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a b s t r a c t

Most batch processes generally exhibit the characteristics of nonlinear variation. In this paper, a

nonlinear monitoring technique is proposed using a multiway kernel independent component analysis

based on feature samples (FS-MKICA). This approach first unfolds the three-way dataset of a batch

process into the two-way one and then chooses representative feature samples from the large two-way

input training dataset. The nonlinear feature space abstracted from the unfolded two-way data space is

then transformed into a high-dimensional linear space via kernel function and an independent

component analysis (ICA) model is established in the mapped linear space. The proposed FS-MKICA

method can significantly reduce the computational cost in extracting the kernel ICA model since it is

based on the small subset of feature samples rather than on the entire input sample set. We supply two

statistics, the I2 statistic of process variation and the squared prediction error statistic of residual, for

on-line monitoring of batch processes. The proposed method is applied to detecting faults in the

fed-batch penicillin fermentation process. The standard linear ICA method for batch process monitoring,

known as the multiway independent component analysis (MICA), is also applied to the same

benchmark batch process. The simulation results obtained in this nonlinear batch process application

clearly demonstrate the power and superiority of the new nonlinear monitoring method over the linear

one. The FS-MKICA approach can extract the nonlinear features of the batch process while the MICA

method cannot.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays more and more products tend to be manufactured
via batch or semi-batch operations. This is particularly the case for
large range of consumer products, such as foods, cosmetics,
chemical medicines, dyestuffs, dopes and so on, which are closely
linked to people’s daily life. Batch processes have advantages in
lower investment costs and ventures, greater flexibility in
manufacturing as well as easier to produce large varieties of
products, compared to continuous ones. Most importantly, batch
operation patterns allow corporations and companies to quickly
make new products to adapt to drastic market competition. To
ensure safety and stability of batch processes as well as high
quality of final products, on-line monitoring and fault diagnosis in
batch processes emerge as an essential and important task.

Advances in measurement technology and distributed control
systems (DCSs) have facilitated collection of large amounts of
data in today’s process industry. Data-driven multivariate
statistical methods, which are based on the theory of statistical
process control (SPC), have attracted much attention from
process engineers [6]. Principal component analysis (PCA) [22] is
one of the classic data-driven multivariate statistical techniques
which can handle high-dimensional and correlated process
variables. Nomikos and MacGregor [19] developed a multiway
PCA (MPCA) approach based on PCA for monitoring batch
processes. However, MPCA is a static and linear projec-
tion method, which cannot effectively capture the nonlinear
features existing in most batch processes. Dong and McAvoy [7]
presented a nonlinear PCA method based on principal curves
and neural networks to monitor batch process performance.
In the work [15], a new nonlinear batch monitoring technique,
referred to as the multiway kernel PCA (MKPCA), was proposed.
This MKPCA first unfolds the three-way data of a normal
batch process and then maps the unfolded data space into a
high-dimensional feature space via a kernel function. Finally,
principal components are extracted in the high-dimensional
feature space.
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More recently, a multivariate statistical method, known as
independent component analysis (ICA), has emerged to be a
powerful tool in process monitoring. ICA is originally derived for
blind source separation and has found wide-ranging applications
in many areas including signal processing, feature extraction,
telecommunications, audio signal separation, etc. [12,11]. In ICA,
components capture high-order information and are non-Gaussian
and dependent while components generated from PCA are merely
de-correlated. Because of its specified merits compared to PCA,
many researchers have implemented ICA for monitoring process
behaviour. Kano and co-workers [13] directly monitored inde-
pendent components obtained from the ICA algorithm for fault
detection in a continuous process. Lee and co-workers [16]
applied the ICA approach to statistical process monitoring, in
which I2, I2

e and the squared prediction error (SPE) charts are
proposed as on-line monitoring charts, similar to the T2 and SPE
charts used for PCA, and they also considered the contribution
plots of these statistics for fault identification. The authors of [17]
developed a dynamic ICA algorithm for process monitoring to take
into consideration the correlations that exist between variables.
The ICA method was extended to the multiway ICA (MICA) for on-
line monitoring of batch processes in [26,25], and in these two
works the MICA is verified to be more efficient than the PCA
because of the non-Gaussian distribution assumption of MICA.
Albazzaza and Wang [1] proposed another method by introducing
time lag shifts to include batch process dynamics in the ICA
model.

ICA, however, is a statistical technique to separate linearly
mixed latent sources. Thus, independent components obtained
from ICA cannot explain the essential sources for nonlinear
mixtures. The authors of [24] presented a two-phase nonlinear
ICA algorithm for face recognition. This kernel ICA (KICA)
approach developed in [24] is essentially kernel PCA (KPCA) plus
ICA. Training data are whitened and mapped into a feature space
by KPCA as linearly separable as possible. ICA is then performed to
seek the projection directions in the KPCA-whitened space. In this
study, we extend this KICA algorithm from face recognition to
batch process monitoring. Direct adopting the KICA transforma-
tion approach requires that we first unfold the three-way batch
data to a two-way one according to the method described in [23]
before performing KICA and then compute a kernel matrix whose
dimension is equivalent to the number of training samples. For an
unfolded data matrix of batch process, however, the number of
samples, n, is typically very large, and performing ICA on the
kernel matrix for such a large dataset is costly and may involve
prohibitive memory requirements. Hence, the efficiency of
extracting feature components in such a high-dimensional feature
space will be extremely poor and on-line monitoring performance
will be impeded seriously. In fact, extracting the m dominant
kernel principle components of the n� n kernel matrix has a
computational complexity of Oðm � n2Þ operations and memory
requirements of Oðn2Þ [8].

In order to solve the computation problem associated with a
huge kernel matrix, we introduce a novel feature sample
extracting technique before implementing kernel transformation.
Small subset of the d feature samples, which can describe the
behaviours of the original data space, is selected from all the n

training samples, where d5n and dXm. Because the size of the
kernel matrix is reduced significantly, computation of the ICA on
the feature space becomes much simpler. This is simply because
extracting the m dominant kernel principle components of the
resulting d� d kernel matrix only has a computational complexity
of Oðm � d2

Þ and memory requirements of Oðd2
Þ. This makes it

possible to implement on-line batch processes monitoring
efficiently. Both the I2 and SPE charts are implemented for on-
line monitoring purpose. The novel nonlinear monitoring method

developed in this contribution is, therefore referred to as the
multiway kernel independent component analysis based on
feature samples (FS-MKICA). The remainder of this paper is
organised as follows. ICA and KICA are briefly introduced in
Sections 2 and 3, respectively. In Section 4, we describe our new
FS-MKICA method and present an on-line batch monitoring
strategy using the FS-MKICA. The proposed method is validated
in Section 5 using a case study of the benchmark fed-batch
penicillin fermentation, and its performance is evaluated in
comparison with that of the standard MICA. Our conclusions are
offered in Section 6.

2. Independent component analysis

The concept of ICA is illustrated in Fig. 1. Let us assume that the
measured variables x ¼ ½x1 x2 � � � xm�

T 2 Rm are given as the
linear combinations of the l (pm) unknown independent
components s ¼ ½s1 s2 � � � sl�

T 2 Rl. The relationship between x
and s is given by

x ¼ A � s, (1)

where A 2 Rm�l is the mixing matrix. The aim of ICA is to estimate
the latent components by finding a de-mixing matrix W 2 Rl�m

from the measured data. In addition, the components extracted
must be as independent of each other as possible. Thus, the
estimation of s can be expressed by

ŝ ¼W � x. (2)

Note that the observation data need to be whitened before
applying the ICA algorithm. The whitening transformation can be
accomplished by means of PCA. The whitened data y ¼ Ux
satisfies

EfyyTg ¼ Im, (3)

where Ef�g denotes the expectation operator and Im the m�m

identity matrix. The whitening matrix U can be chosen explicitly
as follows. Let EfxxTg ¼ EDET, where E is the orthogonal matrix of
eigenvectors of EfxxTg and D the diagonal matrix of its
eigenvalues. Then U ¼ ED�1=2ET. In the sequel, the whitened data
are still denoted by x for notational simplification.

There are several ways of obtaining the de-mixing matrix, and
these include measures of non-Gaussianity such as kurtosis and
negentropy, minimisation of mutual information and maximum
likelihood estimation [12]. The FastICA [12] is a fixed-point
iteration scheme based on negentropy, which is most widely
used in ICA. The optimisation objective of the FastICA is defined by

max
w

JðwÞ ¼ max
w
ðEfGðwTxÞg � EfGðuÞgÞ2

s:t: EfðwTxÞ2g ¼ 1, (4)

where wT is a row vector of the matrix W, u is a Gaussian variable
with zero mean and unit variance, and Gð�Þ is a non-quadratic
function. Several choices of the G-function were suggested in [12],
and the following one

GðuÞ ¼
1

a
log coshðauÞ, (5)

where 1pap2, is known to be a good general-purpose contrast
function and is therefore used in this paper. The detailed
algorithm of the FastICA can be found in the literature [12,11],
and therefore it is not repeated here.
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Fig. 1. Illustration of ICA.
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ICA can alternatively be performed using the joint approx-
imative diagonalisation of eigenmatrices (JADE) algorithm [5]. The
JADE adopts fourth-order cumulant as the measure of non-
Gaussianity, while the FastICA uses negentropy as the measure
of non-Gaussianity. Negentropy is a more effective measure of
non-Gaussianity. Also the FastICA has a fast convergence rate and
is computationally much less complex than the JADE.

3. Kernel independent component analysis

It is known that most complex batch processes exhibit
nonlinear characteristics and the linear ICA algorithm performs
poorly in these cases. This section summarises the KICA algorithm
[24]. Given a sequence of the observed data vectors x1;x2; . . . ;xn,
where xi 2 R

m, the nonlinear mapping that maps the data onto
the high-dimensional feature space H is defined by F : Rm

!H
with x/FðxÞ. Assuming that the data in the mapped feature
space has a linear separable structure, the ICA can readily be
applied. As mentioned in the previous section, data should be
whitened before applying the ICA algorithm. Similarly, the KICA
algorithm requires whitening preprocessing, which can be
achieved using PCA preprocessing in the feature space H [24].

3.1. KPCA preprocessing

Assuming that the observation vectors x1;x2; . . . ;xn are non-
linearly mapped into the feature space H, the covariance matrix
of the mapped data can be expressed by

CH
¼

1

n

Xn

i¼1

FðxiÞFðxiÞ
T. (6)

For the time being assume that the mapped data are centred and
satisfy

Pn
i¼1 FðxiÞ ¼ 0. Define Q ¼ ½Fðx1Þ Fðx2Þ � � � FðxnÞ�. Then an

alternative expression of (6) is CH
¼ ð1=nÞQQ T. Define the Gram

matrix K ¼ Q TQ 2 Rn�n, whose elements are defined by the given
kernel function kðxi;xjÞ as follows:

ki;j ¼ FðxiÞ
TFðxjÞ ¼ hFðxiÞ �FðxjÞi ¼ kðxi;xjÞ. (7)

Applying the eigendecomposition to the Gram matrix leads to
K ¼ VKVT, where V 2 Rn�n is the matrix containing the ortho-
normal eigenvectors of K and K ¼ diagfl1; l2; . . . ; lng is the
diagonal matrix consisting of the eigenvalues of K. Note that
these eigenvalues satisfy l1Xl2X � � �XlnX0. Thus the expression
of CH in the case of K ¼ Q TQ is as follows:

CH
¼ ðQVK�1=2

Þ
K
n
ðQVK�1=2

Þ
�1. (8)

Evidently, the eigenvalues of CH are l1=n; l2=n; . . . ; ln=n which are
also arranged in descending order, and the associated matrix of
orthonormal eigenvectors can be expressed as QVK�1=2. There-
fore, the whitened data in the feature space H can be deduced as
follows:

y ¼ ð
ffiffiffi
n
p

QVK�1
Þ
TFðxÞ ¼

ffiffiffi
n
p

K�1VTkx, (9)

where kx ¼ ½kðx1;xÞ kðx2;xÞ � � � kðxn;xÞ�
T 2 Rn.

As mentioned previously, the mapped data in the feature space
H should be centred before applying the PCA projection. But it is
difficult to centre the data in H because the nonlinear map F :
Rm
!H is unknown. However, a slight modification of notation

circumvents this difficulty, and one can centre the matrix K and
the vector kx, respectively, as follows [24]:

K̃ ¼ K� ZnK� KZn þ ZnKZn, (10)

k̃x ¼ kx � Znkx � Kz1 þ ZnKz1, (11)

where Zn is the n� n matrix whose elements are all 1=n and z1 is
the n� 1 vector whose elements are all 1=n. Replacing K by K̃, we
can calculate the eigenvalues and corresponding orthonormal
eigenvectors of K̃, still denoted as K and V, respectively. Similarly,
replacing kx by k̃x, the whitening operation (9) becomes

y ¼
ffiffiffi
n
p

K�1VTk̃x. (12)

3.2. Extracting essential sources using ICA

The next task after sphering data in the feature space H is to
implement the ICA process. According to the ICA algorithm
described in Section 2, we estimate the de-mixing matrix W and
separate the independent components ŝ from the whitened
variables y as

ŝ ¼W � y. (13)

From Efŝŝ
T
g ¼WEfyyTgWT

¼WWT
¼ Il, we conclude that W is an

orthogonal matrix which can of course be obtained by the FastICA
algorithm [12]. Therefore, the KICA algorithm of [24] can be
summarised into the two steps: firstly, sphering the data in the
feature space H using the KPCA as described in (12) and,
secondly, performing the ICA algorithm in the KPCA whitened
space according to (13).

Assume that the m most dominant independent components
ŝm are extracted, and denote the corresponding de-mixing matrix
as Wm. Then

ŝm ¼Wm � y. (14)

The choice of m is an important subject entirely in itself. We adopt
the following procedure to determine the value of m. Given all the
independent components ŝ, calculate the negentropy of each
component, and arrange the components in descending order
according to their negentropy values. Set a non-Gaussianity
threshold, and only keep the components whose negentropy
values are larger than the threshold. The desired threshold value,
however, can only be found empirically.

4. Multiway KICA based on feature samples

The collected batch process data are a three-way matrix
XðI � J � KÞ, where I is the number of batch runs, J denotes the
number of process variables and K is the number of samples in a
batch run. In order to apply the KICA to on-line monitoring of
batch processes, we need to unfold this three-way matrix first to
obtain a two-way matrix XðI � KJÞ using batch-wise unfolding, as
illustrated in Fig. 2, and to normalise XðI � KJÞ by mean centring
and variance scaling. Then XðI � KJÞ is rearranged into the two-
way matrix XðKI � JÞ based on variable-wise unfolding [23,14], as

ARTICLE IN PRESS

1

I

K

Variable

B
at

ch

Sa
m

pl
e

J1 ...

X
J

2J KJ

Fig. 2. Batch-wise unfolding.

X. Tian et al. / Neurocomputing 72 (2009) 1584–15961586



Author's personal copy

illustrated in Fig. 3. The KICA is implemented on XðKI � JÞ and,
consequently, a multiway KICA (MKICA) model is established for
the batch process under normal operating conditions. This MKICA
method for on-line monitoring of batch processes, obtained by
directly applying the KICA algorithm of [24], however, may suffer
from computational difficulty. This is because the number of
samples, n ¼ KI, for XðKI � JÞ is typically very large. Thus, when
performing KICA in the data space XðKI � JÞ, the computation of
the n� n kernel matrix is extremely time consuming and
moreover a very large computer memory space is required to
store this kernel matrix. We present the novel MKICA method
based on feature samples, referred to as the FS-MKICA, to
overcome the shortcoming of the MKICA based on all the samples.
Our proposed method selects a small subset of feature samples
from XðKI � JÞ and compute the kernel matrix on this small subset,
thus significantly reducing the computation cost and the memory
space required.

4.1. Choosing feature samples

Let the subset of feature samples be FSðd� JÞ ¼ ffs1; fs2; . . . ; fsdg

� XðKI � JÞ. This subset should satisfy [9]

� FSðd� JÞ is the largest subset of XðKI � JÞ with rankðFFSÞ ¼ d,
and spanðFFSÞ � spanðFXÞ, where spanðFFSÞ denotes the space
spanned by the bases Fðfs1Þ; . . . ;FðfsdÞ, while spanðFXÞ

denotes the feature space constructed from the entire dataset
XðKI � JÞ.

This implies that the kernel matrix in the mapped feature
space H, calculated based on FSðd� JÞ, has the full rank d.
Before describing how to choose FSðd� JÞ, we give the following
theorem.

Theorem 1. Partition the n� n kernel matrix Kn, calculated from the

samples fxig
n
i¼1, into

Kn ¼
Kn�1 kn�1;n

kT
n�1;n kn;n

" #
,

where kT
n�1;n ¼ ½kðx1;xnÞ kðx2;xnÞ � � � kðxn�1;xnÞ� and kn;n ¼

kðxn;xnÞ. Assume that Kn�1 has the full rank. If dn ¼ kn;n�

kT
n�1;nK�1

n�1kn�1;n ¼ 0, then Kn has the reduced rank n� 1.

Proof. If the last column of Kn can be expressed as a linear
combination of the first n� 1 columns of Kn, namely

kn�1;n

kn;n

" #
¼

Kn�1

kT
n�1;n

" #
an�1, (15)

where an�1 ¼ ½a1 a2 � � � an�1�
T is a non-zero vector, then Kn has

the reduced rank n� 1. Rearrange (15) into

kn�1;n ¼ Kn�1an�1, (16)

kn;n ¼ kT
n�1;nan�1. (17)

Since Kn�1 has the full rank n� 1 and therefore is invertible, from
(16) we have an�1 ¼ K�1

n�1kn�1;n. Substituting this an�1 into (17)
leads to dn ¼ kn;n � kT

n�1;nK�1
n�1kn�1;n ¼ 0. &

To take into account the effect of noise in the data, Kn can be
regarded to have approximately the same rank as that of Kn�1, if
dnp�, where �40 is a small threshold value. Theorem 1 shows a
way of selecting the feature sample subset FSðd� JÞ, and the steps
in extracting feature samples are now summarised as follows:

(1) Let the initial subset include a random sample (or alterna-
tively the first sample) of the training set XðKI � JÞ and set
d ¼ 1. Then calculated the kernel matrix Kd.

(2) Consider the samples of XðKI � JÞnFSðd� JÞ one by one and
calculate the corresponding test ddþ1. If ddþ1p�, the sample is
abandoned; otherwise, set d ¼ dþ 1 and include the sample
into FSðd� JÞ as well as modify the kernel matrix Kd.

(3) After testing all the samples in XðKI � JÞ, we obtain the feature
sample subset FSðd� JÞ with d samples.

Appropriate value for the threshold � depends on the noise level
in the training data and the chosen kernel function. If a too large �
is used, the number of feature samples, d, will be too small and
spanðFFSÞ may not be an accurate approximation of the full
feature space spanðFXÞ. On the other hand, a too small � will lead
to an unnecessarily large number of feature samples or a nearly
singular Kd. We can use the following simple procedure to find an
appropriate threshold value �. Starting from a relatively large �,
gradually reduce � to obtain the corresponding d values. This leads
to the �2d curve. Look for the turning point of the �2d curve
where the value of d changes from gradual increase to a sudden
large increase or the corresponding kernel matrix Kd becomes
nearly singular. The value of � at this turning point is an
appropriate threshold value with the corresponding d being the
desired number of feature samples. This process of choosing
appropriate threshold � and subset sample size d is illustrated in
Fig. 4.

The task of implementing the KICA method on the subset
FSðd� JÞ is simplified significantly compared with the original one
on the whole input sample set XðKI � JÞ and, moreover, a much
smaller computer memory space is needed to store the kernel
matrix. All these make it possible to efficiently execute our on-line
monitoring technique for batch processes.

ARTICLE IN PRESS

1 2J ... KJ

J

I

...

2I

KI

J

1

Fig. 3. Variable-wise unfolding.

d

ε
threshold value

sa
m

pl
e 

si
ze

testing

Fig. 4. Illustration of selecting appropriate threshold value and number of feature

samples.

X. Tian et al. / Neurocomputing 72 (2009) 1584–1596 1587



Author's personal copy

4.2. Batch process monitoring using FS-MKICA

The detailed FS-MKICA algorithm for batch process monitoring
can readily be summarised. The steps for establishing the
FS-MKICA model are as follows:

(1) Collect the batch data XðI � J � KÞ under normal operating
condition. XðI � J � KÞ is unfolded into the two-way matrix
XðI � KJÞ, which is normalised and then rearranged as the two-
way data matrix XðKI � JÞ.

(2) Use the procedure described in Section 4.1 to choose the
subset FSðd� JÞ of d feature samples from the preprocessed
data XðKI � JÞ.

(3) Perform the KICA algorithm based on the feature sample set
FSðd� JÞ.

(a) Sphere the feature sample data FSðd� JÞ using the KPCA.
Calculate the eigenvalues and corresponding orthonormal
eigenvectors of the Gram matrix Kd to obtain the
whitened data y according to (12).
Here further significant saving in computational complex-
ity can be achieved by using only the kL largest
eigenvalues and corresponding orthonormal eigenvectors
of Kd to perform the data whitening. A simple empirical
criterion is that the chosen kL largest eigenvalues should
account for over 70–80% of the total energy (eigenvalues).

(b) Extract the latent ingredients by utilising the ICA
algorithm. We need to acquire the de-mixing matrix W
and the mixing matrix A as well as to extract the
independent components ŝ according to (13). Then choose
the m most dominant independent components, denoted
as ŝm, and denote the corresponding de-mixing and
mixing matrices as Wm and Am, respectively.

(4) Two types of statistics, I2 and SPE statistics [1], are used to
plot the process monitoring charts. The I2 statistic for the
systematic part of process variation is the sum of the squared
independent components ŝm while the SPE statistic for the
residual part is the sum of the square errors e, where e ¼ y � ŷ
with ŷ ¼ Am �Wm � y.

More specifically, the I2 and SPE statistics are defined as

I2
ðiÞ ¼ ŝmðiÞ

TŝmðiÞ, (18)

SPEðiÞ ¼ eðiÞTeðiÞ, (19)

with ŝmðiÞ and eðiÞ denoting the i-th column vectors of ŝm and e,
respectively. The I2 statistical control chart is used to detect
special events entering the system, whereas the SPE statistic is a
measure of non-systematic parts caused by random noise
variation, and its chart is also a fault detection tool in process
monitoring. The confidence limits of the above two statistics can
be established by the kernel density estimation method [18].

Similarly, on-line monitoring of a batch process can be
implemented in the following steps.

(1) Scale the new batch data in time k, xnewðkÞ, and whiten it into
ynewðkÞ according to (12).

(2) Calculate the new component vector ŝnewðkÞ ¼Wm � ynewðkÞ

and the residual error vector enewðkÞ ¼ ynewðkÞ � Am �Wm�

ynewðkÞ. Then obtain the I2
newðkÞ and SPEnewðkÞ according to

(18) and (19), respectively.
(3) The two statistics of the new batch data are compared with

the corresponding confidence limits. If the upper control
limits are exceeded, the abnormal behaviour of the process is
detected.

The well-known kernel density estimation method estimates
the probability density function (PDF) of the data sample set
fxig

L
i¼1 using [20,21]

pðxÞ ¼
1

sL

XL

i¼1

j x� xi

s

� �
, (20)

where s is the kernel width and jð�Þ denotes the kernel function.
Typically the Gaussian-kernel function

jðuÞ ¼ 1ffiffiffiffiffiffi
2p
p e�u2=2 (21)

is used. The value x̃, which is defined byZ x̃

�1

pðuÞdu ¼ 0:99 (22)

provides the 99% confidence limit.

5. A case study

The proposed approach was used to detect faults in the fed-
batch penicillin cultivation process. The production of penicillin
has been the subject of many studies because of its commercial
and industrial importance [2].

5.1. Process description

The fed-batch penicillin cultivation process has the nature of
nonlinear dynamics and multistage growth. In penicillin cultiva-
tion, most of the necessary cell mass is usually generated during
the initial pre-culture stage and penicillin cells begin to be
produced at the cell exponential growth phase. Cells continue to
grow to be penicillin in the stationary phase. During this stage
biomass growth rate must be kept constant to maintain high
penicillin production. So a readily metabolisable sugar such as
glucose is supplied continuously into the system instead of being
added all at once at the beginning [4,3]. We obtain the batch data
using a modular simulator (PenSim v2.0) for fed-batch fermenta-
tion developed by the monitoring and control group of the Illinois
Institute of Technology in the year of 2002 [10]. The flowchart of
the penicillin fermentation process is illustrated in Fig. 5.
Environmental variables such as pH and temperature play an
important role in the quality and quantity of the final product. In
order to maintain the circumstances required by penicillin
cultivation, acid or base additions are allowed to control pH at a
certain value, while cooling or heating water are used to make the
cultivation temperature stay constant. In addition, sugar concen-
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tration is controlled by feeding glucose during the penicillin
production stage. In the simulator Pensim v2.0, simulations are
run under a closed-loop control of pH and temperature while
glucose addition is performed open-loop.

In this work, 11 variables listed in Table 1 are used to monitor
the penicillin cultivation process. Table 2 shows the simulation
initial conditions and set points of the batch fermentation process
in Pensim v2.0. In order to achieve the on-line monitoring and
fault detection of batch processes, a monitoring model under
normal operation conditions needs to be established first. In this
paper, 30 batch runs were generated from the simulator to
model the process behaviour under normal operating conditions.
Five additional batch runs were generated to test whether the
FS-MKICA model can effectively monitor the batch process, in
which the first one was the normal batch 31 and the other four
batches were faulty batches as listed in Table 3.

5.2. Results and discussion

All the batch runs were the same duration of 400 h, consisting
of a pre-culture stage of about 45 h and a fed-batch stage of about
355 h. The sampling interval was 0.5 h. Therefore the three-way
matrix collected for modelling was denoted by Xð30� 11� 800Þ.
According to the unfolding method discussed in Section 4, this
three-way data matrix was unfolded and scaled into the two-way
matrix Xð24 000� 11Þ. Then the subset of feature samples were
chosen from these 24 000 data samples, and the KICA method was
applied to the feature sample subset to obtain the FS-MKICA
model. The kernel function was chosen to be the second-order

polynomial function

kðx;yÞ ¼ ðxTy þ 1Þ2. (23)

The procedure of determining an appropriate number of feature
samples is illustrated in Fig. 6. It can be seen that when the value
of � was reduced from 0:1 to 2� 10�7, the number of selected
feature samples was a constant d ¼ 78 while for �p10�7, the
kernel matrix became badly conditioned. Thus, the appropriate
number of feature samples was d ¼ 78. From the kernel matrix
constructed based on the feature-sample set FSð78� 11Þ, m ¼ 12
independent components were selected from the d ¼ 78 non-
linearly mapped variables in the feature space H by only
retaining the components whose negentropy values were greater
than the threshold 0:02, and the corresponding de-mixing and
mixing matrices, Wm and Am, were established to complete the
FS-MKICA model. The I2 and SPE statistics were calculated using
(18) and (19), respectively. The 99% confidence limits for these
two statistics were obtained based on the kernel density
estimation method [18].

We compared our FS-MKICA approach employing the second-
order polynomial kernel function with the MICA method [26],
which is an important on-line monitoring model for batch
processes. In a similar way to the construction of the FS-MKICA
model, we constructed the MICA model. The three-way data
matrix Xð30� 11� 800Þ was first unfolded into the two-way data
matrix Xð24 000� 11Þ. The ICA algorithm was then implemented
in the unfolded data space, which selected m ¼ 4 independent
components from the J ¼ 11 variables to establish the MICA
model. We also supplied the I2 and SPE statistics, calculated
according to (18) and (19), for the MICA monitoring method. Using
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Table 1
List of variables used for the monitoring of penicillin cultivation process

Number Variables

1 Aeration rate (l/h)

2 Agitator power (W)

3 Substrate feed flow rate (l/h)

4 Substrate feed temperature (K)

5 Dissolved oxygen concentration (% saturation)

6 Culture volume (l)

7 Carbon dioxide concentration (m mol/l)

8 pH

9 Bioreactor temperature (K)

10 Generated heat (kcal)

11 Cooling flow rate (l/h)

Table 2
Initial conditions and set points used in the simulation of the penicillin

fermentation process

Initial conditions

Substrate concentration (g/l) 14–18

Dissolved oxygen concentration (% saturation) 1–1.2

Biomass concentration (g/l) 0

Penicillin concentration (g/l) 0

Culture volume (l) 100–104

Carbon dioxide concentration (m mol/l) 0.5–1

Bioreactor temperature (K) 295–301

Generated heat (kcal) 0

pH 4.5–5.5

Set points

Aeration rate (l/h) 8–9

Agitator power (W) 29–31

Substrate feed flow rate (l/h) 0.039–0.045

Substrate feed temperature (K) 295–296

Bioreactor temperature (K) 297–298

pH 4.95–5.05

Table 3
Fault types

No. Fault description

Fault 1 Substrate feed flow rate is suddenly step-decreased by 10% at 70 h and

maintained to 150 h of batch operation.

Fault 2 Aeration rate is linearly increased with the ramp rate of 1 l=h2 from

100 h to the end of batch operation (400 h).

Fault 3 Agitator rate is linearly increased with the ramp rate of 3 W=h2 from

100 h to the end of batch operation (400 h).

Fault 4 Substrate feed flow rate is linearly increased with the ramp rate of

0:005 1=h2 from 100 h to the end of batch operation (400 h).

Fig. 6. Number of feature samples d versus threshold value � for the second-order

polynomial kernel function.
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the kernel density estimation method again, we computed the
99% confidence limits for the two statistics.

Fig. 7(a) and (b) show the on-line monitoring results using the
I2 and SPE charts with the 99% confidence limits for the MICA and
FS-MKICA methods, respectively, for the normal batch 31. For both

the MICA and FS-MKICA models, the I2 and SPE monitoring charts
for the normal batch 31 stayed below the confidence limits for all
the times except for a few instances during the preculture stage,
which were allowed because the 1% false fault alarms might result
from the 99% control limits. The two on-line monitoring methods
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Fig. 7. On-line monitoring charts for (a) MICA and (b) FS-MKICA with polynomial function in the case of normal batch 31.
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confirmed that the batch was operating normally throughout the
batch run.

Fig. 8 plots the on-line monitoring charts of the two models for
the abnormal batch of fault 1 in which substrate (glucose) feed
flow rate was suddenly decreased by 10% at the time of 70 h and
lasted to 150 h. Glucose is the main carbon source of the fed-batch
fermentation and thus a decrease in the glucose feed rate will lead
to a reduction in penicillin production. From Fig. 8(a), neither the
I2 chart nor the SPE chart of the MICA model could detect the
small step-decrease disturbance in the glucose feed rate. By
contrast, the SPE chart of the FS-MKICA method definitely
detected this fault during the time period of 70–150 h, as can be
clearly seen from Fig. 8(b). This demonstrates that the proposed

FS-MKICA approach has superior fault detection capability over
the MICA method.

We next considered the second-fault batch, in which a ramp
increase of aeration rate was imposed on the batch with the ramp
rate of 1 1=h2 from 100 h to the end of batch operation (400 h). The
monitoring results using the MICA and FS-MKICA models for this
abnormal process are shown in Fig. 9(a) and (b), respectively.
The I2 and SPE charts of both the models detected this faulty
batch operation, as can be seen from Fig. 9. However, the I2 chart
of the MICA model exceeded its 99% control limit from 160 h
approximately, whereas the value of the SPE chart for the
FS-MKICA model exceeded its 99% control limit from around
150 h onward which was about 10 h earlier than the MICA method.
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Fig. 9. On-line monitoring charts for (a) MICA and (b) FS-MKICA with polynomial function in the case of second-fault batch.
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We then introduced the third-fault batch of Table 3. Fig. 10(a)
and (b) show the monitoring results of the MICA and FS-MKICA
methods, respectively. Again, the I2 and SPE charts of both the
methods detected this faulty batch operation. However, from
Fig. 10, we know that the MICA model detected this disturbance

from 180 h onward, while the FS-MKICA model detected the faulty
batch operation from 165 h onward, which was 15 h earlier than
the MICA model.

The last fault of Table 3 was also imposed on the batch so that
the glucose feed rate was linearly increased at the ramp rate of
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Fig. 10. On-line monitoring charts for (a) MICA and (b) FS-MKICA with polynomial function in the case of third-fault batch.
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0:005 1=h2 from 100 h to the end of batch operation (400 h).
The on-line monitoring results using the MICA model were
depicted in Fig. 11(a), where it can be seen that the I2 chart of
the MICA model could not detect this type of fault with the ramp
change in the substrate feed flow rate. The SPE chart of the MICA
model did detect this faulty batch operation at 225 h. As shown in
Fig. 11(b), both the I2 and SPE charts of the FS-MKICA
model correctly detected this faulty batch process and, moreover,
the SPE chart of the FS-MKICA model detected the fault at
180 h, far earlier than the SPE chart of the MICA model did. This
clearly demonstrates that the proposed FS-MKICA approach
can detect a fault or disturbance more rapidly during the
fermentation process.

5.3. Further results using Gaussian kernel

It can be seen that the FS-MKICA model with the second-order
polynomial kernel function performed well. The polynomial
function (23) is a commonly used kernel function and it is simple
and easy to implement. Another commonly used kernel function
is the Gaussian function defined by

kðx;y;rÞ ¼ e�kx�yk2=2r2

, (24)

where r is the kernel width. For a comparison purpose, we also
used the Gaussian-kernel function (24) to form the FS-MKICA
model. Appropriate value for the Gaussian-kernel width was
found empirically to be r ¼ 15. To determine an adequate number
of feature samples, the �2d curve is plotted in Fig. 12, where it can
be seen that an appropriate number of selected feature samples
was d ¼ 26. From the Gaussian-kernel matrix constructed based
on the feature-sample set FSð26� 11Þ, m ¼ 10 independent
components were retained as their negentropy values were
greater than the threshold 0:02. The corresponding de-mixing
and mixing matrices, Wm and Am, were established to complete
the Gaussian-kernel based FS-MKICA model. The I2 and SPE
statistics were then calculated using (18) and (19), respectively.
The 99% confidence limits for these two statistics were obtained
again based on the kernel density estimation method [18].

The on-line monitoring performance of this constructed
FS-MKICA model with Gaussian kernel and d ¼ 26 are
depicted in Figs. 13–16. Compared with the performance of the
FS-MKICA model with polynomial kernel and d ¼ 78 shown in
Figs. 8(b)–11(b), it can be seen that the performance of the
Gaussian-kernel based FS-MKICA model was poorer. Specifically,
it did not clearly detect the fault in the first-fault batch, and it took
longer time to detect the other three faulty batch processes.
We concluded that the second-order polynomial kernel based

ARTICLE IN PRESS

0 100 200 300 400
0

10

20

30

40

time (h)

I2

0 100 200 300 400
0

20

40

60

time (h)

S
P

E
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FS-MKICA model had superior fault detection capability over the
Gaussian-kernel based FS-MKICA model for this benchmark
process.

The Gaussian-kernel based FS-MKICA model constructed from
the d ¼ 26 feature samples was actually optimal for Gaussian-
kernel function. To demonstrate this, we further investigated
using the d ¼ 78 feature samples, corresponding to the �2d curve
of Fig. 12 at the point ð� ¼ 0:001; d ¼ 78Þ, to construct the
FS-MKICA model and we also retained the first m ¼ 12 dominant
independent components just as in the case of polynomial kernel.
The on-line monitoring charts of this constructed FS-MKICA
model are shown in Figs. 17–20, respectively, for the four faulty
batch processes. It is clear that the fault detection capability of
this Gaussian-kernel based FS-MKICA model was inferior to that
of the Gaussian-kernel based FS-MKICA model constructed from
only d ¼ 26 feature samples.

6. Conclusions

In this work, a new approach has been proposed for on-line
monitoring of batch processes which exhibit significant nonlinear
characteristics. Our proposed FS-MKICA method can effec-
tively handle very large datasets. The key idea of the pro-
posed approach is to choose a small subset of feature samples
from the large unfolded two-way training batch data efficiently,
which ensures that the constructed low-dimensional kernel
space approximates the full nonlinear feature space well. In
the constructed low-dimensional nonlinear feature space, the
KICA method can readily be applied, without suffering the
difficulty of prohibitive computation, to establish the FS-MKICA
monitoring model. The I2 and SPE statistical charts have been
supplied to monitor new batch runs on-line. The proposed
FS-MKICA model has been investigated in the simulation
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Fig. 17. On-line monitoring charts for FS-MKICA with Gaussian function and d ¼ 78 in the case of first-fault batch with a step decrease in substrate feed flow rate during the

time period of 70–150 h.

0 100 200 300 400
0

50

100

150

200

250

time (h)

I2

248 h

0 100 200 300 400
0

20

40

60

80

100

time (h)

S
P

E 312 h

Fig. 16. On-line monitoring charts for FS-MKICA with Gaussian function and d ¼ 26 in the case of fourth-fault batch.
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Fig. 15. On-line monitoring charts for FS-MKICA with Gaussian function and d ¼ 26 in the case of third-fault batch.
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study of a fed-batch penicillin fermentation process with the
standard linear MICA model as the benchmark. The simulation
results obtained have clearly demonstrated that the FS-MKICA
model can detect faults or disturbance more accurately
and rapidly, especially for batch processes having nonlinear
characteristics.
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