
This is a repository copy of A Binary Neural Shape Matcher using Johnson Counters and
Chain Codes.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/4619/

Proceedings Paper:
Hodge, Victoria orcid.org/0000-0002-2469-0224, O'Keefe, Simon orcid.org/0000-0001-
5957-2474 and Austin, Jim orcid.org/0000-0001-5762-8614 (2006) A Binary Neural Shape
Matcher using Johnson Counters and Chain Codes. In: BICS. Brain Inspired Cognitive
Systems 2006, 10-14 Oct 2006 , GRC .

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

promoting access to White Rose research papers

White Rose Research Online

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/4619/

Conference paper
Hodge, Victoria, O'Keefe, Simon and Austin, Jim (2006) A Binary Neural Shape
Matcher using Johnson Counters and Chain Codes. In: BICS. Brain Inspired
Cognitive Systems 2006, 10-14 Oct 2006, Island of Lesvos, Greece.

eprints@whiterose.ac.uk

BICS 2006 – Brain Inspired Cognitive Systems Regular Paper

Reference ID

A Binary Neural Shape Matcher using Johnson Counters and Chain Codes

Victoria J. Hodge

Department of Computer Science
University of York

Simon O’Keefe

Department of Computer Science
University of York

Jim Austin

Department of Computer Science
University of York

Contact Author: Dr. Victoria Hodge,

Advanced Computer Architecture Group
Department of Computer Science

University of York, York, YO10 5DD, UK

Fax: +44 1904 432767
Email: vicky@cs.york.ac.uk

Abstract

In this paper, we introduce a neural network-based shape

matching algorithm that uses Johnson Counter codes coupled

with chain codes. Shape matching is a fundamental

requirement in content-based image retrieval systems. Chain

codes describe shapes using sequences of numbers. They are

simple and flexible. We couple this power with the efficiency

and flexibility of a binary associative-memory neural network.

We focus on the implementation details of the algorithm when

it is constructed using the neural network. We demonstrate

how the binary associative-memory neural network can index

and match chain codes where the chain code elements are

represented by Johnson codes.

Keywords

Neural, Associative Memory, Shape Matcher, Binary

Encoding.

1 Introduction

Content-based image retrieval (CBIR) systems match images

primarily using object-recognition techniques. Current

systems rely on relatively low-level features within an image

such as texture, colour or shape. CBIR systems such as

Mojsilovi� et al. [MGR02] posit that human vision is a

hierarchical process where vision initially detects the edges in

an image and breaks the image into primitives (lines, bars,

crossings or blobs). These primitives are then incrementally

grouped by perceptual significance. Biederman et al.

[BSBKF99] also propose that human image recognition works

on various levels and that an agglomerative technique is used.

Biederman’s shape primitives are geons (relatively invariant

features such as lines, or curves similar to Mojsilovi� et al)

which are iteratively aggregated. These hierarchical

approaches all produce compound objects – shapes – that need

to be represented and matched quickly, efficiently and

accurately.

A shape metric for CBIR should be invariant to translation,

rotation and scale and similar shapes should have similar

representations. Ideally the similarity of the representation

should decrease monotonically as the similarity of the

shapes decreases. Matching in CBIR systems is “best

matching” rather than exact matching so a degree of match

score is necessitated to assess the best match.

In CBIR systems, shapes may be represented using various

metrics that are either boundary-based (such as Fourier

descriptors or geometric metrics) or region-based (such as

invariant moments). Chain-codes are boundary-based

representations. They are compact, translation invariant and

flexible.

Chain codes may be 4-directional or 8-directional. In this

paper we focus on 8-directional although our methodology

is applicable to any variant – it is merely a case of adapting

the Johnson code to handle the directionality. An example

8-directional chain code is shown in Figure 1 & Figure 2.

BICS 2006 – Brain Inspired Cognitive Systems Regular Paper

Figure 1. The 8-directions and associated numbers for 8-

directional chain codes.

Figure 2 Chain code for an octagon - starting from the dot,

the chain code is 12345670

Each direction is represented by a number in the range [0-7].

The chain code traces the boundary of the shape, representing

the direction across each grid cell by the appropriate direction

number as shown in Figure 1. We note that the higher the

definition of the image, the more grid cells, the longer the

chain code and hence the more accurate the chain code. By

using our Advanced Uncertain Reasoning Architecture

(AURA) [A95] to match the chain codes we are able to

efficiently match chain codes of long lengths.

Johnson Counter codes (also known as switch-tail ring counter

codes) are binary reflected cyclic codes. They are used in the

electronics industry for controlling operations in digital

systems [M02]. The number of bits in the code can vary

arbitrarily. Johnson Counter codes assign a code where the

Hamming distance between two adjacent codes in a

contiguous list is 1 and the Hamming distance increases

monotonically as the distance between the number codes

increases as shown in Table 1. The cyclic code effectively

“wraps around” so the Hamming distance between 0 and 7 in a

4-bit code is also 1. This is particularly relevant for chain

codes which are also cyclic. The 8-directional numbers of the

chain code correlate to the same 8 decimal numbers of the

Johnson code which in turn map to the 4-bit Johnson Counter

code as shown in Table 1. For both the chain code directions

and the Johnson Counter code: 7 is most similar to 0 and 6 and

0 is most similar to 7 and 1.

Decimal 4-bit Johnson codes
0 0000

1 0001

2 0011

3 0111

4 1111

5 1110

6 1100

7 1000

Table 1 List of 4-bit Johnson codes

In this paper, we describe a binary neural shape matcher that

represents shapes using a fusion of chain codes and Johnson

Counter codes to allow distance-based matching. The

fusion produces binary vectors which are integrated with a

binary Random Access memory-based (RAM-based) neural

network (AURA) to allow rapid, efficient and accurate

indexing and matching of shapes in shape databases.

2 RAM-based Neural Networks

RAM-based networks were first developed by Bledsoe &

Browning [BB59] and Aleksander & Albrow [AA68] for

pattern recognition and led to the WISARD pattern

recognition machine [ATB84]. RAMs are founded on the

twin principles of matrices (usually called Correlation

Matrix Memories (CMMs)) and n-tupling. Each matrix

accepts m inputs as a vector or tuple addressing m rows and

n outputs as a vector addressing n columns of the matrix.

During the training phase, the matrix weights M
lk
 are

incremented if both the input row Ij
l
 and output column Ojk

are set. Therefore, training is a single epoch process with

one training step for each input-output association

preserving the high speed. During recall, the presentation of

vector Ij elicits the recall of vector Oj as vector Ij contains all

of the addressing information necessary to access and

retrieve vector Oj. This training and recall makes RAMs

computationally simple and transparent with well-

understood properties. RAMs are also able to partially

match records during retrieval. Therefore, they can rapidly

match records that are close to the input but do not match

exactly.

2.1 AURA

The AURA provides a range of classes and methods for

rapid partial matching of large data sets [A95]. AURA may

be implemented using a C++ software library or using

proprietary hardware coupled with a dedicated embedded

C++ library [WFMA05]. AURA has been used in an

information retrieval system [H01], high-speed rule

matching systems [AKL95], 3-D structure matching [TA00]

and trademark searching [AA98]. AURA software

techniques have demonstrated superior performance with

respect to speed compared to conventional data indexing

approaches [HA01] such as hashing and inverted file lists

which may be used for indexing. AURA software trains 20

times faster than an inverted file list and 16 times faster than

a hashing algorithm. It is up to 24 times faster than the

inverted file list for recall and up to 14 times faster than the

hashing algorithm.

The rapid training and partial match capability of AURA

coupled with encoding numeric chain codes as distance-

BICS 2006 – Brain Inspired Cognitive Systems Regular Paper

based binary vectors for training and recall make AURA ideal

to use as the basis of an efficient implementation. A more

formal definition of AURA, its components and methods now

follows.

2.1.1 Training

Correlation Matrix Memories (CMMs) are the building blocks

for AURA systems. AURA uses binary input I and output O

vectors to train records in to the CMM as in Equation 1 and

Figure 3.

Equation 1

ORlogicaliswhereall ∨∨ ×=
T
jjj OICMM

Training is a single epoch process with one training step for

each input-output association (each Ij x O
T

j in .

Equation 1) which equates to one step for each chain code Ij

which is associated with a unique identifier vector Oj with a

single bit set. The first bit is set for the first chain code to

store; the second bit is set for the second chain code to store

and so on.

Figure 3 Showing a CMM with input vector i and output

vector o. Four matrix locations are set following training

i0o0, i2on-2, im-1o0 and imon.

For the methodology described in this paper, we:

• Train the binary distance-based chain codes and their

identifier vectors into the CMM allowing them to be

matched.

• Match unseen binary chain codes using the trained

CMM.

2.1.2 Input Vectors

Lu [L97] introduced procedures for normalising chain codes

to ensure invariance to rotation and scaling. He proposes

orienting shapes along the principal (major) axis of the shape.

The minor axis lies perpendicular to this major axis. This

forms a superimposed rectangle which may be subdivided into

a grid of cells. To ensure scale normalisation we fix the

perimeter-size of this grid so that it is equal for all shapes, for

example a 4x4, 3x5, 2x6 or 1x7 grids all have equivalent

perimeter length of 16. We thus superimpose the most

appropriate of these onto the shape. If we fix the starting point

to the top right cell then we have normalised for rotation and

scale.

We further enhance Lu’s normalisation procedures to ensure

that all stored and query chain codes are equivalent length.

We propose counting diagonals twice. With an 8-directional

chain code there are 3 routes from point (1,1) to point (2,2).

They are: east then north (2 steps and thus 2 codes in a

chain); north then east (2 steps and thus 2 codes in a chain);

or, north-east which is 1 step and only 1 code in a chain so

by ensuring that the diagonal counts twice all routes are 2

steps and 2 codes. The new chain code (with double

diagonals) for Figure 2 is given in Figure 4.

In this paper, we assume that the chain codes have been

normalised using Lu’s recommendations and our double

diagonal augmentation.

AURA requires binary input vectors for training and

storage. Thus, we convert the numeric chain code to a

binary Johnson code equivalent. If we take the chain code

for Figure 2 then we must convert each number in turn to a

Johnson code as in Figure 4.

Figure 4 Chain code and its Johnson Counter code

representation

We concatenate all Johnson codes together to form I. We

then take I and logically negate all vector elements to form

Î .

Figure 5 Chain code and its logically inverted Johnson

Counter code representation

By concatenating I and Î we produce I’ the distance-based

binary chain code (the input vector for the CMM training) as

in Equation 2.

Equation 2 ÎII' ⊕=

 During recall, matching the first half (I) of I’ will count the

number of matching 1s between the query and stored vectors

and matching the second half (Î) will count the number of

matching 0s between the query and stored vectors. We note

that exactly 50% of the elements in I’ will be set (active)

using this approach. Each Johnson code element in I is

inverted in Î so each element will appear twice in I’ as both

a 0 (inactive) and a 1 (active) thus 50% of the elements are

active. Figure 6 shows a trained CMM where the rows are

Johnson code bits and each column represents a distance-

based binary chain code I’j (image shape) stored for

matching.

2.1.3 Chain Code Matching (Recall)

To retrieve the matching stored chain codes for a particular

query chain code, AURA effectively calculates the dot

product of the input vector Ik and the CMM, computing a

positive integer-valued output vector Ok (the summed output

vector) as in Equation 3 and Figure 6.

BICS 2006 – Brain Inspired Cognitive Systems Regular Paper

Equation 3 CMMIO •= k

T

k

Figure 6 Diagram showing a subsection of the CMM recall

for a best match. Each column in the CMM (four

rightmost columns) is a stored binary chain code

representing the shapes (A, B, C & D) shown in Figure 7.

The leftmost column is the input vector representing the

chain code of the octagon from Figure 2 and represents a

concatenation of Q and Q̂ . AURA multiplies the input

vector by the values in the CMM matrix columns, using

the dot product and sums each column to produce the

summed output vector O.

To find the best matches for a particular chain code we

initially create an input vector Q as per the training input

vector so the chain code 112334556770 would be mapped to a

Johnson code input vector as in Figure 4. This chain code is

12 elements long and each element comprises 4 binary bits so

the a perfect match would score 48.

We then logically negate this binary input vector to produce

Q̂ and append Q̂ to the end of the query vector Q. The

resultant query input vector is thus:

Equation 4 QQQ ˆ' ⊕= .

We note that 50% of the elements in Q’ will be set so 50% of

the CMM rows will be activated during recall thus recall is

predictive and constant for equivalent length chain codes

(ignoring extraneous factors).

We input this to the CMM to elicit a summed output vector,

O as per Equation 3, which effectively counts the number

of matching 1s AND 0s between the input and each, stored

chain code. As we have input the binary chain code and

negated binary chain code we have effectively counted the

number of matching 1s and 0s

The proposed method then calculates the score for each

stored chain code using the summed output vectors

(counting matching 1s and 0s, O).

For each stored chain code (each position j in the summed

vectors) we calculate the score as:

Equation 5 jO=Score

This is essentially the negated XOR (~XOR or inverse

Hamming Distance) of the input with each stored binary

chain code and counts the number of matching 1s AND 0s

between the query and the stored code. This score

represents the degree of match and will decrease

monotonically as the similarity between the input and a

stored code decreases. For best matching, we store the

index (position j in the summed output vectors) of the chain

code(s) with the highest score.

3 Worked Example

Figure 7 Showing the four shapes represented by the

chain codes stored in the CMM in Figure 6. The dotted

lines indicate where each of the shapes differs from the

query shape in Figure 2

Figure 7 shows four example shapes A, B, C & D to be

compared to a query shape Q (shown in Figure 2). In the

following, we compare the retrieval process of the standard

technique to the retrieval process of the AURA technique

when matching the query against the four stored shapes to

identify the best matching shape. Figure 8 shows the

standard chain code for the query Q and the four stored

BICS 2006 – Brain Inspired Cognitive Systems Regular Paper

shapes A, B, C & D respectively; the binary codes for the

query Q and the four stored shapes A, B, C & D respectively

and Figure 9 shows the inverted binary codes for the query Q̂

and the four stored shapes DCBA ˆ&ˆ,ˆ,ˆ respectively.

Figure 8 Showing the chain code & binary code for the

query shape represented by Figure 2 (top) and the chain

codes & binary codes for the four shapes in Figure 7 (A,

B, C & D from top to bottom). The digits in red indicate

where each of the shapes (A, B, C & D from top to bottom)

differs from Figure 2.

Figure 9 Showing the inverted binary code Q̂ for the

query shape represented by Figure 2 (top) and the binary

codes (DCBA ˆ&ˆ,ˆ,ˆ from top to bottom) for the four shapes

in Figure 7. The digits in red indicate where each of the

shapes (A, B, C & D from top to bottom) differs from

Figure 2.

For the standard technique the scores for the four shapes A, B,

C & D in Figure 6 - Figure 8 compared to the query shape are:

Score_A = 2

Score_B = 4

Score_C = 6

Score_D = 8

For the standard technique, the lowest score indicates the best

match so A is the best match (as we would expect) and differs

to the query by 2 (i.e. two 1/8 directions are different between

the query and shape A). The differences are in the first two

elements of the chain code where the query begins “11” and A

begins “20” giving a cumulative difference of 2. Shape D is

least similar to the query as it scores highest and thus differs in

eight 1/8 directions. It differs from the query in elements 1,

2, 4, 5, 7, 8, 10 & 11.

For the AURA approach, the scores for the 4 stored chain

codes in Figure 6 - Figure 8 compared to the query shape

are:

Score_A = 46/48

Score_B = 44/48

Score_C = 42/48

Score_D = 40/48

For the AURA technique, we are counting matching 1s in Q

compared to A, B, C & D and matching 1s in Q̂ compared

to DCBA ˆ&ˆ,ˆ,ˆ . In contrast to the standard approach, the

shape with the highest score is the best match to the query.

For the standard technique we are counting differences

(hence the lowest score represents the best match). The

standard score is the maximum score permissible in AURA

minus the actual score, i.e. for shape A, the maximum

permissible score is 48 and the actual score is 46 so the

standard score is 2 (as seen above). Shape A is the most

similar to the query as it scores highest. Shape D is least

similar to the query as it scores lowest. Shape A differs

from the query by 2 which indicates that it differs in two 1/8

directions – those shown by dotted lines in Figure 7. Shape

D differs in eight 1/8 directions – those shown by dotted

lines in Figure 7.

If we ~XOR the query vector with the best matching

vector(s), where the resultant vector is 0 is where the stored

vector differs from the query. This facility is useful for

pinpointing shape variations.

4 Multi-Resolution Chain Coding

We can introduce multi-resolution chain codes. By using a

point-region quad-tree1 (PRQ) reduction, we can produce a

boundary at various levels of resolution. Each different

resolution requires a separate CMM for training and

matching due to the variation in length of the vectors.

The lowest resolution chain coding (grid with fewest cells)

may be used for a quick and dirty match to perhaps narrow

the search space in an extremely large database of shapes.

As the resolution increases down the PRQ (as the number of

cells in the grid increases monotonically by a factor of 4)

then the size and precision of the chain code increases by a

factor of 2 (the perimeter is twice as long) so the number of

rows in the CMM would increase by a factor of 2 for each

layer in the PRQ. The matching will obviously be slower

due to the increase in size of the vectors but this will be

offset by the increase in precision.

1 A point region quad-tree is a quad-tree where each node must

have exactly four children, or have no children (leaf).

BICS 2006 – Brain Inspired Cognitive Systems Regular Paper

Figure 10 Figure showing a PRQ reduction (from left to

right) of the grid in Figure 2. There are 36 cells in the

centre shape compared to 9 cells in the leftmost shape.

The chain code for the centre shape will be twice as long

(the perimeter is now twice as long) as the leftmost shape.

The rightmost shape has 144 cells and the perimeter is 4

times as long as the leftmost shape and twice as long as the

centre shape.

5 Proposed Method

If the database is relatively small, train a single CMM with

chain codes at high precision (the largest chain code length

permissible within the storage available). This may then be

used for matching query shapes.

If the database is very large then we propose training the

shapes into a low precision CMM which will minimise the

storage requirements. If we query this low precision CMM to

retrieve a set of candidate shapes then these candidates may be

trained into a subsequent higher precision CMM. Again,

querying this higher precision CMM will retrieve a set of

better matches. This cycle of retrieving matches, increasing

the precision, training a higher precision CMM and then

querying can be repeated until the database of shapes has been

reduced to the requisite number of matches.

6 Conclusion

In this paper we have introduced a binary neural shape

matcher. The AURA neural architecture, which underpins the

classifier, has demonstrated superior training and recall speed

compared to conventional indexing approaches such as

hashing or inverted file lists. AURA trains 20 times faster

than an inverted file list and 16 times faster than a hashing

algorithm. It is up to 24 times faster than the inverted file list

for recall and up to 14 times faster than the hashing algorithm.

In this paper, we described the implementation details of the

technique. Our next step is to evaluate the AURA decision

table for speed and memory usage against a conventional

chain code matcher.

We feel the technique is flexible and easily extended to other

domains/systems where distance-based numeric code

matching is required.

7 References

 [AA68]
 Aleksander, I., & Albrow, R.C. Pattern recognition

with Adaptive Logic Elements. IEE Conference on

Pattern Recognition, pp 68-74, 1968.
[ATB84]

 Aleksander, I., Thomas, W.V., & Bowden, P.A.

Wisard: A radical step forward in image

recognition. Sensor Review, pp 120-124, 1984.

[AA98]
 Alwis, S., & Austin, J. A Novel Architecture for

Trademark Image Retrieval Systems. In,

Electronic Workshops in Computing, 1998.
[A95]

 Austin, J. Distributed Associative Memories for

High Speed Symbolic Reasoning. In, IJCAI

Working Notes of Workshop on Connectionist-

Symbolic Integration: From Unified to Hybrid

Approaches, pp 87-93, 1995.
 [A98]

 Austin, J. RAM-based Neural Networks, Progress

in Neural Processing 9, Singapore: World Scientific

Pub. Co., 1998.
[AKL95]

 Austin, J., Kennedy, J., & Lees, K. A Neural

Architecture for Fast Rule Matching. In, Artificial

Neural Networks and Expert Systems Conference

(ANNES’95), Dunedin, New Zealand, 1995.
[BB59]

 Bledsoe, W.W., & Browning, I. Pattern recognition

and Reading by Machine. In, Proceedings of

Eastern Joint Computer Conference, pp 225-231,

1959.
[BSBKF99] Biederman, I., Subramaniam, S., Bar, M., Kalocsai, P, &

Fiser, J. Subordinate-Level Object Classification Re-

examined. Psychological Research, 62:131-153, 1999.
 [H01]

 Hodge, V., Integrating Information Retrieval &

Neural Networks, PhD Thesis, Department of

Computer Science, The University of York, 2001.
[HA01]

 Hodge, V. & Austin, J. An Evaluation of Standard

Retrieval Algorithms and a Binary Neural

Approach. Neural Networks 14(3), pp. 287-303,

Elsevier, 2001.
 [L97]

 Lu, G. An approach to image retrieval based on

shape. Journal of Information Science, 23(2): pp.

119-127, 1997.
[M02]

 Mano, M. Digital design. 3
rd

 Edition. Prentice-Hall,

NJ, 2002. ISBN: 0130621218.
[MGR02] Mojsilovic, A., Gomes, J. and Rogowitz, B. ISee:

Perceptual features for image library navigation, Proc.

2002 SPIE Human Vision and Electronic Imaging.
 [TA00]

 Turner, A., & Austin, J. Performance Evaluation of

a fast Chemical Structure Matching Method using

Distributed Neural Relaxation. In, 4
th

 International

conference on Knowledge Based Intelligent

Engineering Systems, 2000.
[WFMA05]

 Weeks, M., Freeman, M., Moulds A. & Austin, J.

Developing Hardware-Based Applications Using

PRESENCE-2 . Perspectives in Pervasive

Computing 2005, 25th October 2005 at the IEE,

Savoy Place, London

8 CVs of authors:

Prof. Jim Austin: has the Chair of Neural Computation in

the Department of Computer Science, University of York,

where he is the leader of the Advanced Computer

Architecture Group. He has extensive expertise in neural

networks as well as computer architecture and vision. Jim

Austin has published extensively in this field, including a

book on RAM based neural networks.

Dr. Victoria Hodge: received a B.Sc. degree from the

University of York, UK, in 1997 and a Ph.D. from the

University of York, in 2001. She is a member of the

Advanced Computer Architecture Group investigating:

BICS 2006 – Brain Inspired Cognitive Systems Regular Paper

content-based image retrieval, the detection of anomalous

records in large data sets, data classification, feature selection

and the integration of neural networks and information

retrieval.

Dr. Simon O’Keefe: received a Ph.D. from the University of

York in 1997 and has been a lecturer in the Advanced

Computer Architecture Group since 1999. His interests are

mainly in the application of binary neural networks, and in

particular the coding of information presented to the network.

Other interests are in the broader field of nature-inspired

computation.

