 For Method 3 the sequence of the objective function values is
not guaranteed to be monotonic.

The problem with a non-monotonic objective function is that the solution
may not be obtained because of an infinite loop. Since the combinations of the
working sets are finite, in an infinite loop, the same working set selection occurs
infinitely. Let the working set sequence be

· · · , Wk, Wk+1, · · · , Wk+t, Wk+t+1, Wk+t+2, · · · ,Wk+2t+1 · · · .
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where Wk is the working set indices at the kth iteration and Wk =Wv,k ∪Wc,k.
If

Wk =Wk+t+1, Wk+1 =Wk+t+2, · · · ,Wk+t =Wk+2t+1 (28)

are satisfied, the same sequence of working set selection occurs infinitely. Equa-
tion (28) means that all the variables and constraints that are moved out of the
working set are moved back afterward. Thus the infinite loop can be avoided if
we keep all the variables and constraints that are fed into the working set even
after they become inactive. Namely, for the initial Wc and Wv, we solve (21)
and (22) and delete the indices for the inactive variables and constraints from
Wv and Wc, respectively. Then we repeat solving (21) and (22) adding some
violating indices to Wv and Wc. But we do not delete the indices for inactive
variables and constraints from Wv and Wc, respectively. By this method, the
working set size monotonically increases and the method terminates when there
is no violating variables and constraints. Evidently the method terminates in
finite steps, but the memory usage is inefficient.

To improve memory efficiency, we consider detecting and resolving infinite
loops. If an infinite loop given by (28) is detected at the (k +2t+ 1)st step, we
set

Wk+2t+2 =Wk ∪Wk+1 ∪ · · · ∪Wk+t. (29)

We do not remove the indices included inWk+2t+2 for the subsequent iterations.
We call this procedure infinite loop resolution. This guarantees the convergence
of the method in finite steps as the following theorem shows.

Theorem 3 If infinite loop resolution is adopted, Method 3 terminates in
finite steps.

Proof If an infinite loop is detected and infinite lop resolution is done, the
same infinite loop does not occur in the subsequent iterations. Since the numbers
of variables and constraints are finite, the number of infinite loops that will occur
is also finite. Thus, the infinite loops are eventually resolved in finite steps. Thus
Method 3 with infinite loop resolution terminates in finite steps.

2.3 Comparison of the Three Methods

Method 1 is useful for problems with a large number of variables but with a
small number of constraints. For instance, microarray data sets have usually
a large or sometimes huge number of variables but a small number of training
data, namely constraints. In addition, they are usually linearly separable. Thus,
we can use a linear LP SVM applying Method 1 to (31) and (32) discussed later.

Method 2 is suited for problems with a small number of variables but a large
number of constraints. But similar to Method 1, Method 2 is only applicable
to linear LP SVM expressed by (31) and (32). Method 3 is useful for problems
with large numbers of variables and constraints.

2.4 Working Set Selection and Stopping Conditions

Bradley and Mangasarian [19] discussed a decomposition technique for linear
LP SVMs, which is similar to Method 2. They divide the constraints into
several sets of constraints and solve the problem with the first set of constraints.
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Then they solve the problem with the active constraints in the first set and the
constraints in the second set. In this way they solve the problem with the
active constraints and the next set of constraints and terminate calculations if
the solution does not change after several additions of the full set of constraints.
(They state that four times of addition are enough.) In this method, we need
not use complementarity conditions either for the addition of constraints or
stopping calculations but with the expense of an additional computation.

We discuss selection of q variables for Method 1 extending the above method.
To simplify discussions, we do not discuss deletion of variables in the working set.
Let p be the pointer to the set of indices {1, . . . ,m}. Initially, we use the first
q variables as working variables. Thus, Wv = {1, . . . , q} and p = q + 1. After
solving the subproblem, we check if xp satisfies the complementarity conditions.
If not, we add index p toWv. And incrementing p we iterate the above procedure
until q indices are added to Wv. If p exceeds m we set p = 1 and repeat the
above procedure. Or if p returns back to the point where the search started, we
terminate working set selection. We can use similar methods for Method 2. But
by Method 3 the objective function values are not monotonic during iteration.
Thus if we use the method for accelerating training discussed in [20], we need
to count the number of violating variables. Therefore, we cannot use the above
method. In the computer experiments in Section 5, we randomly selected q
indices.

Taking the similar selection strategies as in SVMs [12, 13, 14, 15], we may
be able to improve convergence of the decomposition technique further, but we
leave this to the future study.

We can stop training using the decomposition techniques when the comple-
mentarity conditions are satisfied. But in some cases the conditions are too
strict and it may increase iterations. One way to alleviate the conditions is to
slacken the conditions by introducing a threshold and assume that the condi-
tions are satisfied if the conditions are within the threshold. Or we can stop
training if the change of the objective function values is within a threshold.

3 Decomposition Techniques for Linear Program-
ming Support Vector Machines

In this section, first we define LP SVMs and discuss LP SVMs with Method 1
and with Method 3 [20]. Then we clarify the relation of the proposed method
with the decomposition techniques for SVMs.

3.1 Formulation of Linear Programming Support Vector
Machines

Let M m-dimensional input vector xi (i = 1, . . . ,M) belong to Class 1 or 2,
and the class label be yi = 1 for Class 1 and yi = −1 for Class 2. We map the
input space into the high dimensional feature space by the mapping function
g(x) = (g1(x), . . . , gl(x))T , where l is the dimension of the feature space, and
determine the following linear decision function:

D(x) = wTg(x) + b (30)
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so that the margin is maximized, where w is an l-dimensional vector and b is a
bias term.

The LP SVM [16, 17, 18] is given by

minimize Q(w, b, ξ) =
l∑

i=1

|wi|+ C

M∑
i=1

ξi (31)

subject to yi(wT g(xi) + b) ≥ 1− ξi, ξi ≥ 0 for i = 1, . . . ,M, (32)

where ξi is a slack variable and C is a margin parameter to control the trade-
off between the classification error of the training data and the generalization
ability.

For linear kernels, where g(x) = x, we can solve (31) and (32) by linear
programming, but for nonlinear kernels we need to treat feature space variables
explicitly. To avoid this, we redefine the decision function by [23]

D(x) =
M∑
i=1

αiH(x,xi) + b, (33)

where αi and b take real values, and H(x,x′) is a kernel function:

H(x,x′) = gT (x)g(x′). (34)

In this study in addition to linear kernels, we use polynomial kernels with degree
d:

H(x,x′) = (xT x′ + 1)d, (35)

and RBF kernels with positive parameter γ:

H(x,x′) = exp(−γ||x − x′||2). (36)

.
We define the LP SVM by

minimize Q(α, b, ξ) =
M∑
i=1

(|αi|+ Cξi) (37)

subject to yj

(
M∑
i=1

αiH(xj ,xi) + b

)
≥ 1− ξj , ξj ≥ 0

for j = 1, . . . ,M. (38)

To solve a problem by the simplex method [21] or the primal-dual interior-point
method [24], we need to change variables into nonnegative variables. Then using
α+

i ≥ 0, α−
i ≥ 0, b+ ≥ 0, b− ≥ 0, we define αi = α+

i − α−
i , b = b+ − b− and

convert (37) and (38) into the following linear programming problem:

minimize Q(α+,α−, b+, b−, ξ) =
M∑
i=1

(α+
i + α−

i + Cξi) (39)

subject to yj

(
M∑
i=1

(α+
i − α−

i )H(xj ,xi) + b+ − b−
)
+ ξj ≥ 1

for j = 1, . . . ,M (40)

9



which has (3M + 2) variables and M constraints.
By introducing slack variables ui (i = 1, . . . ,M) into (40), (39) and (40)

become

minimize Q(α+,α−, b+, b−, ξ,u) =
M∑
i=1

(α+
i + α−

i + Cξi) (41)

subject to yj

(
M∑
i=1

(α+
i − α−

i )H(xj ,xi) + b+ − b−
)
+ ξj = 1 + uj

for j = 1, . . . ,M, (42)

respectively, which have (4M + 2) variables and M constraints.
Assuming the problem given by (39) and (40) primal, the dual problem is

as follows:

maximize Q(z) =
M∑
i=1

zi (43)

subject to
M∑
i=1

yiH(xi,xj)zi ≤ 1 for j = 1, . . . ,M, (44)

M∑
i=1

yiH(xi,xj)zi ≥ −1 for j = 1, . . . ,M, (45)

zj ≤ C for j = 1, . . . ,M, (46)
M∑
i=1

yizi = 0, (47)

where zi (i = 1, . . . ,M) are dual variables and the number of constraints is
(3M +1). Introducing non-negative slack variables v+

i , v−i , wi (i = 1, . . . ,M),
(43)–(47) become as follows:

maximize Q(z,v+,v−,w) =
M∑
i=1

zi (48)

subject to
M∑
i=1

yiH(xi,xj)zi + v+
j = 1 for j = 1, . . . ,M, (49)

M∑
i=1

yiH(xi,xj)zi = v−i − 1 for j = 1, . . . ,M, (50)

zj + wi = C for j = 1, . . . ,M, (51)
M∑
i=1

yizi = 0. (52)

The linear programming problem given by (48)–(52) has 4M variables and
(3M + 1) constraints.

Let the optimal solution of the primal problem given by (41) and (42) be
(α+∗,α−∗, b+∗, b−∗, ξ∗,u∗) and that of the dual problem given by (48)–(52) be
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(z∗,v+∗,v−∗,w∗). Then the following complementarity conditions are satisfied:

α+∗
i v+∗

i = 0 for i = 1, . . . ,M, (53)
α−∗

i v−∗
i = 0 for i = 1, . . . ,M, (54)

ξ∗i w
∗
i = 0 for i = 1, . . . ,M, (55)

u∗
i z

∗
i = 0 for i = 1, . . . ,M. (56)

Even if we delete (xi, yi) that satisfies

α+∗
i = 0, (57)

α−∗
i = 0, (58)
ξ∗i = 0, (59)
z∗i = 0, (60)

the optimal solution does not change. Namely, training data that do not satisfy
either of (57)–(60) are support vectors. Therefore, unlike SVMs, xi is a support
vector even if αi = 0 so long as either of ξi and zi is nonzero. In classification,
however, only nonzero αi are necessary and the small number of nonzero αi is
important to speed up classification.

3.2 Linear Programming Support Vector Machines Using
Method 1

For linear LP SVMs defined by (31) and (32), the number of variable is m and
the number of constraints is M . Since the definition of linear SVMs is similar
to nonlinear LP SVMs defined by (37) and (38). We only discuss the latter, in
which αi is associated with the ith training datum and for each training datum
a constraint is defined. Therefore, m =M .

We divide the index set of training data, T = {1, . . . ,M}, into W and F .
Since there is no confusion we do not append the subscript v to the working sets.
Then we divide variables in the primal problem given by (41) and (42) and those
by the dual problem given by (48)–(52): namely, α+ = {α+

i |i = 1, . . . ,M} into
α+

W = {α+
i |i ∈ W} and α+

F = {α+
i |i ∈ F}; α− into α−

W and α−
F ; v+ into v+

W

and v+
F ; v

− into v−
W and v−

F ; w into wW and wF ; z into zW and zF . Here, we
do not divide ξ and u because they are slack variables.

Fixing α+
F and α−

F we optimize the following subproblem:

maximize Q(α+
W ,α−

W , ξ, b+, b−,u) =
∑
i∈W

(α+
i + α−

i ) +
M∑
i=1

Cξi (61)

subject to yj

(∑
i∈W

(α+
i − α−

i )H(xi,xj) + b+ − b−

+
∑
i∈F

(α+
i − α−

i )H(xi,xj)

)
+ ξj = 1 + uj

for j = 1, . . . ,M. (62)

After solving the subproblem fixing αi = 0 (i ∈ F ), we check whether the
solution is the optimal solution of the entire problem using the complementarity
conditions.
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Because α+
F and α−

F are fixed to zero and ξF and uF are determined when
(61) and (62) are solved, all the primal variables are determined. Since w+

F

and z+
F are dual variables associated with ξF and uF , respectively, the values

of their variables are determined when solved by the simplex method or the
primal-dual interior-point method.

But dual variables v+
F and v−

F are not determined yet. They can be deter-
mined so that the following constraints are satisfied:

v+
j = 1−

M∑
i=1

yiH(xi,xj)zi for j ∈ F, (63)

v−j = 1 +
M∑
i=1

yiH(xi,xj)zi for j ∈ F. (64)

If some of them are negative, the entire solution does not satisfy the comple-
mentarity conditions. Thus, we need to solve the sub-problem again adding
the indices associated with violating variables into W and deleting the indices
associated with zero variables in W .

The algorithm of training an LP SVM by Method 1 is as follows:

Step 1 Set α+
i = 0 and α−

i = 0 for i = 1, . . . ,M . And initialize the iteration
count: k = 1. Go to Step 2.

Step 2 The initial working set be W1. Select q elements from T and set the
remaining elements to F1. Go to Step 3.

Step 3 Setting W =Wk and F = Fk, optimize (61) and (62).

Step 4 Calculate v+
F and v−

F . Go to Step 5.

Step 5 For data corresponding to Fk, check if v+
i ≥ 0 or v−i ≥ 0 is satisfied. If

there are violating variables, go to Step 6. Otherwise, stop training. For
k ≥ 2 if Qk −Qk−1 < ε is satisfied, stop training, where Qk is the value
of the objective function for Wk and Fk and ε is a small positive value.

Step 6 Move the indices associated with zero variables in Wk to the fixed set
and add at most q indices associated with the violating variables to the
working set. Let the working set and the fixed set determined be Wk+1

and Fk+1 and add k to 1 and go to Step 3.

3.3 Linear Programming Support Vector Machines Using
Method 3

In LP SVMs, αi is associated with the ith training datum and for each training
datum a constraint is defined, namely, M = m. It is possible to treat the
variables and the constraints separately, but to make the definition of the LP
SVM simpler, we set Wv =Wc and Fv = Fc. Therefore, for simplify notations,
we denote the working and fixed sets by W and F , respectively.

In Section 3.3.1, we define a subproblem for Method 3 and in Section 3.3.2
we discuss infinite loop resolution of Method 3 based on Theorem 3. And in
Section 3.3.3 we discuss working set selection for training speedup based on [20].
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3.3.1 Definition of Subproblems

We divide the index set T = {1, . . . ,M} into the working set W and the fixed
set F . Then in (41) and (42) we fix α+

F , α−
F , ξF , and uF , delete constraints

associated with the fixed set F , and obtain the following sub-problem:

minimize Q(α+
W ,α−

W , ξW ,uW , b+, b−) =
∑
i∈W

(α+
i + α−

i + Cξi) (65)

subject to yj

(∑
i∈W

(α+
i − α−

i )H(xi,xj) + b+ − b−

+
∑
i∈F

(α+
i − α−

i )H(xi,xj)

)
+ ξj = 1 + uj for j ∈ W.(66)

We solve (65) and (66) for α+
W , α−

W , ξW , uW , v+
W , v−

W , wW , and zW . To
check if the obtained solution satisfy the entire solution of (39) and (40), we
generate solutions for the fixed set and check the complementarity conditions
and constraints for the data associated with the fixed set.

For the primal variables, assuming α+
i = 0 and α−

i = 0 (i ∈ F ) we generate
ξF and uF using

yj


 ∑

i∈W,F

(α+
i − α−

i )H(xi,xj) + b+ − b−


+ ξj = 1 + uj for j ∈ F. (67)

Here, (67) is included in (42). Using (33), (67) reduces to

yjD(xj) + ξj = 1 + uj for j ∈ F. (68)

Thus, we generate ξF and uF as follows:

1. If yjD(xj) > 1, ξj = 0. Thus, from (68), uj = yjD(xj)− 1.
2. If yjD(xj) ≤ 1, ξj = 1− yjD(xj). Thus, from (68), uj = 0.

Then we generate the dual variables v+
F , v−

F , wF , and zF . Fixing zi = 0
(i ∈ F ), we generate v+

F , v
−
F , and wF by

v+
j = 1−

M∑
i=1

yiH(xi,xj)zi for j ∈ F, (69)

v−j = 1 +
M∑
i=1

yiH(xi,xj)zi for j ∈ F, (70)

wj = C for j ∈ F. (71)

Equations (69)–(71) are included in (49)–(52). The values of v+
j , v−j (j ∈ F )

obtained from (69) and (70) may be negative, which violate the constraints.
Instead of (66), if we solve the subproblem using (42), the subproblem is

optimized by Method 1. Unlike SVMs, deleting the constraints associated with
the fixed set in (42), the optimal solution changes. This is because the con-
straints associated with the fixed set include α+

i and α−
i (i ∈ W ). And since

Method 3 is the combination of Methods 1 and 2, which have opposite conver-
gence characteristics, the values of the objective function for Method 3 are not
monotonic during training. However, from Theorem 3, if we apply infinite loop
resolution to Method 3 the optimal solution is obtained in finite steps.
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3.3.2 Infinite Loop Resolution (Method 3-1)

We call Method 3 with the infinite loop resolution discussed in Section 2.2
Method 3-1. This method guarantees the finite steps of convergence. In the
following we show the algorithm.

Step 1 Set α+
i = 0, α−

i = 0 zi = 0 for i = 1, . . . ,M and k = 1. Go to Step 2.

Step 2 Let the initial working set be W1 and set q elements from T toW1 and
the remaining elements to F1. Go to Step 3.

Step 3 Setting W =Wk, F = Fk, solve (65) and (66), and go to Step 4.

Step 4 Calculate the values of variables in Fk and go to Step 5.

Step 5 Check if the training data associated with Fk satisfy complementarity
conditions (53)–(56) and v+

i ≥ 0, v−i ≥ 0. If not go to Step 6, otherwise
stop training.

Step 6 If an infinite loop occurs, set Wk+1 so that it include all the indices
of the working set in the loop and set the remaining indices to Fk+1.
The indices that are newly added to Wk+1 are kept until the algorithm
terminates. Increment k by 1 and go to Step 3. If there is no infinite loop
go to Step 7.

Step 7 Select at most q indices in Fk that correspond to violating variables
and/or constraints and add them to the working set. Delete the indices
in Wk that are not support vectors and move them to the fixed set. Let
the working and fixed set thus generated be Wk+1 and Fk+1, respectively.
Increment k by 1, and go to Step 3.

3.3.3 Working Set Selection Checking Violating Variables (Method
3-2)

By Method 3-1 we avoid infinite loops, but since the values of the objective
function fluctuate during training, the number of iterations increases tremen-
dously in some cases. To accelerate training, we further improve the working
set selection strategy.

Let the number of variables that violate the complementarity conditions or
constraints at step k be Vk. In general, initially the value of Vk is large but as
training proceeds, it decreases and at the final stage Vk = 0 or near zero and
training is terminated. However, according to our experiments in training of
an LP SVM by Method 3-1, it frequently occurred that Vk increased at some
iteration step, i.e., Vk > Vk−1. This slowed down training.

Then if Vk ≥ Vk−1, we consider that important data are deleted from Wk−1

and moved into the fixed set. Thus among the data that were moved away from
Wk−1 we return back the data that violate the complementarity conditions or
the constraints. In addition we keep the data in Wk from deleting even if they
satisfy the complementarity conditions.

We call the above method including infinite loop resolution Method 3-2. The
detailed flow is as follows.

Step 1 Set α+
i = 0, α−

i = 0 and zi = 0 for i = 1, . . . ,M and k = 1. Go to
Step 2.
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Step 2 Set the initial working set W1 by q elements from the index set T and
F1 by the remaining elements. Go to Step 3.

Step 3 Setting W =Wk, F = Fk, solve (65) and (66) and go to Step 4.

Step 4 Generate values of the variables associated with Fk and go to Step 5.

Step 5 If some training data associated with Fk violate (53)–(56) or v+
i ≥ 0,

v−i ≥ 0, go to Step 6. Otherwise terminate training.

Step 6 If an infinite loop exists, select all the indices associated with the
working sets that form infinite loops as Wk+1. The indices that are newly
added to Wk+1 are kept until the algorithm terminates. Increment k by
1 and go to Step 3. Otherwise, go to Step 7.

Step 7 If Vk < Vk−1, go to Step 8. Otherwise, add the indices of the data whose
indices moved away from Wk−1 and which violate the complementarity
conditions or the constraints at the kth step to the working set. Let the
obtained working set be Wk+1 and the set of the indices of the remaining
data be Fk+1. Increment k by 1 and go to Step 3. If there are not such
data go to Step 8.

Step 8 Check if the data associated with Fk violate the complementarity con-
ditions or constraints. Add at most q indices of the violating variables
to the working set. Delete the indices from the working set whose asso-
ciated data are not support vectors and move them to the fixed set. Let
the working set and the fixed set thus determined be Wk+1 and Fk+1,
respectively. Increment k by 1 and go to Step 3.

3.4 Relation of the Proposed Methods with the Decom-
position technique for Support Vector Machines

Now we discuss the relation of the proposed methods with the decomposition
technique for the SVM. The dual problem of the SVM is given by

maximize Q(α) =
M∑
i=1

αi − 1
2

M∑
i,j=1

yiyjαiαjH(xi,xj) (72)

subject to
M∑
i=1

yiαi = 0, (73)

0 ≤ αi ≤ C for i = 1, . . . ,M, (74)

where αi are dual variables associated with xi.
To solve (72)–(74) a decomposition technique [3, 4, 25] are proposed as

follows. We divide the training data indices T = {1, . . . ,M} into W (working
set) and F (fixed set), where W ∪ F = {1, . . . ,M} and W ∩ F = ø. Dividing
α = {αi|i = 1, . . . ,M} into αW = {αi|i ∈ W} and αF = {αi|i ∈ F} we
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optimize, instead of (72)–(74), the following problem:

maximize Q(αW ) =
∑
i∈W

αi − 1
2

∑
i,j∈W

αiαjyiyjH(xi,xj)

−
∑

i∈W,j∈F

αiαjyiyjH(xi,xj) (75)

subject to
∑
i∈W

yiαi = −
∑
i∈F

yiαi (76)

0 ≤ αi ≤ C for i ∈ W, (77)

where αW = {αi|i ∈ W} is a variable vector but αF = {αi|i ∈ F} is a fixed
vector.

The number of constraints for the original problem given by (72)–(74) is
M + 1, but that for (75)–(77) is |W |+ 1.

The major characteristics of (75)–(77) are that there is only one equality
constraint (76) and that the inequality constraints (77) impose the upper and
lower bounds. Therefore so long as the variables in the fixed set satisfy (77)
before optimization, after optimization the variables do not violate constraints.
Thus the objective function value is non-decreasing in optimizing the subpro-
gram given by (75)–(77). Therefore, we can adopt either fixed size or variable
size working set [25]. On the other hand, for Methods 3-1 and 3.2 since there
is a possibility that the variables and/or constraints in the fixed set are vio-
lated after optimization, we used a variable working set size to ensure stable
convergence.

4 Computer Experiments

In this section we investigate performance of linear LP SVMs using Method 1
and nonlinear LP SVMs using Methods 1, 3-1, and 3-2 for three types of data
sets: microarray data sets, multi-class data sets, and two-class data sets. To
speed up training, in Methods 3-1 and 3-2 we freed the non-support vectors
after infinite loop resolution. But for all the cases that we tested the optimal
solutions were obtained in finite steps.

4.1 Benchmark Data Sets and Evaluation Conditions

Table 1 lists the numbers of training data, test data, inputs, and classes of the
microarray problems.1 For each problem there is one training data set and one
test data set. As seen from the table, the microarray data sets are characterized
by a large number of input variables but a small number of training/test data.
Thus the classification problems are linearly separable and overfitting occurs
quite easily. Therefore, usually, feature selection or extraction is performed to
improve generalization ability. But since we were interested in the speedup by
the decomposition technique, we used the original data sets for classification.
We applied Method 1 to the linear LP SVM given by (31) and (32) and evaluated
the linear LP SVM for microarray data sets.

Table 2 lists the specification of multi-class problems. Each problem consists
of one training data set and one test data set.

1http://homes.esat.kuleuven.be/˜npochet/Bioinformatics/
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Table 1: Benchmark data sets for microarray problems
Data Training Test Inputs Classes
C. cancer [26] 40 20 2000 2
Leukemia [27] 38 34 7129 2
B. cancer (1) [28] 14 8 3226 2
B. cancer (2) [28] 14 8 3226 2
B. cancer (s) [28] 14 8 3226 2
H. carcinoma [29] 33 27 7129 2
Glioma [30] 21 29 12625 2
P. cancer [31] 102 34 12600 2
B. cancer (3) [32] 78 19 24188 2

Table 2: Benchmark data sets for multiclass and two-class problems
Data Training Test Inputs Classes
Numeral [33]2 810 820 12 10
Blood cell [34] 3097 3100 13 13
Thyroid (M) [35] 3772 3428 21 3
Hiragana-50 [36, 37] 4610 4610 50 39
Hiragana-13 [36, 37] 8375 8356 13 38
Hiragana-105 [36, 37] 8375 8356 105 38
German 700 300 20 2

Table 3 lists the number of inputs, training data, test data, and data sets
for 13 two-class classification problems.3 Each problem has 100 or 20 training
data sets and their corresponding test data sets.

For evaluating the speedup of the proposed decomposition techniques we
used microarray and multiclass data sets and for performance comparison of LP
SVMs with SVMs we used all the data sets.

For multiclass problems we used one-against all classification [38], in which
one class is separated from the remaining classes. Thus, all the training data
were used in training each decision function. We used the revised simplex
method [21] to solve linear programming problems. In measuring training time
we used a workstation (3.6GHz, 2GB memory, Linux operating system).

4.2 Convergence Characteristics of the Decomposition Tech-
niques

We investigated the convergence characteristics of Methods 1, 3-1, and 3-2 using
the german data set, which is the first training data set of the german problem
listed in Table 3. We used polynomial kernels with degree 3 and C = 10.

Figure 1 shows the objective function values by Method 1 against the number
of iterations. And Fig. 2 magnifies the values after the second iterations. As
the figures show, the objective function values are non-increasing.

Figure 3 shows the objective function values for Methods 3-1 and 3-2 and

3http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
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Table 3: Benchmark data sets for two-class problems.
Data Train. Test Inputs Sets

Banana 400 4900 2 100
B. cancer 200 77 9 100
Diabetes 468 300 8 100
German 700 300 20 100
Heart 170 100 13 100
Image 1300 1010 18 20
Ringnorm 400 7000 20 100
F. solar 666 400 9 100
Splice 1000 2175 60 20
Thyroid 140 75 5 100
Titanic 150 2051 3 100
Twonorm 400 7000 20 100
Waveform 400 4600 5 100
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Figure 1: Objective function values for Method 1

Fig. 4 magnifies the values after the eighth iterations. From the figures, the
objective function values are not monotonic by Methods 3-1 and 3-2.

Figure 5 shows the numbers of violations by Methods 1, 3-1, and 3-2 as the
training proceeds. The number by Method 1 decreased most smoothly. And
the number by Method 3-2 decreased to zero a little faster than that by Method
3-1.

Figure 6 shows the working set sizes for the decomposition techniques. For
this case, the number of support vectors was 430 and for any of the three
decomposition techniques after the working set sizes increased to around the
number of support vectors, the sizes did not increased tremendously larger than
the number.

We examined the effect of q for the linear LP SVM given by (31) and (32)
combined with Method 1 for the breast cancer (3) training data listed in Table
1. Table 4 lists the results. The first row of the results shows the result without
decomposition. Since the number of training data is 78, the training time was
short without decomposition. By decomposing the problem, the training time
was shortened and for q = 200, the training time was the shortest. But for q = 50
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to 500, the training time did not change very much. By the decomposition
technique, although the number of iterations was increased, the training was
speeded up because of shorter execution time per iteration.

Table 4: Training time of Method 1 for the breast cancer (3) data
q Time (s) Iterations Time/Iteration
— 37 1 37
50 9.2 35 0.26
100 8.7 24 0.36
200 7.8 17 0.46
300 8.9 21 0.42
400 8.1 16 0.50
500 8.4 18 0.47

To determine the value of q for Method 1 with nonlinear kernels and Method
3-2, we measured the training time by Methods 1 and 3-2 for the numeral
training data set listed in Table 2. We used the RBF kernels with γ = 1 and
C = 10. Table 5 shows the execution time, the number of iterations, and the
execution time per iteration for Method 1. The number of iterations is the
total number of iteration steps. Thus without decomposition techniques, the
number of iterations is the number of classes because we used one-against all
classification. The first row of the result in the table is the result without the
decomposition techniques.

From the table, using Method 1, training time was the shortest for q = 500
but much longer than without using Method 1. This is because the execution
time per iteration was comparable with that without Method 1. Since Method
1 uses all the constraints, it is not suited to use Method 1 for nonlinear kernels.
Thus, in the following study we do not evaluate Method 1 for nonlinear kernels.

Table 5: Training time of Method 1 for the numeral data
q Time (s) Iterations Time/Iteration
— 1827 10 183
50 5396 39 138
100 4916 35 140
200 4256 31 137
300 3875 27 144
400 3936 27 146
500 3865 26 149

Table 6 shows the execution time, the number of iterations, and the execution
time per iteration for Method 3-2. From the table, for q = 25 the training time
was the shortest. From q = 25 to 100, the execution time per iteration was
drastically reduced and 400 to 1000 times speedup was obtained.
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Table 6: Training time of Method 3-2 for the numeral data
q Time (s) Iterations Time/Iteration
— 1827 10 183
25 1.8 117 0.015
50 1.9 75 0.025
75 3.0 69 0.043
100 4.6 69 0.067

4.3 Effect of Decomposition Techniques

Using the microarray data sets, we investigated the speedup by Method 1 for
the linear LP SVM. We set C = 1000 and q = 50. Table 7 lists the results. The
“Rates” column lists the recognition rates for the test data and the training data
in parentheses. The numeral in the parentheses in the “SVs” column shows the
number of nonzero αi. Only the nonzero αi do not constitute the solution of the
LP SVM. But if this number is smaller that that of support vectors, speedup
of classification is achieved. The “Method 1” column lists the training time
using Method 1. From the table, the speedup by Method 1 is 1.3 to 4. The
low speedup ratio is because the number of constraints is too small and without
decomposition, training is not so slow.

Table 7: Speedup by linear LP SVM combined with Method 1 for the microarray
problems

Data Rates SVs No Decomp. [s] Method 1 [s] Speedup
C. cancer 77.27 (100) 19 (18) 0.50 0.37 1.4
Leukemia 61.76 (100) 34 (33) 2.2 1.0 2.2
B. cancer (1) 87.50 (100) 12 (11) 0.19 0.15 1.3
B. cancer (2) 87.50 (100) 12 (11) 0.19 0.15 1.3
B. cancer (s) 37.50 (100) 14 (13) 0.20 0.15 1.3
Carcinoma 81.48 (100) 32 (31) 2.0 1.0 2.0
Glioma 48.28 (100) 20 (10) 1.7 1.3 1.3
P. cancer 26.47 (100) 97 (96) 51 15 3.4
B. cancer (4) 52.63 (100) 76 (75) 37 9.2 4.0

We investigated the speedup of Methods 3-1 and 3-2 for the nonlinear LP
SVM using the multiclass problems. We considered two cases: 1) RBF kernels
with γ = 1 and C = 10 and 2) RBF kernels with γ = 10 and C = 10000. We set
q = 50 and measured the training time. Table 8 shows the result. In the table,
in the “Cond.” column, for example, “Numeral 1” and “Numeral 2” denote
that RBF kernels with γ = 1 and C = 10 and RBF kernels with γ = 10 and
C = 10000 are used for the numeral training data set, respectively. The “Rates”
column lists the recognition rates of the test data and the training data in the
parentheses. And the “SVs” column lists the number of support vectors and
the numeral in parentheses shows the number of nonzero αi. The “Speedup”
column lists the speedup of Method 3-2 over LP SVM training without using
the decomposition techniques for the numeral, blood cell, and thyroid data sets
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but for the other data sets we list the speedup of Method 3-2 over Method 3-1
because the training time was too long if decomposition techniques were not
used. Method 3-2 obtained the speedup of three to four orders of magnitudes
over the training without the decomposition technique and speedup from 31 to
1.3 over Method 3-1.

Table 8: Speedup by the decomposition techniques for multiclass problems

Cond. Rates SVs No Decomp. [s] Method 3-1 [s] Method 3-2 [s] Speedup
Numeral 1 99.27 (99.63) 18 (6) 1827 2.54 1.88 972
Numeral 2 99.51 (100) 18 (9) 1606 14.7 2.18 737
Blood 1 88.77 (91.19) 200 (9) 787073 1141 681 1156
Blood 2 91.52 (99.77) 120 (62) 1164302 27089 4831 241
Thyroid (M) 1 94.22 (94.43) 315 (11) 541896 2605 2485 218
Thyroid (M) 2 97.23 (99.81) 179 (83) 1481248 8517 2443 606
H50 1 89.61 (91.32) 107 (14) — 2710 1387 2.0
H50 2 98.11 (100) 57 (31) — 4838 478 10
H13 1 91.49 (91.47) 183 (9) — 4434 3014 1.5
H13 2 99.23 (100) 57 (29) — 46663 1503 31
H105 1 96.69 (96.97) 134 (22) — 3627 2792 1.3
H105 2 100 (100) 70 (38) — 26506 1645 16

4.4 Comparison with Support Vector Machines

We compared the performance of LP SVMs with that of SVMs. For linear ker-
nels we determined the values of C for the LP SVM and SVM by fivefold cross-
validation. For nonlinear kernels, we performed fivefold cross-validation for the
SVM using RBF kernels and determined the values of γ and C. Then using the
same kernel parameter value we determined the value of C for the LP SVM by
fivefold cross-validation. This means that we compared the performance of LP
SVM and SVM in the same feature space. For C we selected the value from
{0, 1, 50, 100, 500, 1000, 2000, 3000, 5000, 10000, 50000, 100000} and for γ from {0,
0.5, 1, 5, 10, 15}.

We trained the SVM by the primal-dual interior-point method combined
with the decomposition technique. For the LP SVM and SVM we set q = 50 if
the decomposition technique was used.

For the microarray problems, we used linear kernels. Table 9 shows the
results. In the table, LP SVM denotes that (31) and (32) are used and LP
SVM (KE) (37) and (38). For LP SVM (KE) we did not use the decomposition
technique. In the table, in each row the maximum recognition rate for the test
data is shown in boldface. Comparing the LP SVM, LP SVM (KE), and SVM,
there is not much difference in the number of support vectors and training time
but the recognition rate of the test data for the SVM is a little better than that
for LP SVM or LP SVM (KE).

The number of nonzero support vectors for the breast cancer (2) is zero.
This means that the decision function contains only the bias term and all the
data are classified into one class. The degenerate solution happened because of
a small number of training data and a small value of C [38].
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Table 9: Performance comparison for microarray problems.

Data LP SVM LP SVM (KE) SVM
C SVs Time (s) Rates C SVs Time (s) Rates C SVs Time (s) Rates

C. cancer 10 19 (18) 0.37 77.27 (100) 100 19 (13) 0.39 72.73 (100) 100 23 0.50 77.27 (100)
Leukemia 1 34 (33) 0.97 61.76 (100) 50 29 (23) 1.1 91.18 (100) 50 31 1.4 85.29 (100)
B. cancer (1) 1 12 (11) 0.15 87.5 (100) 100 10 (9) 0.18 87.5 (100) 1 13 0.23 62.5 (71.43)
B. cancer (2) 1 12 (11) 0.16 87.5 (100) 1 10 (0) 0.17 62.5 (64.29) 100 14 0.20 87.5 (100)
B. cancer (s) 1 14 (13) 0.15 37.5 (100) 1 8 (0) 0.18 62.5 (71.43) 1 12 0.20 62.5 (71.43)
Carcinoma 1 32 (31) 0.99 81.48 (100) 1 24 (0) 1.0 70.37 (63.64) 1 31 1.7 70.37 (63.63)
Glioma 1 20 (19) 1.3 48.28 (100) 50 17 (16) 1.5 48.28 (100) 50 19 1.7 55.17 (100)
P. cancer 1 97 (96) 14 26.47 (100) 50 79 (75) 7.9 26.47 (99.02) 100 98 11 58.82 (100)
B. cancer (3) 1 76 (75) 10 52.63 (100) 100 60 (55) 12 78.95 (96.15) 100 74 29 84.21 (100)

Table 10: Performance comparison for multiclass problems.

Data γ LP SVM SVM
C SVs Time (s) Rates C SVs Time (s) Rates

Numeral 1 50 15 (7) 2.07 99.63 (100) 50 16 0.694 99.27 (99.88)
Blood 5 500 107 (35) 582 92.55 (97.38) 1000 93 16 93.71 (97.29)
Thyroid (M) 5 5000 196 (74) 2069 97.32 (99.42) 105 174 14 97.40 (99.52)
H50 15 50 58 (33) 441 98.11 (100) 50 80 110 99.28 (100)
H13 15 50 59 (30) 1266 99.50 (99.88) 1000 42 118 99.75 (100)
H105 5 50 71 (38) 1951 99.92 (100) 100 77 379 100 (100)

Table 10 shows the performance comparison of the LP SVM and SVM using
RBF kernels for the multiclass problems. Except for the numeral data set, the
recognition rate of the test data for the SVM is better than that for LP SVM
and training is faster. But the number of nonzero αi for the LP SVM is much
smaller than that for the SVM. Thus a sparser classifier was obtained by the
LP SVM.

Table 11 shows the performance comparison of the LP SVM and SVM us-
ing RBF kernels for the two-class problems. The “E. Rate” lists the average
classification error and the standard deviation. The boldface denotes that the
average error rate or the standard deviation is statistically better with the sig-
nificance level of 0.05. From the table, it is seen that the tendency is the same
with that of multiclass problems. Namely, Training time for the SVM is shorter
than that for the LP SVM and the classification error tends to be smaller. But
the number of nonzero αi for the LP SVM is smaller than that of the SVM and
thus the sparsity of the LP SVM is much higher than that of the SVM.

4.5 Discussions

Slow training of LP SVMs compared to SVMs may be caused by the fact that op-
timization of a subproblem may produce violating variables and/or constraints
associated with the fixed set. Another reasons may be using the simplex method
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Table 11: Performance comparison for two-class problems.

Data γ LP SVM SVM
C SVs Time (s) E. Rate C SVs Time (s) E. Rate

Banana 15 100 106 (18) 3.9 10.6±0.49 100 173 0.45 10.4±0.46
B. Cancer 1 50 115 (24) 4.4 26.9±4.6 10 118 0.32 25.6±4.5
Diabetes 10 1 263 (8) 5.3 23.4±1.8 1 268 1.3 23.4±1.7
German 5 1 410 (28) 397 23.9±2.2 1 416 7.5 23.8±2.1
Heart 0.1 50 75 (10) 0.57 16.5±3.4 50 74 0.090 16.1±3.1
Image 10 500 179 (9) 181 3.52±0.59 1000 149 1.5 2.84±0.50
Ringnorm 15 1 57 (16) 0.85 1.90±0.23 1 131 0.91 2.64±0.35
F. Solar 1 1 461 (4) 756 33.3±1.8 1 522 7.8 32.3±1.8
Splice 10 10 501 (464) 2689 13.2±0.86 10 749 13 10.8±0.71
Thyroid 5 50 19 (7) 0.038 4.76±2.9 1000 13 0.010 4.05±2.3
Titanic 10 10 68 (8) 0.35 22.5±0.99 10 113 0.23 22.4±1.0
Twonorm 1 1 132 (9) 0.90 2.86±0.44 1 193 1.4 2.02±0.64
Waveform 5 10 107 (24) 4.4 10.8±0.44 10 114 0.58 10.3±0.40

in training LP SVMs and the strict convergence test using the complementarity
conditions. The latter reasons may be solved by using the primal-dual interior-
point method and the slack convergence test. In our computer experiments, the
maximum number of training data was 8375. To handle larger size problems,
we may still need to speed up training by the above methods.

We used q = 50 for all the computer experiments. For the problems tested
that value seemed to be suboptimal. But for huge size problems, a larger value
may lead to faster training. In such problems to set a suboptimal value we need
trials and errors.

5 Conclusions

In this paper, we proposed three decomposition techniques for LP SVMs. Method
1 decomposes variables but use all the constraints. Method 2 decomposes con-
straints but use all the variables. Method 3 decomposes variables and con-
straints. We proved that by Methods 1 and 2, the objective function values are
monotonic during training but by Method 3 the objective function values are
not guaranteed to be monotonic. To guarantee convergence in finite steps, we
proposed infinite loop resolution for Method 3. Then we discussed how to im-
prove convergence of Method 3 resolving infinite loops and clarified relationship
of the proposed methods with the decomposition techniques for SVMs.

By the computer experiments, we demonstrated that Method 1 worked to
speedup training of linear LP SVMs for the microarray problems with a large
number of variables and a small number of constraints. And using the improved
Method 3, we demonstrated that training of nonlinear LP SVMs was accelerated
considerably for the several multiclass problems.
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