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Abstract 

In this paper, we introduce a neural network-based shape 

matching algorithm that uses Johnson Counter codes coupled 

with chain codes.  Shape matching is a fundamental 

requirement in content-based image retrieval systems.  Chain 

codes describe shapes using sequences of numbers.  They are 

simple and flexible.  We couple this power with the efficiency 

and flexibility of a binary associative-memory neural network. 

We focus on the implementation details of the algorithm when 

it is constructed using the neural network.  We demonstrate 

how the binary associative-memory neural network can index 

and match chain codes where the chain code elements are 

represented by Johnson codes.  

 

Keywords 

Neural, Associative Memory, Shape Matcher, Binary 

Encoding.  

1 Introduction 

Content-based image retrieval (CBIR) systems match images 

primarily using object-recognition techniques.  Current 

systems rely on relatively low-level features within an image 

such as texture, colour or shape.  CBIR systems such as 

Mojsilovi� et al. [MGR02] posit that human vision is a 

hierarchical process where vision initially detects the edges in 

an image and breaks the image into primitives (lines, bars, 

crossings or blobs).  These primitives are then incrementally 

grouped by perceptual significance.  Biederman et al. 

[BSBKF99] also propose that human image recognition works 

on various levels and that an agglomerative technique is used.  

Biederman’s shape primitives are geons (relatively invariant 

features such as lines, or curves similar to Mojsilovi� et al) 

which are iteratively aggregated.  These hierarchical 

approaches all produce compound objects – shapes – that need 

to be represented and matched quickly, efficiently and 

accurately.   

 

A shape metric for CBIR should be invariant to translation, 

rotation and scale and similar shapes should have similar 

representations.  Ideally the similarity of the representation 

should decrease monotonically as the similarity of the 

shapes decreases.  Matching in CBIR systems is “best 

matching” rather than exact matching so a degree of match 

score is necessitated to assess the best match. 

 

In CBIR systems, shapes may be represented using various 

metrics that are either boundary-based (such as Fourier 

descriptors or geometric metrics) or region-based (such as 

invariant moments).  Chain-codes are boundary-based 

representations.  They are compact, translation invariant and 

flexible.   

 

Chain codes may be 4-directional or 8-directional.  In this 

paper we focus on 8-directional although our methodology 

is applicable to any variant – it is merely a case of adapting 

the Johnson code to handle the directionality.  An example 

8-directional chain code is shown in Figure 1 & Figure 2.   
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Figure 1. The 8-directions and associated numbers for 8-

directional chain codes. 

 

 

 

Figure 2 Chain code for an octagon - starting from the dot, 

the chain code is 12345670 

Each direction is represented by a number in the range [0-7].  

The chain code traces the boundary of the shape, representing 

the direction across each grid cell by the appropriate direction 

number as shown in Figure 1.  We note that the higher the 

definition of the image, the more grid cells, the longer the 

chain code and hence the more accurate the chain code.  By 

using our Advanced Uncertain Reasoning Architecture 

(AURA) [A95] to match the chain codes we are able to 

efficiently match chain codes of long lengths.   

 

Johnson Counter codes (also known as switch-tail ring counter 

codes) are binary reflected cyclic codes.  They are used in the 

electronics industry for controlling operations in digital 

systems [M02]. The number of bits in the code can vary 

arbitrarily.  Johnson Counter codes assign a code where the 

Hamming distance between two adjacent codes in a 

contiguous list is 1 and the Hamming distance increases 

monotonically as the distance between the number codes 

increases as shown in Table 1.  The cyclic code effectively 

“wraps around” so the Hamming distance between 0 and 7 in a 

4-bit code is also 1.  This is particularly relevant for chain 

codes which are also cyclic.  The 8-directional numbers of the 

chain code correlate to the same 8 decimal numbers of the 

Johnson code which in turn map to the 4-bit Johnson Counter 

code as shown in Table 1.  For both the chain code directions 

and the Johnson Counter code: 7 is most similar to 0 and 6 and 

0 is most similar to 7 and 1. 

 

Decimal 4-bit Johnson codes 
0 0000 

1 0001 

2 0011 

3 0111 

4 1111 

5 1110 

6 1100 

7 1000 

Table 1 List of 4-bit Johnson codes 

In this paper, we describe a binary neural shape matcher that 

represents shapes using a fusion of chain codes and Johnson 

Counter codes to allow distance-based matching.  The 

fusion produces binary vectors which are integrated with a 

binary Random Access memory-based (RAM-based) neural 

network (AURA) to allow rapid, efficient and accurate 

indexing and matching of shapes in shape databases. 

2 RAM-based Neural Networks 

RAM-based networks were first developed by Bledsoe & 

Browning [BB59] and Aleksander & Albrow [AA68] for 

pattern recognition and led to the WISARD pattern 

recognition machine [ATB84].  RAMs are founded on the 

twin principles of matrices (usually called Correlation 

Matrix Memories (CMMs)) and n-tupling. Each matrix 

accepts m inputs as a vector or tuple addressing m rows and 

n outputs as a vector addressing n columns of the matrix.  

During the training phase, the matrix weights M
lk
 are 

incremented if both the input row Ij
l
 and output column Ojk 

are set.  Therefore, training is a single epoch process with 

one training step for each input-output association 

preserving the high speed.  During recall, the presentation of 

vector Ij elicits the recall of vector Oj as vector Ij contains all 

of the addressing information necessary to access and 

retrieve vector Oj. This training and recall makes RAMs 

computationally simple and transparent with well-

understood properties. RAMs are also able to partially 

match records during retrieval.  Therefore, they can rapidly 

match records that are close to the input but do not match 

exactly.   

2.1 AURA 

The AURA provides a range of classes and methods for 

rapid partial matching of large data sets [A95]. AURA may 

be implemented using a C++ software library or using 

proprietary hardware coupled with a dedicated embedded 

C++ library [WFMA05].  AURA has been used in an 

information retrieval system [H01], high-speed rule 

matching systems [AKL95], 3-D structure matching [TA00] 

and trademark searching [AA98].  AURA software 

techniques have demonstrated superior performance with 

respect to speed compared to conventional data indexing 

approaches [HA01] such as hashing and inverted file lists 

which may be used for indexing.  AURA software trains 20 

times faster than an inverted file list and 16 times faster than 

a hashing algorithm.  It is up to 24 times faster than the 

inverted file list for recall and up to 14 times faster than the 

hashing algorithm.   

 

The rapid training and partial match capability of AURA 

coupled with encoding numeric chain codes as distance-
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based binary vectors for training and recall make AURA ideal 

to use as the basis of an efficient implementation.  A more 

formal definition of AURA, its components and methods now 

follows. 

2.1.1 Training 

Correlation Matrix Memories (CMMs) are the building blocks 

for AURA systems.  AURA uses binary input I and output O 

vectors to train records in to the CMM as in Equation 1 and 

Figure 3. 

 

Equation 1    

ORlogicaliswhereall ∨∨ ×=
T
jjj OICMM  

Training is a single epoch process with one training step for 

each input-output association (each Ij x O
T

j in . 

 

Equation 1) which equates to one step for each chain code Ij 

which is associated with a unique identifier vector Oj with a 

single bit set.   The first bit is set for the first chain code to 

store; the second bit is set for the second chain code to store 

and so on. 

 
 

Figure 3 Showing a CMM with input vector i and output 

vector o.  Four matrix locations are set following training 

i0o0, i2on-2, im-1o0 and imon. 

For the methodology described in this paper, we: 

• Train the binary distance-based chain codes and their 

identifier vectors into the CMM allowing them to be 

matched.   

• Match unseen binary chain codes using the trained 

CMM.    

2.1.2 Input Vectors 

Lu [L97] introduced procedures for normalising chain codes 

to ensure invariance to rotation and scaling.  He proposes 

orienting shapes along the principal (major) axis of the shape.  

The minor axis lies perpendicular to this major axis.  This 

forms a superimposed rectangle which may be subdivided into 

a grid of cells.  To ensure scale normalisation we fix the 

perimeter-size of this grid so that it is equal for all shapes, for 

example a 4x4, 3x5, 2x6 or 1x7 grids all have equivalent 

perimeter length of 16.  We thus superimpose the most 

appropriate of these onto the shape.  If we fix the starting point 

to the top right cell then we have normalised for rotation and 

scale. 

 

We further enhance Lu’s normalisation procedures to ensure 

that all stored and query chain codes are equivalent length.  

We propose counting diagonals twice.  With an 8-directional 

chain code there are 3 routes from point (1,1) to point (2,2).  

They are: east then north (2 steps and thus 2 codes in a 

chain); north then east (2 steps and thus 2 codes in a chain); 

or, north-east which is 1 step and only 1 code in a chain so 

by ensuring that the diagonal counts twice all routes are 2 

steps and 2 codes.  The new chain code (with double 

diagonals) for Figure 2 is given in Figure 4. 

 

In this paper, we assume that the chain codes have been 

normalised using Lu’s recommendations and our double 

diagonal augmentation.  

 

AURA requires binary input vectors for training and 

storage.  Thus, we convert the numeric chain code to a 

binary Johnson code equivalent.  If we take the chain code 

for Figure 2 then we must convert each number in turn to a 

Johnson code as in Figure 4. 

 

 

Figure 4 Chain code and its Johnson Counter code 

representation 

We concatenate all Johnson codes together to form I.  We 

then take I and logically negate all vector elements to form 

Î .   

 

 

Figure 5 Chain code and its logically inverted Johnson 

Counter code representation 

By concatenating I and Î  we produce I’ the distance-based 

binary chain code (the input vector for the CMM training) as 

in Equation 2. 

Equation 2 ÎII' ⊕=  

 During recall, matching the first half (I) of I’ will count the 

number of matching 1s between the query and stored vectors 

and matching the second half ( Î ) will count the number of 

matching 0s between the query and stored vectors.  We note 

that exactly 50% of the elements in I’ will be set (active) 

using this approach.  Each Johnson code element in I is 

inverted in Î  so each element will appear twice in I’ as both 

a 0 (inactive) and a 1 (active) thus 50% of the elements are 

active. Figure 6 shows a trained CMM where the rows are 

Johnson code bits and each column represents a distance-

based binary chain code I’j (image shape) stored for 

matching. 

2.1.3 Chain Code Matching (Recall) 

To retrieve the matching stored chain codes for a particular 

query chain code, AURA effectively calculates the dot 

product of the input vector Ik and the CMM, computing a 

positive integer-valued output vector Ok (the summed output 

vector) as in Equation 3 and Figure 6.  
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Equation 3 CMMIO •= k

T

k  

 

 

           

Figure 6 Diagram showing a subsection of the CMM recall 

for a best match.  Each column in the CMM (four 

rightmost columns) is a stored binary chain code 

representing the shapes (A, B, C & D) shown in Figure 7.  

The leftmost column is the input vector representing the 

chain code of the octagon from Figure 2 and represents a 

concatenation of Q and Q̂ .  AURA multiplies the input 

vector by the values in the CMM matrix columns, using 

the dot product and sums each column to produce the 

summed output vector O. 

To find the best matches for a particular chain code we 

initially create an input vector Q as per the training input 

vector so the chain code 112334556770 would be mapped to a 

Johnson code input vector as in Figure 4.  This chain code is 

12 elements long and each element comprises 4 binary bits so 

the a perfect match would score 48. 

 

We then logically negate this binary input vector to produce 

Q̂ and append Q̂ to the end of the query vector Q.  The 

resultant query input vector is thus: 

Equation 4 QQQ ˆ' ⊕= .  

We note that 50% of the elements in Q’ will be set so 50% of 

the CMM rows will be activated during recall thus recall is 

predictive and constant for equivalent length chain codes 

(ignoring extraneous factors). 

 

We input this to the CMM to elicit a summed output vector, 

O as per Equation 3, which effectively counts the number 

of matching 1s AND 0s between the input and each, stored 

chain code.  As we have input the binary chain code and 

negated binary chain code we have effectively counted the 

number of matching 1s and 0s 

 

The proposed method then calculates the score for each 

stored chain code using the summed output vectors 

(counting matching 1s and 0s, O). 

 

For each stored chain code (each position j in the summed 

vectors) we calculate the score as: 

Equation 5 jO=Score  

This is essentially the negated XOR (~XOR or inverse 

Hamming Distance) of the input with each stored binary 

chain code and counts the number of matching 1s AND 0s 

between the query and the stored code.  This score 

represents the degree of match and will decrease 

monotonically as the similarity between the input and a 

stored code decreases.  For best matching, we store the 

index (position j in the summed output vectors) of the chain 

code(s) with the highest score.   

 

3 Worked Example 

 

Figure 7 Showing the four shapes represented by the 

chain codes stored in the CMM in Figure 6.  The dotted 

lines indicate where each of the shapes differs from the 

query shape in Figure 2 

 
Figure 7 shows four example shapes A, B, C & D to be 

compared to a query shape Q (shown in Figure 2).  In the 

following, we compare the retrieval process of the standard 

technique to the retrieval process of the AURA technique 

when matching the query against the four stored shapes to 

identify the best matching shape. Figure 8 shows the 

standard chain code for the query Q and the four stored 
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shapes A, B, C & D respectively; the binary codes for the 

query Q and the four stored shapes A, B, C & D respectively 

and Figure 9 shows the inverted binary codes for the query Q̂  

and the four stored shapes DCBA ˆ&ˆ,ˆ,ˆ respectively. 

 

 

Figure 8 Showing the chain code & binary code for the 

query shape represented by Figure 2 (top) and the chain 

codes &  binary codes for the four shapes in Figure 7 (A, 

B, C & D from top to bottom).  The digits in red indicate 

where each of the shapes (A, B, C & D from top to bottom) 

differs from Figure 2. 

 

 

Figure 9 Showing the inverted binary code Q̂  for the 

query shape  represented by Figure 2 (top) and the binary 

codes ( DCBA ˆ&ˆ,ˆ,ˆ from top to bottom) for the four shapes 

in Figure 7.  The digits in red indicate where each of the 

shapes (A, B, C & D from top to bottom) differs from 

Figure 2. 

 

For the standard technique the scores for the four shapes A, B, 

C & D in Figure 6 - Figure 8 compared to the query shape are: 

 

Score_A = 2 

Score_B = 4 

Score_C = 6 

Score_D = 8 

 
For the standard technique, the lowest score indicates the best 

match so A is the best match (as we would expect) and differs 

to the query by 2 (i.e. two 1/8 directions are different between 

the query and shape A). The differences are in the first two 

elements of the chain code where the query begins “11” and A 

begins “20” giving a cumulative difference of 2.   Shape D is 

least similar to the query as it scores highest and thus differs in 

eight 1/8 directions.  It differs from the query in elements 1, 

2, 4, 5, 7, 8, 10 & 11. 

 

For the AURA approach, the scores for the 4 stored chain 

codes in Figure 6 - Figure 8 compared to the query shape 

are: 

 

Score_A = 46/48 

Score_B = 44/48 

Score_C = 42/48 

Score_D = 40/48 

 

For the AURA technique, we are counting matching 1s in Q 

compared to A, B, C & D and matching 1s in Q̂ compared 

to DCBA ˆ&ˆ,ˆ,ˆ .  In contrast to the standard approach, the 

shape with the highest score is the best match to the query.  

For the standard technique we are counting differences 

(hence the lowest score represents the best match).  The 

standard score is the maximum score permissible in AURA 

minus the actual score, i.e. for shape A, the maximum 

permissible score is 48 and the actual score is 46 so the 

standard score is 2 (as seen above).  Shape A is the most 

similar to the query as it scores highest.  Shape D is least 

similar to the query as it scores lowest.  Shape A differs 

from the query by 2 which indicates that it differs in two 1/8 

directions – those shown by dotted lines in Figure 7.  Shape 

D differs in eight 1/8 directions – those shown by dotted 

lines in Figure 7. 

 

If we ~XOR the query vector with the best matching 

vector(s), where the resultant vector is 0 is where the stored 

vector differs from the query.  This facility is useful for 

pinpointing shape variations.  

4 Multi-Resolution Chain Coding 

We can introduce multi-resolution chain codes.  By using a 

point-region quad-tree1 (PRQ) reduction, we can produce a 

boundary at various levels of resolution.  Each different 

resolution requires a separate CMM for training and 

matching due to the variation in length of the vectors.  

 

The lowest resolution chain coding (grid with fewest cells) 

may be used for a quick and dirty match to perhaps narrow 

the search space in an extremely large database of shapes.  

As the resolution increases down the PRQ (as the number of 

cells in the grid increases monotonically by a factor of 4) 

then the size and precision of the chain code increases by a 

factor of 2 (the perimeter is twice as long) so the number of 

rows in the CMM would increase by a factor of 2 for each 

layer in the PRQ.   The matching will obviously be slower 

due to the increase in size of the vectors but this will be 

offset by the increase in precision.   

 

                                                 
1 A point region quad-tree is a quad-tree where each node must 

have exactly four children, or have no children (leaf). 
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Figure 10 Figure showing a PRQ reduction (from left to 

right) of the grid in Figure 2.  There are 36 cells in the 

centre shape compared to 9 cells in the leftmost shape.  

The chain code for the centre shape will be twice as long 

(the perimeter is now twice as long) as the leftmost shape.  

The rightmost shape has 144 cells and the perimeter is 4 

times as long as the leftmost shape and twice as long as the 

centre shape. 

5 Proposed Method 

If the database is relatively small, train a single CMM with 

chain codes at high precision (the largest chain code length 

permissible within the storage available).  This may then be 

used for matching query shapes. 

 

If the database is very large then we propose training the 

shapes into a low precision CMM which will minimise the 

storage requirements.  If we query this low precision CMM to 

retrieve a set of candidate shapes then these candidates may be 

trained into a subsequent higher precision CMM.  Again, 

querying this higher precision CMM will retrieve a set of 

better matches.  This cycle of retrieving matches, increasing 

the precision, training a higher precision CMM and then 

querying can be repeated until the database of shapes has been 

reduced to the requisite number of matches. 

6 Conclusion 

In this paper we have introduced a binary neural shape 

matcher.  The AURA neural architecture, which underpins the 

classifier, has demonstrated superior training and recall speed 

compared to conventional indexing approaches such as 

hashing or inverted file lists.  AURA trains 20 times faster 

than an inverted file list and 16 times faster than a hashing 

algorithm.  It is up to 24 times faster than the inverted file list 

for recall and up to 14 times faster than the hashing algorithm.  

In this paper, we described the implementation details of the 

technique.  Our next step is to evaluate the AURA decision 

table for speed and memory usage against a conventional 

chain code matcher. 

 

We feel the technique is flexible and easily extended to other 

domains/systems where distance-based numeric code 

matching is required.  
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